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Object Detection through Modified YOLO Neural Network
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In the field of object detection, recently, tremendous success is achieved, but still it is a very challenging task to detect and identify
objects accurately with fast speed. Human beings can detect and recognize multiple objects in images or videos with ease
regardless of the object’s appearance, but for computers it is challenging to identify and distinguish between things. In this paper, a
modified YOLOv1 based neural network is proposed for object detection. 'e new neural network model has been improved in
the following ways. Firstly, modification is made to the loss function of the YOLOv1 network. 'e improved model replaces the
margin style with proportion style. Compared to the old loss function, the new is more flexible and more reasonable in optimizing
the network error. Secondly, a spatial pyramid pooling layer is added; thirdly, an inception model with a convolution kernel of
1∗ 1 is added, which reduced the number of weight parameters of the layers. Extensive experiments on Pascal VOC datasets 2007/
2012 showed that the proposed method achieved better performance.

1. Introduction

Human beings can easily detect and identify objects in their
surroundings, without consideration of their circumstances,
no matter what position they are in and whether they are
upside down, different in color or texture, partly occluded,
etc. 'erefore, humans make object detection look trivial.
'e same object detection and recognition with a computer
require a lot of processing to extract some information on
the shapes and objects in a picture.

In computer vision, object detection refers to finding
and identifying an object in an image or video. 'e main
steps involved in object detection include feature extraction
[1], feature processing [2–4], and object classification [5].
Object detection achieved excellent performance with
many traditional methods that can be described from the
following four aspects: bottom feature extraction, feature
coding, feature aggregation, and classification. 'e feature

extraction plays an essential role in the object detection and
recognition process [6]. 'ere will be more redundant
information which can be modeled to achieve better per-
formance than previous point-of-interest detection. Pre-
viously used scale-invariant feature transformations (SIFT)
[7] and histogram of oriented gradients (HOG) [8] belong
to this category.

'e object detection is critical in different applications,
such as surveillance, cancer detection, vehicle detection, and
underwater object detection. Various techniques have been
used to detect the object accurately and efficiently for dif-
ferent applications. However, these proposed methods still
have problems with a lack of accuracy and efficiency. To
tackle these problems of the object detection, machine
learning and deep neural network methods are more ef-
fective in correcting object detection.

'us, in this study, a modified new network is proposed
based on the YOLOv1 [9] network model. 'e performance
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of the modified YOLOv1 is improved through the following
points:

(i) 'e loss function of the YOLOv1 network is
optimized.

(ii) 'e inception model structure is added.
(iii) A spatial pyramid pooling layer is used.
(iv) 'e proposed model effectively extracts features

from images, performing much better in object
detection.

'e remaining of this paper is organized as follows.
Section 2 describes related work. Section 3 presents the
methodology, which describes network architecture in de-
tail. Section 4 presents the analysis of the improved network
from various aspects. In Section 5, the experiment setup,
results, and comparison with other networks are discussed.
'e paper conclusion and future work are given in Section 6.

2. Related Work

Detecting and identifying multiple objects in an image is
hard for machines to recognize and classify. However, a
noteworthy effort has been carried out in the past years in
the detection of objects using convolutional neural networks
(CNNs). In the object detection and recognition field, neural
networks are in use for a decade but became prominent due
to the improvement of hardware new techniques for training
these networks on large datasets [10, 11]. In object detection
and recognition, researchers have used deep learning for
learning features directly from the image pixels, which are
more effective than the manual features [4, 12]. Recently
deep learning-based algorithms remove the manual features
extraction methods and directly use features extracting
methods [13] from the original images. 'is methodology
has been successfully proven in feature pyramid network
(FPN) [14], single shot detector (SSD) [15], and deconvo-
lutional single shot detector (DSSD) [16]. Deep learning is a
prevailing direction in the field of machine learning [17]. In
[18, 19], researchers showed that the CNNs inherit the
advantages of deep learning, which makes their results in the
field of object detection and recognition greatly improved
compared with the traditional methods. Researchers had
made many efforts to use stochastic gradient descent and
backpropagation to train deep networks for object detection
[20]. 'ose networks were able to learn but were too slow in
practice to be useful in real-time applications; the technique
in [12] showed that stochastic gradient descent by back-
propagation was effective in training CNNs. CNNs became
in use but fell out of fashion due to the support vector
machine as in [21] and other simpler methods like linear
classifiers as in [22]. New techniques that have been de-
veloped recently [23, 24] show higher image classification
accuracy in ImageNet large scale visual recognition [25].
'ese techniques have brought much more easiness to train
large and deeper networks and shown enhanced perfor-
mance. Newly, approaches have been established to identify
vehicles and other objects from videos or static images using
deep convolutional neural networks (DCNN) [26–30]. For

example, faster R-CNN [19] proposes candidate regions and
uses CNN to confirm candidates as valid objects. YOLO uses
end-to-end unified, fully convolutional network structure
that predicts the objectless assurance and the bounding
boxes concurrently over the whole image. SSD [31] out-
performs YOLO by discretizing the production space of
bounding boxes into a set of avoidance boxes over different
feature ratios and scales per feature map location. YOLO-2
[32] achieves state-of-the-art performance in object detec-
tion by improving various aspects of its earlier version. A
fully convolutional network is utilized for object detection
from three-dimensional (3D) range scan data with LIDAR.
A 2D-DBN design is proposed, which uses second-order
planes instead of first-order vectors as inputs and uses bi-
linear projection for retaining discriminative information to
develop the recognition rate [33]. Although DCNN based
approaches accomplish the state-of-the-art accuracy of de-
tection or classification, these approaches often require
intensive calculation and a considerable amount of labeled
training data. 'rough the past few years, to use deep neural
networks economically in real-time applications, a sub-
stantial amount of work has been done to report these two
problems [34, 35]. In this study, a different modified ar-
chitecture for object detection is addressed, which is capable
of providing high accuracy and speed.

3. Methodology

In this section, the proposed model is described in detail.
Firstly, the improvement based on loss function is presented.
Secondly, the improvement based on inception structure
model is described. And lastly, the improvement based on
the spatial pyramid pooling layer is portrayed. 'e symbolic
representations are described in Table 1.

3.1. Improvement in Network Design. 'e following im-
provements to the YOLO network model are made while
maintaining the original model dominant idea.

3.1.1. Improvement Based on Loss Function. 'e loss
function of the original YOLOv1 network takes the same
error for the large and small objects, which makes the
model’s prediction for neighboring objects unsatisfactory. If
two objects appear in the same grid, only one object can be
detected, and there will be a problem in detecting small
objects. Compared with the old loss function, the new loss
function is more flexible and optimized. In the new loss
function, the original difference is replaced by the pro-
portionality. Equation (1) shows the original loss function of
YOLOv1; YOLOv1 uses one single loss function for both
bounding boxes and the classification of the object. Loss
function can be described in five parts: the first and second
are focusing on the loss of the bounding box coordinates,
while the third and fourth are responsible for the difference
in the confidence of having an object in the grid, and part five
is responsible for the difference in class probability. 'e
λcoord and λnoobj are scalars to weight each loss function,
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λcoord is set to 5, and λnoobj is set to 0.5 by the original author
of YOLOv1.
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In convolutional neural networks, variance function is
often used as the loss function [36] of the network. For
example, for a variety of problems, the total number of
categories is C and training samples is N. 'e algorithm
which is used for multiclassification first needs to find those
weights and biases that make the output of the neural
network close to y(x) (which is labeled category) for all
training inputs x; to quantify how close the output of all
training inputs x is to y(x), the loss function is defined as
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Here, t represents the label of the input object, and y

represents the actual output value of the input object to the
network. 'e function of choosing the variance form is the
loss function to facilitate subsequent optimization. On the
other hand, the current training level can be predicted by
observing the severity of the fluctuation of the loss value in
practice.

In the YOLOv1 network loss function design, the var-
iance function is used as part of the entire loss function, the
normalization idea of contrast is used to improve it, and the
improved model replaces margin style with proportion style,
so here the size of the object in the picture is considered.'e
specific modified loss function is shown in
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Here, Iobjij indicates that the target object is assumed to be
present in the ith position of the area. x and y represent the
current position of the image; w and h represent the width
and height of the image. c is the total number of objects to be
identified, and p (c) is the probability that the object belongs
to a specific class c. Here, it should be noted that the loss
function guides the optimization of the class to which the
object belongs and optimizes the position of the boundary
box for detecting the object.

3.1.2. Improvement of Inception Structure Model. 'e third
and fourth layers of the original network are replaced with
new inception models. 'e inception model itself has the
ability to deepen and widen the network and enhance the
network; a 64×1× 1 layer is added between the first and
second layers of the original network, which reduces the
network parameters. Figure 1 shows the structure part of the
YOLOv1 network after adding the inception model. In-
ception architecture is used to find out how an optimal local
sparse structure in a convolutional neural network can be
approximated and covered by readily available dense
components.

'e inception model can deepen and widen the network,
and the convolutional kernel of different scales is connected
in parallel.'us, the multiscale feature can be more effective,
and the hidden information in the image can be used more
efficiently.

3.1.3. Improvement of SPP Structure Model. Figure 2 shows
the addition of spatial pyramid pooling (SPP) layer, and
below are the advantages of using it.

(i) It can output a fixed-size image for any size input or
any ratio of the input image.

(ii) It can extract pool features at varying scales.

A classifier (SVM/Softmax), as well as fully connected
layers, requires a fixed-length vector, which can be generated
through Bag-of-Words (BoW) [35, 37, 38], the spatial
pyramid downsampling boosts the BoW because it preserves
spatial information by pooling the spatial bins. 'ese spatial
bins have sizes proportional to the image size, so the number
of bins is fixed regardless of the image size, which makes the
SPP [39, 40] not only improve network performance but also
dramatically reduce the required calculation time by
avoiding repeatedly computing the convolutional features.

Table 1: 'e mathematical symbols.

Symbol/
notation Description

λcoord
Hyperparameter is set to ensure a “fair”

contribution of the bounding box location

λnoobj
Hyperparameter is set for bounding box score

prediction
C Categories
P(C) Probability of detected class categories
N Training samples
X Training input
Y Output label
t Input label
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By using the SPP layer, more feature-rich image infor-
mation is obtained, and also great improvements in the
network’s time efficiency are observed. Hence, this tech-
nique shows remarkable detection accuracy.

4. Analysis of the Network

Following is the comprehensive analysis of our proposed
network and improved YOLO model based on the results of
the experimental tests.

(i) By the analysis of the confusion matrix, we observed
what kind of sample detection performance is better
for the new network, what kind of sample detection
performance is not good, and how to distinguish the
easily confused categories and understand the ad-
vantages and disadvantages of the network.

(ii) We examined the network architecture of the new
network model, such as the comparison of the
number of network parameters, and assessed its
performance.

4.1. Confusion Matrix. 'rough the confusion matrix, the
test results are analyzed. A confusion matrix is a list of data
classes; in each class, the actual data is classified so that we
can observe which categories of samples are easily confused
in the modified network. In the confusion matrix, the rows
represent the true categories of the test images. 'e columns
show the classes of the test images divided by the network in
the actual test.

In the original Pascal VOC dataset, there are 20 cate-
gories of objects; here some representative categories, which
easily cause misidentification, are selected.

Table 2 is the confusion matrix of the modified network
model on the Pascal VOC 2007 dataset. It can be noticed
from Table 2 that the airplane is mistakenly recognized as a
bird, and the original samples belonging to birds are
identified as airplanes. 'e reason is that the overall shape is
too similar: the airplane has two wings, and so does the bird;
the airplane’s body shape is very similar to that of a bird;
therefore, the results show that 22% of the airplanes are
mistakenly identified as birds, and 36% of the birds were
incorrectly identified as airplanes. In addition, the chair and
sofa are also relatively easy to cause misidentification, be-
cause in real life it is very easy to differentiate between chairs
and sofas, but in picture chairs and sofas are very easy to
appear the same, which can cause miss identification very
easily. And the same applies for sheep, horses, dogs, and cats.

From Table 2, it can be seen that the overall average
misrecognition rate is not too high, indicating that the
overall ability of the network to extract features and detect
target objects in the image is relatively reliable.

4.2. Network Architecture. Here, the proposed network ar-
chitecture is described. Before going into detail, please note
that the first and second layers are the same: both are
convolutional layers plus the downsampling layer structure;
the third and fourth layers are the same: both are incep-
tion + pool structures; the fifth and sixth layers are the same:
both are convolutional cascade structures; the seventh layer
is spatial pyramid pooling layer; and the eighth and ninth
layers are the fully connected layers.

For the first layer, it is assumed that the input is an
image, r is the number of rows of the image, c is the number
of columns of the image to a network of the first layer input,
and the sliding step is s1; the computational cost of obtaining
a feature map is shown in the equation:

x1y1( 􏼁
r − x1 + s1

s1

c − y1 + s1

s1
. (4)

Computing area is the size of the convolution kernel
area, so the result of (4) is obtained, and then we assume that
the first layer has n1 feature maps, so the calculation of the
first layer is

r − x1 + s1

s1

c − y1 + s1

s1
x1y1n1( 􏼁, (5)

and the size of the feature map after convolution will
become

r1 �
r − x1 + s1

s1
􏼦 􏼧,

c1 �
c − y1 + s1

s1
􏼦 􏼧.

(6)

Next is the maximum downsampling layer; since the
downsampling layer does not change the number of feature
maps, the numbern2 of the feature maps is equal to the
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Figure 2: Partial structure of the new network after joining the SPP
layer.
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number n1 of the previous feature maps. Assuming the size
of the downsampling window, the size of the feature map
obtained after downsampling is

x2 �
r1

r2
,

y2 �
c1

c2
.

(7)

'e calculation of the total number of n2 feature maps
will become

n2r2c2x2y2. (8)

'e following is the convolution second layer, assuming
that the number of features

r3 �
r2 − x3 + s3

s3
􏼦 􏼧,

c3 �
c2 − y3 + s3

s3
􏼦 􏼧.

(9)

'e calculation with the upper layer of the feature map
for convolution operation will be as follows.

x3y3n3( 􏼁
r2 − x3 + s3

s3
􏼦 􏼧

c2 − y3 + s3
s3

􏼦 􏼧. (10)

Assuming that the output of the maximum down-
sampling layer in the second layer is characterized by the size
of the downsampling window and with the step size s4,
calculation of the total amount of the layer can be obtained
by the same way.

x4 �
r3

r4
,

y4 �
c3

c4
.

(11)

From the above, it can be seen that the output feature size
of MaxPool2 is n4. In the inception structure, the step size is
1, and the calculation is from left to right. 'e third layer’s

inception structure model is shown in Figure 3 and
mathematically shown in

n4 × 1 × 1 × 64,

n4 × 1 × 1 × 96 + 96 × 3 × 3 × 128,

n4 × 1 × 1 × 16 + 16 × 5 × 5 × 32,

n4 × r4 × c4 + n4 × 1 × 1 × 32.

(12)

'us, the whole calculation of inception four layers can
be done in the above way. Next is the fifth layer of the
convolution, and the total calculation is

1 × 1 × r5 × c5 × 512 + 2 × 3 × 3 × r5 − 3 + 1( 􏼁

× c5 − 3 + 1( 􏼁 × 1024

+ 3 × 3 ×
r5 − 3 + 2

2
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2

􏼒 􏼓 × 1024.

(13)

Since the sixth layer and the fifth layer have the same
structure, the calculation is the same as (13).

'e seventh layer is the pyramid layer, denoted by L,
where n� 1, 2, . . ., L. 'e calculation amount of the pyramid
layer is

􏽘
L

n�1
n5r6,nc6,n

r5

r6,n

􏼦 􏼧
c5

c6,n

􏼦 􏼧􏼠 􏼡. (14)

'e eighth layer is fully connected. Assume that the
number of input features is n6, and the number of output
features isn7. Because the input of the layer is the former
layer, it will be processed after all the features of the map are
gathered as a vector, so n6is

n6 � 􏽘
L

n�1
n5r6,nc6,n. (15)

Because the full-connection layer is derived from the original
neural network, the calculationmethod is the same as that of the
neural network, so the computational cost of the layer is

n7 2 􏽘
L

n�1
n5r6,nc6,n + 1⎛⎝ ⎞⎠. (16)

From the above description of network architecture
analysis, it is observed that the network’s overall calculation,
input layer image size, convolution kernel size, and the
number of convolutional layers, shows that network depth
and width are having big impact.

5. Experiment

Pascal VOC is divided into two datasets: Pascal VOC 2007
and Pascal VOC 2012 dataset. 'e newly designed network
was tested on both datasets [41]. 'e Pascal VOC dataset
consist of 20 categories: person, bird, cat, cow, horse, sheep,
airplane, bike, bicycle, boat, bus, car, motorbike, train, bottle,
chair, dining table, potted plant, sofa, and TV monitor.
Figures 4 and 5 show the sample images.

Table 2: Confusion matrix for the new network.

(%) Bird Chair Sofa Aero Horse Sheep Dog Cat

Bird 64 36

Chair 43 57

Sofa 41 59

Aero 22 78

Horse 78 22

Sheep 28 72

Dog 82 18

Cat 14 86
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'e whole experiment process is conducted on NVIDIA
GeForce GTX 1060 GPU using the Ubuntu operating sys-
tem. 'e number of iterations was 40000.

5.1. Results andDiscussion. 'e results are discussed and the
network performance is checked using t-SNE visualization
tool, showing the extent to which the new network is able to
extract rich features from images.

Next, the visualization of a large number of sample features
in 2D is observed by using the t-SNE visualization tool, which
maps high-dimensional to low-dimensional data [42].

Figure 6 shows ten selected categories from the Pascal
VOC dataset (bird, chair, sofa, bike, airplane, horse, sheep,

dog, cat, cow) using the t-SNE visualization tool; in the
figure, different colors represent different types; if the two
types are fused, this means that these types are easily getting
confused with one another.

'ere are about seven categories which are not com-
patible with each other, indicating that the characteristics of
these seven types of differences are relatively large and
relatively easy to identify; in addition to several types of
partial integration, the characteristics of several types have a
certain degree of similarity, which is easy to cause mis-
identification. However, overall, the use of the new network
to extract the characteristics is very effective and robust, but
it is also inadequate and needs to be further improved. 'e
improved network was tested on Pascal VOC 2007 and

(a) (b) (c)

(d) (e) (f )

Figure 4: Pascal VOC 2007 dataset images. (a) 000006. (b) 000008. (c) 000014. (d) 000015. (e) 000017. (f ) 000018.

Output3-1

Conv
1 × 1 × 64 

Conv 
3 × 3 × 128

Conv 
5 × 5 × 32

Conv 
1 × 1 × 32

Conv 
1 × 1 × 96

Conv 
1 × 1 × 16

MaxPool
3 × 3

MaxPool2

Figure 3: Inception model architecture.
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Pascal VOC 2012, respectively. 'e results are shown in
Tables 3 and 4.

'e data in Tables 3 and 4 is expressed in percentage. In
the above results, to make the comparison results more
consistent, the training dataset used in the above algorithm
is the train/val dataset of Pascal VOC 2007 and Pascal VOC
2012. 'e data presented in Tables 3 and 4 are test results for
each class of 20 objects. Our modified network average
detection rate is 65.6% and 58.7% on the Pascal VOC 2007
and 2012 dataset. To check the performance, we compared
the results of our modified network with those of R-CNN
and YOLOv1, as depicted in Tables 5 and 6 for Pascal VOC
2007 and 2012, respectively. Table 5 shows the Pascal VOC
2007 comparison test results, and in Table 6 Pascal VOC
2012 comparative test results are presented.

It can be seen from the tables that our modified model
has improved recognition over the YOLOv1 and R-CNN
model in almost every type. Table 7 depicts the processing
time of an image of three different networks, R-CNN,
YOLOv1, and our improved YOLO, for testing the same
image.'e time taken by the R-CNN network is 6.9 seconds,

(a) (b) (c)

(d) (e) (f )

Figure 5: Pascal VOC 2012 dataset images. (a) 000028. (b) 000031. (c) 000033. (d) 000036. (e) 000039. (f ) 000040.
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Figure 6: Two-dimensional visualization of ten samples.

Table 3: Pascal VOC 2007 test results.

VOC
2007

'e modified
YOLOv1

VOC
2007 'e modified YOLOv1

Aero 77.9 Table 51.2
Bike 77.6 Dog 81.9
Bird 63.7 Horse 77.5
Boat 47.6 M-bike 78.7
Bottle 44.8 Person 68.6
Bus 70.7 Plant 37.1
Car 68.9 Sheep 71.8
Cat 85.3 Sofa 58.4
Chair 42.2 Train 71.0
Cow 71.9 Tv 64.6

Average recognition rate 65.6

Table 4: Pascal VOC 2012 test results.

VOC
2012

'e modified
YOLOv1

VOC
2012 'e modified YOLOv1

Aero 76.1 Table 49.1
Bike 67.8 Dog 80.3
Bird 58.0 Horse 72.7
Boat 39.9 M-bike 71.9
Bottle 24.2 Person 64.2
Bus 68.9 Plant 29.0
Car 57.6 Sheep 54.5
Cat 82.5 Sofa 55.2
Chair 36.3 Train 73.9
Cow 61.1 Tv 51.7

Average recognition rate 58.7

Scientific Programming 7



the YOLO network takes 0.14 seconds, and our model takes
0.11 seconds. Figures 7 and 8 show the testing results on
Pascal VOC 2007 and Pascal VOC 2012 dataset images [41].

From the testing results, the robustness of the improved
network is noticed; it classifies each class accurately and
detects the desired class.

6. Conclusion

In this paper, we proposed YOLOv1 neural network based
object detection by modifying loss function and adding
spatial pyramid pooling layer and inception module with
convolution kernels of 1∗ 1. 'e new network is trained on
an end-to-end method, and the extensive experiment on a
challenging Pascal VOC dataset, 2007/2012, shows the ef-
fectiveness of the improved new network, with the detection
results being 65.6% and 58.7%, respectively. 'e results of
the proposed network have been compared with those of
R-CNN and YOLOv1, from which the effectiveness of the
proposed method is demonstrated.

In the future, we expect to extend our work further to
make our own benchmark dataset and a hybrid detector for
small object detection.

Table 5: Pascal VOC 2007 comparison test results.

VOC 2007 R-CNN YOLOv1 'e modified
YOLOv1

Aero 63.5 78 77.9
Bike 66 74.2 77.6
Bird 47.9 61.3 63.7
Boat 37.7 45.7 47.6
Bottle 29.9 42.7 44.8
Bus 62.5 68.2 70.7
Car 70.2 66.8 68.9
Cat 60.2 80.2 85.3
Chair 32 40.6 42.2
Cow 57.9 70 71.9
Table 47 49.8 51.2
Dog 53.5 79 81.9
Horse 60.1 74.5 77.5
M-bike 64.2 77.9 78.7
Person 52.2 64 68.6
Plant 31.3 35.3 37.1
Sheep 55 67.9 71.8
Sofa 50 55.7 58.4
Train 57.7 68.7 71
TV 63 62.6 64.6
Average recognition rate 53.1 63.4 65.6

Table 6: Pascal VOC 2012 comparative test results.

VOC 2012 R-CNN YOLOv1 'e modified
YOLOv1

Aero 68.1 77 76.1
Bike 63.8 64.2 67.8
Bird 46.1 57.7 58
Boat 29.4 38.3 39.9
Bottle 27.9 22.7 24.2
Bus 56.6 68.3 68.9
Car 57 55.9 57.6
Cat 65.9 81.4 82.5
Chair 26.5 36.2 36.3
Cow 48.7 60.8 61.1
Table 39.5 48.5 49.1
Dog 66.2 77.2 80.3
Horse 57.3 72.3 72.7
M-bike 65.4 71.3 71.9
Person 53.2 63.5 64.2
Plant 26.2 28.9 29
Sheep 54.5 52.2 54.5
Sofa 38.1 54.8 55.2
Train 50.6 73.9 73.9
TV 51.6 50.8 51.7
Average recognition rate 49.6 57.9 58.7

Table 7: Comparison of test results for time performance.

Device R-CNN (s) YOLOv1 (s) 'e modified
YOLOv1 (s)

GPU time/image 6.9 0.14 0.11

Person

Horse

Figure 7: Testing results of our model on Pascal VOC 2007.

Horse
Person

Dog

Figure 8: Testing results of our model on Pascal VOC 2012.
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