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The standard method used in the Weather Research and Forecasting (WRF) model for distributing MPI processes across the
processors is not always optimal. This circumstance affects performance, i.e., execution times, but also energy consumption,
especially if the application is to be extended to exascale. The authors found that the reason why the standard method for
process distribution is not always optimal was an imbalance between the orthogonality of the communication and the
proper cache usage, and this affects energy consumption. We present an improved MPI process distribution algorithm that
increases the performance. Furthermore, scalability analyses for the new algorithm are presented and the energy use of the
system is evaluated. A solution for balancing energy use with performance is also proposed for cases where the former is

a concern.

1. Introduction

Weather forecasting is becoming increasingly important in
people’s everyday lives. It is as important for a person who
wants to have a good weekend as it is for an agency that has
to plan a world-class event like the Winter Olympics.
Moreover, increasingly higher resolution forecasts are being
demanded, which involves the need to increase the com-
putational power used for these forecasts, even reaching
exascale. From an operational point of view, performance is
the most important computational aspect of systems pro-
viding weather forecasts, as these must be generated in a
short period of time, without losing sight of the energy
consumption of these computational resources. Thus, a
forecast for the next 12 hours should be computed in less
than an hour in order to be useful for operations. For this
reason, the use of more computational resources is
demanded. Increasing the number of processors used on a
weather simulation allows the problem to be split into
smaller subproblems, but at the cost of an increased com-
munication throughput. This increase in computational
resources cannot be sustained indefinitely; at some point, the

computational workload of the subproblems will be so low
that communications will become a bottleneck, avoiding
further reduction in the computation times.

The Weather Research and Forecasting (WRF) model
package is a well-known weather forecasting software used
extensively around the world. WRF makes use of parallel
computing, which has allowed it to be executed on many
supercomputers. The authors used the Advanced Research
WRF (WRF-ARW) to provide 24-hour-ahead forecasts
every 12 hours for the interest points of the events of the
Winter Olympics 2018.

WREF performs a domain-based distribution of the
workload, using the Message Passing Interface (MPI) as the
communication protocol, where the domain is the target
region on Earth to be simulated. The domain is partitioned
among the available MPI processes, distributed on the
available processors. The processing complexity arises from
two issues: (i) the simulation resolution, which governs the
complexity of the integration step; and (ii) the grid/mesh
dimensions, which determine the size of the subdomains.

Each of these questions is influenced by different
properties of the underlying processing platform. For
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example, the processing capacity of every processing unit
greatly determines the quality and performance of inte-
gration step (i). As the resolution increases, i.e., the mesh
subdomains become smaller, the integration step is short-
ened causing an increase in the required total integration
steps.

This paper focuses, on the one hand, on the second issue
(ii), which establishes the number of subdomains, each
subdomain having a fixed number of cells. WRF evenly splits
the general domain into # subdomains, #n being the number
of available MPI processes, which are arranged in a 2D grid
(x x y).

The process distribution parameters x and y greatly
determine the overall performance of the simulation
depending on the dimensions of the subdomain mesh, i.e.,
the dimensions (x x y) of the domain grid. For example,
with 25 MPI processes, the domain can be decomposed into
three possibilities: (25 x 1), (5% 5), and (1 x 25). It may be
thought that distributing processes in a (25 x 1) layout
performs similarly to distributing them in a (1 x 25) layout,
but we show that this was not the case with WRF. In fact,
there was an enormous difference in performance between
the two layouts. For this reason, we studied the impact of the
different process distributions on the simulation times and
the reasons for this impact and proposed a new distribution
algorithm that works better than the one implemented by
WREF.

On the other hand, we also studied how increasing the
number of used processing resources decreases the wall time
of the simulation at the cost of losing efficiency for com-
puting the same workload, dramatically increasing the en-
ergy consumption. In consequence, we found a balance
between overall performance and energy consumption,
which indicated the best process distribution when energy
consumption was also a factor. Note that exascale platforms
will be composed of thousands of processors, which means
that a slight reduction in the energy consumption of each of
them would substantially reduce the energy consumption of
the platform as a whole.

The rest of this paper presents an overview of the current
state of the art in Section 2. All the methods used in this work
are detailed in Section 3. In Section 4, we study the effects of
different process distributions on the overall performance
and propose a new method to distribute them in Section 5.
In Section 6, we study how an increase of the available MPI
processes, as well as the variability of the processing capacity
of each of these processes, affects the efficiency of the dis-
tributed computations and the energy consumption,
thinking on an implementation of WREF for exascale. Finally,
we present our conclusions and future work in Section 7.

2. Precedents and Related Work

WRE performance may be affected by different factors. Some
are related to the software used in the compilation and
execution phases (C and Fortran compiler, MPI library, and
use of threads) and others to the configuration of a certain
case study (physical model used, resolution requested, do-
main mesh, .. .). In this paper, we will focus on three topics:
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how scalable WRF is when the number of available MPI
processes increases; how the dimensions of the domain mesh
affects performance; and how we can save energy while
achieving good performance. In the literature, there are a
number of papers addressing these topics.

Malakar et al. [1] focused on improving and analyzing
the performance of nested domain simulations. They
showed a significant reduction (up to 29%) in runtime via a
combination of compiler optimizations, mapping of pro-
cesses to physical topology, overlapping communication
with computation, and parallel] communications. They also
concluded that high-resolution nested weather simulations
are a challenge in terms of scaling to a large number of
processors and considered it critical that practitioners
choose a good nesting configuration.

Christidis [2] concluded that significant performance
improvements, due to better cache utilization, can be ob-
tained with a proper choice of the parameters nproc_x,
nproc_y, and numtiles. Smaller contiguous arrays fit more
efficiently in local caches, especially in the cases of “thin”
decompositions (nproc_x <nproc_y) which allow compu-
tations with minimal cache misses.

In the same line, Johnsen et al. [3] investigated a “best fit”
node placement scheme when using 2 OpenMP threads per
MPI rank, 8 MPI ranks on each Cray XE6 “Blue Waters”
node. By default, the XE6 job scheduler places MPI ranks in
serial order on the machine, but halo exchange partners are
not mapped this way in WRF. Using an alternate placement
allows 3 communication partners to be obtained for most
MPI ranks on the same node. At very high scales, this
strategy improves overall WRF performance by 18% or
more. The WRF grid is decomposed into rectangles with
latitudes longer than longitudes for each subdomain. The
optimized placement employed has the benefit of sending
smaller east-west direction exchanges off-node and keeping
as many larger north-south messages on-node as possible.

Shainer et al. [4] concluded that although interconnect
type was the greatest determinant in improving WRF
scalability, it was also observed that overall cluster pro-
ductivity could be improved by up to 20% by running si-
multaneous jobs on the cluster rather than allocating the
entire cluster to a single job. This increase in productivity
was the result of two factors: (i) core and memory affinity,
which reduces the remote memory access penalties and
increases cache hits, and (ii) parallel jobs with smaller core
counts help reduce the synchronization overhead for each
application.

Kruse et al. [5] studied WREF scalability to several
thousand cores on commodity supercomputers using Intel
compilers and found that total time decreased between 512
and 2K cores and increased beyond 2K cores. While the
computation time scaled well with increasing numbers of
cores, the time to complete operations involving I/O in-
creased, outweighing the gains in simulation speed at 2K
cores and beyond.

For a very long time, computing performance was the
only metric considered when launching a program. Scien-
tists and users were only concerned about the time it took for
a program to finish. Though still often true, the priority of



Scientific Programming

many hardware architects and system administrators has
shifted to an increasing concern for energy consumption.
High-performance computing consumes ever-larger vol-
umes of electricity, and the reduction of consumption saves
an appreciable amount of money.

One group of methods to reduce energy consumption
focuses on how to distribute the workload among the cores
of the computer. In this area, Lagraviere et al. [6] compared
the performance and power efficiency of Unified Parallel C
(UPC), MP], and OpenMP by running a set of kernels from
the NAS Benchmark. They focused on the Partitioned Global
Address Space (PGAS) model, and their main conclusion is
that UPC can compete with MPI and OpenMP in terms of
both computation speed and energy efficiency, but the data
show that OpenMP consumes less energy than the others.

Igumenov and Zilinskas [7, 8] measured the power
consumption of multicore computers with different com-
puting loads: when the computer is idle and when some
cores are fully loaded. The mean power consumption per
core decreases when the computing load increases. Hence,
running computers with greater loads is preferable to dis-
tributing parallel tasks among separate multicore computers.

Aqib and Fouz [9] compared the time and energy
consumption of different tasks using different parallel
programming models (OpenMP, OpenMPI, and CUDA).
Their results, which can be generalized, outline the effect of
choosing a programming model on the efficiency and energy
consumption when running different codes on different
machines. The parallel programming models obviously only
improve the efficiency and reduce the energy consumption if
there are blocks of codes that can be parallelized. Their
conclusion is that OpenMPI performs much better than the
other parallel models considered.

To summarize, the first works mentioned in this section
seek to improve performance by modifying different pa-
rameters, both software and hardware, but unlike our work,
in no case have they presented an exhaustive analysis that
provides a heuristic to determine a distribution of processes
close to optimal. In all these works, there is no concern for
energy consumption. In the following works, different
techniques are presented that allow reducing the con-
sumption of energy for certain established test benches.
Although they show the way forward, we have carried it out
through software in a real situation.

3. Materials and Methods

3.1. Application Case. This work was conducted within the
ICE-POP 2018 project, where the collaborating agencies
were tasked with supporting the Winter Olympics by pro-
viding different kinds of weather information. A mid-
resolution simulation with WRF has approximately 1 to
4km of resolution per cell, with an integration step in the
order of seconds. For the ICE-POP 2018, a resolution of
about 300 m was required, which imposed integration steps
lower than a second. Figure 1 shows the three nested do-
mains with different resolutions that were computed in every
simulation over the Korean peninsula. Different parameters
from WREF forecasts, such as the visibility or the humidity,
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FiGure 1: WRF domains used in our simulations over the Korean
peninsula. Three nested domains D01, D02, and D03 with different
resolutions. Terrain heights in meters are plotted inside the
domains.

were extracted for the points of interest of the Olympics. This
kind of information was extremely useful for planning the
events. We performed the same kind of simulations over the
same geographical region for all our studies. WREF-ARW
version 3.9.1 with customized configuration (UCLM-WRF)
was used by the authors to obtain the weather forecasts.
WREF is open-source, so the source code can be obtained
from the National Center of Atmospheric Research (NCAR)
website (http://www2.mmm.ucar.edu/wrf/users/download/
get_source.html). The configuration made use of state-of-
the-art P3 microphysics [10], the Rapid Radiative Transfer
Model scheme [11] for radiation, and the Noah Land Surface
Model [12] for the surface.

3.2. Test Platform. We used the GALGO Supercomputer to
perform all the tests in this work. GALGO is located at the
Albacete Research Institute of Informatics, Spain, and hosts
all kinds of scientific research. GALGO is a cluster of ap-
proximately 1200 processing cores, half of which are pro-
vided by Intel Xeon E5450 3.0 GHz processors. Each
processing node is dual-socket, mounting two processors
with shared DRAM and a 40Gb/s dual-port Mellanox
ConnectX-2 Infiniband interface. We used up to 40 of
GALGO’s processing nodes (320 processing cores) for our
tests. The topology of the network is depicted in Figure 2; it
consists of a first level of 24-port DDR switches and a second
level of one 36-port QDR switch, with link rate of 20 Gb/s.
Sixteen computing nodes are connected to each 24-port
switch.

3.3. Compilation Options. The choice of compiler, compi-
lation options, and MPI implementation has a big influence
on the runtime of a simulation. In this work, we used the
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FIGUre 2: Topology of the network.

fastest binary codes, which are the best combination we can
get, that is, the executable that allows us to run a simulation
in the shortest possible time of all combinations. In our case,
we used Intel compilers with Intel MPI libraries (ver.
2018.0.128) to compile all the required programs and de-
pendencies. For best performance, we used the -O3 com-
pilation option to activate the most aggressive optimizations
available. We also used the -xHost compilation option to use
the SIMD capabilities of the processor (SSE4). We empir-
ically verified that the hybrid MPI-OpenMP (dm + sm) WRF
compilation performed better than the other options and
hence used this configuration in our tests.

3.4. Simulations. Our simulations covered the target region
where the Winter Olympics were held, simulating 25 Jan-
uary 2018 from 06:00 to 06:30 for all the tests. A typical
simulation for the Winter Olympics covered 24 simulated
hours, but we used a reduced simulated time in our tests
because of the large number of simulations these test in-
volved. We used three one-way nested grids (see Figure 1)
with sizes 199 x 199 for the inner grid (300 meters per cell),
103 x 103 for the intermediate grid (900 m), and 60 x 60 for
the outer grid (2700 m), each of them with 70 vertical levels.
Furthermore, the very high resolution of 300 meters per
inner cell required substantial processing power per itera-
tion. Numerical stability greatly depends on the resolution of
the input geographical data, and therefore we used a high-
resolution dataset of the Korean peninsula provided by the
ICE-POP project instead of the default WRF Preprocessing
System (WPS) Geographical Input Data.

3.5. Mesh Distribution. WRF performs an automatic distri-
bution or layout of the simulation domain/grids among the
available MPI processes, based on a Cartesian topology
(MPI_Cart_create). As a result, it splits the domain into the
most orthogonal coordinates possible (x, y) € N or (x x y),
assigning every coordinate to an MPI process. The x and y
values can be overridden, so in order to check whether the
most orthogonal layout is the best domain distribution, we
performed additional simulations with all the possible (x x y)

combinations for a set of n values, where n represents the
number of processing nodes. In our experiments, the number
of MPI processes matches the number of nodes #n because we
only used one MPI process per node. An easy way to change
the x and y coordinates in WRF is through the edition of the
namelist.input file needed to run WREF. In the namelist.input
file, nproc_x controls the x coordinate and nproc_y controls
the y coordinate.

3.6. Time Measurement. The basic measurement for our
experiments is the average wall time, which is defined as

z Wi
=;7 (1)

where W is the wall time for the i simulation and z the total
number of iterations. Every test is composed of 10 iterations,
i.e., executed 10 times, and then y,, is obtained using (1).

3.7. Speedup and Efficiency. The average wall time y,, is not
appropriate to characterize how scalable parallel software is.
For this reason, the analyses are usually done over the
speedup (see Kumar et al. [13]) value:

S = Href ,
Hfaster

(2)

where p,¢ is the reference average wall time which depends
on the study, e.g., for scalability, it is usually the time for the
case with fewer processing units. fig, ., is the time of the case
we are interested in analyzing. We can also measure the
parallel efficiency E of a case as

E=2 po e 3)

>

p Ryef
where S is the speedup of the case, 7, is the number of
processes corresponding to ppge M 1S the number of
processes corresponding to .., and p is how many times

more processes the selected case has with respect to the
reference case.
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3.8. Energy Estimation. There is currently great interest in
carrying out efficient implementations, both from the
computational point of view (less execution time) and from
the energy consumption perspective (less energy is needed).
The power consumption of the entire platform is measured
in Watts, and it is measured in Joules when the energy
consumption is considered. In order to approximately es-
timate the power consumption, we have to know the amount
of energy consumed in Watts by each processor. For the
processors of the experimental platform, the vendor specifies
this number as 80 W on average. In order to estimate the
energy consumption in average from the average wall time
Uy We defined

J =y, xnxW, (4)

where ] represents the estimated Joules consumed by n
nodes and W, is the amount of Watts per processor
according to vendor specifications. Therefore, W, takes a
value of 80 W when considering 2 or 4 cores (1 processor per
node) and 160 W when considering 6 or 8 cores (two
processors per node). We suppose that idle processors do
not consume energy, which is not actually true, as seen in
some studies such as Igumenov and Zilinskas [7]. We do this
because we only have processors with the same model and a
fixed number of cores, so we need to ascertain whether a
processor with a reduced number of cores would be more
energy efficient.

3.9. Experiment Setup. As a summary of the information
shown in this section, the experiment setup is detailed below:

(i) Machines

(1) Up to 40 of GALGO’s processing nodes with
Intel Xeon E5450 3.0 GHz processors. Each
processing node is dual-socket, mounting two
processors with 32GB DRAM and a 40 Gb/s
dual-port Mellanox ConnectX-2 Infiniband
interface.

(ii) Software

(1) Weather Research and Forecasting (WREF)
version 3.9.1, compiled for hybrid MPI-
OpenMP platforms (option “dm +sm” in WRF
configuration).

(2) Intel compilers with Intel MPI libraries (version
2018.0.128). Compilation options used: -O3 and
-xHost.

(iii) Methodology

(1) All WRF simulations were performed with the
same parameters; the only change was the
number of processes and the distribution of
these processes over the nodes.

(2) We performed experiments using different
distributions of n=9, 16, 25, and 36 nodes.
These values of n were used because they allow
us to use an exact orthogonal distribution, that

is, (3 x 3), (4 x4), (5x5), and (6 X 6), which is
the default in WREF.

(3) For a given number of nodes n, we considered
all the different distributions of nodes in a 2D
mesh.

(4) Average wall time was obtained for n processing
nodes and 8 cores per node with different do-
main distributions. Every domain distribution
was executed 10 times.

(5) Energy consumption is estimated from wall
time and the amount of Watts per processor
according to vendor specifications.

4. Analysis over WRF Process Distribution

All our WRF simulations were performed with the same
parameters; the only change was the number of processes
and the distribution of these processes over the processors.
The WREF distribution algorithm assumes that the best layout
for distributing the processes is the one that most preserves
orthogonality, i.e., for n processes, the distribution is ap-
proximately (1/n X +/n). We performed experiments using
different distributions of n = 9,16, 25, and 36 nodes. These
values of n were used because they allow us to use an exact
orthogonal distribution, that is, (3 x 3), (4 x 4), (5 x 5), and
(6 x6).

The question is do these orthogonal layouts provide the
best times? In our experiments, we took into account all the
different distributions of nodes in a 2D mesh with a fixed n.
For instance, in the case of n = 16 nodes, the possibilities are
(16 x 1), (8x2), the orthogonal (4x4), (2x8), and
(1 x 16). In Table 1, we can see the layout effects on y,, for
n=9,16,25,36. The underlined values correspond to the
automatic layouts used by WRF and the best values of y,, are
marked in bold.

The results in Table 1 show that even though the layouts
chosen by WREF are usually “good enough,” they are not the
best. Therefore, based on the results, we state that the most
orthogonal layouts are not always the best performing lay-
outs. The results also corroborate the theory, thatis, (x x y) is
not equal to (y x x) in terms of performance due to the fact
that different (y x x) process distribution involves different
communication patterns.

4.1. WRF Communication Behavior. In order to explain the
above finding, we looked at the communication behavior. It
is known that MPI communications can be a bottleneck in
programs with low computational workload and large
number of communications among processes. We looked at
two main factors that greatly influence the overhead in-
troduced by MPI or any other message passing strategy: (i)
the amount of data shared among the MPI processes and (ii)
the number of transactions needed to share that amount of
data. When these aforementioned factors exceed the ca-
pacity of the underlying platform, especially the intercon-
nection network, the performance is greatly degraded.
Because the example of n =36 has more distribution
combinations than the others, we used this example to
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TaBLE 1: Average wall time y,, when using n processing nodes and 8 processor cores with different domain distributions.
(xxy) n=9 (xxy) n=16 (xxy) n=25 (xxy) n=36
9x1 3443 16 x1 2596 25x1 2117 36x1 —
3x3 2403 8§x2 1714 5x5 1017 18 x2 1152
1x9 2327 4x4 1458 1x25 1298 12x3 951

2x8 1396 9Ix4 861
1x16 1622 6Xx6 824
4x9 801
3x12 855
2x18 908
1x36 —

The automatic distributions chosen by WRF are underlined and the ones with the best y,, are marked in bold. Some extreme distributions such as (36 x 1)

crashed the simulations and could not be executed.

analyze the communications, using the statistics provided by
the Intel MPI library. Therefore, we plotted the amount of
data in MB injected into the intercommunication network
(i) by the n = 36 distributions in Figure 3 and the number of
transactions of every distribution (ii) in Figure 4.

Looking at the results, we can see that the more or-
thogonal combinations show the minimum amount of data
transferred (i); however, they present a higher amount of
transactions (ii). With WRF, we see that the amount of MB
has a much greater impact on the wall time than the number
of transactions. Moreover, if we suppose that communica-
tions are the most important factor for performance in our
WRE simulations, (x x y) performance should be similar to
(y x x) performance. If we look at Figure 5, we can see that
the observed y,, for every distribution of n = 36 is not the
expected y, (approximation) in a situation where the
communications are the most important factor.

4.2. WRF Integration Step Analysis. Consequently, com-
munications were not the reason for the differences in
performance between (x x y) and (y x x) distributions. As
observed in Christidis [2] and Johnsen et al. [3], combi-
nations where x <y work better due to enhanced cache
usage.

The WREF Fortran routine that is executed in every in-
tegration step is solve_em(), which is defined in solve_em.F
source file. All the MPI and OpenMP functionality is used in
this file. As previously stated, every subdomain of the (x x y)
distribution is assigned to a MPI process. As an example, in
Figure 6, we can see how WREF divided the inner domain
(199 x 199 x 70 cells) of our simulations when using the (6 x
6) process distribution, where x = 6 and y = 6. For the sake of
clarity, the cells of the domains are indexed by the i index
(latitudes), the j index (longitudes), and the k index (vertical
levels). This (6 x 6) distribution generated a subdomain for
every MPI process with 33 x 33 cells (i = 33, j = 33,k = 70),
each of those cells having 70 vertical levels (see the subdomain
of case 6 x 6 in Figure 6).

When using OpenMP, every one of these subdomains is
divided into tiles, which can be automatically handled by
WREF (usually, tiles = threads) or manually set through the
numtiles parameter in the namelist. The solve_em routine
contains many loops over the target subdomain of every MPI
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Figure 3: Total amount of data in MB injected into the inter-
connection network by the MPI processes. The distributions
correspond to the case when n = 36.
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FIGUure 4: Total number of transactions performed by the MPI
processes on the interconnection network. The distributions cor-
respond to the case when n = 36.

process, and every loop iterates the corresponding tiles of the
subdomain using OpenMP threads (OMP PARALLEL DO).
A pseudocode of the WRF integration step (solve_em) is
presented in Algorithm 1.
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FIGURE 6: Process distributions over the inner domain when using n = 36 processes over the inner domain. The domains had 199 x 199 cells,
each with 70 vertical levels. Every subdomain was divided in a number of tiles that was automatically chosen by WRF.

To be efficient with Fortran memory layout, every time
the integration step computes anything over the target tile, it
performs three nested loops in the right order (from inner to
outer loop: i, k and then j). Thus, the problem lies elsewhere.
In Figure 6, we can see the effects on the tiles when using
three different distributions for n = 36. Remember that in
terms of p,: (4 x9) < (6 x6) < (9 x4), as we saw in Table 1.
If we look at the three cases in Figure 6, the difference is the
dimensions of i and j. When WRF computes every tile or
slice of the corresponding subdomain, it performs better
when the i dimension is large because of better cache usage.

In order to understand this effect, we need to look at how
WRF maps the subdomains in memory. The i dimension is
contiguous in memory, but not the k and j dimension

because the subdomain is mapped on top of a larger memory
layout where additional cells are allocated (e.g., the halos).
These discontinuities in the three nested loops interfere with
the performance of the cache when changing the k or j
indexes, slowing down the computation.

Therefore, lowering the j dimension increases the i di-
mension, resulting in better cache usage and performance.
Again, if we look at Figure 6, we can see that in the case of the
(4 x 9) distribution, which is the fastest of the three, the i
dimension is larger than in the other two cases, making it
better performing than the others.

In the ideal case that the communications did not matter,
the (1 x36) distribution would be the fastest because a
better cache usage (i=199,j=5 per subdomain). In
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(2) for j =1 to tile_max_y do

(9) end function

(11)
(12) !$OMP PARALLEL DO
(13) for t =1 to numtiles do

to compute something
(15) end for
(16) !'$OMP END PARALLEL DO
(17)  if DM_PARALLEL then
(18) HALO_EM x*x.inc
depending on the stencil
(19) end if

(21) end procedure

(1) function COMPUTE_SOMETHING(tile)

(3) for k = 1 to max_vertical do
(4) for i = 1 to tile_max_x do
(5) tile[{][K][j] =. ..

(6) end for

(7) end for

(8) end for

(10) procedure SOLVE_EM/(subdomain)

(14) compute_something(subdomain][t])

> Send halos to other adjacent processes

(20) ... > Replicate the same loop structure tens of times for the different
variables to compute on the subdomain

> Iterate the tile
> The iteration order is OK

> Do something on the grid

> Initialization
> One thread per tile
> Iterate tiles
> Pass the tile to the function

> End of parallel region
> If MPI is being used

ALGORITHM 1: Integration step (solve_em) pseudocode obtained from WREF Fortran code.

practice, this is not the case because in these extreme cases,
communications escalate the computing times (see Figures 3
and 5 and Table 1). As a conclusion, a balance between the
next two factors must be found when using WREF:

(1) Communications perform better when the process
distribution is orthogonal

(2) Cache performance improves when larger values of i
(latitudes) are used in the tiles

5. Improved Distribution Algorithm for WRF

Drawing on the results described in Section 4, we propose an
alternative algorithm to distribute the layout of processes
based on an « value. We observed that with a lower x di-
mension than y dimension (better cache usage), perfor-
mance is much better when the workload of every process is
sufficient to negate the communication overhead.

Thus, we devised a method to obtain a better distribution
from an « ratio applied to n processes, balancing good cache
usage with an acceptable increase in the communication
overhead. In fact, the ratio between the values of x and y
seemed to be the same, which we defined as

x
a=—

(5)

Depending on « chosen, we can obtain a good value for x
that can be used to obtain an optimal (x x y) distribution of
n MPI processes. In order to derive x, we have the system of
equations composed by (5) and

Xy =n, (6)

y= (7)

%=

Solving (5)-(7) we obtain

x
o ==
Y
x
= (8)
52
T
Then, we clear the x from (7) and (8):
x = +an. (9)

Equation (9) provides a way to obtain a good x value
from a specific n. We also define f (x, ) as a function which
returns the divisor x' of n which is the nearest integer divisor
to the value of x. Having a specific n, we can use (9) to obtain
a near-optimal distribution (x' x y'):

n

(x' X yl) :(f(x, f’l) X m) (10)

5.1. Deriving the Optimal Alpha. Equation (9) needs an «
value to be useful, and this value should minimize the
overhead generated by the communication and cache
misses. We have a domain with [ x [ latitude/longitude di-
mensions, and we subdivide the domain into x x y =n
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subdomains. From this, we obtain that the latitude/longitude
dimensions of every subdomain are ((I/x) x (I/y)).

The communication overhead for every subdomain can
be calculated as the length of the perimeter multiplied by the
communication overhead A for every point at the perimeter.
The communication overhead for the subdomain, using a
specific x, is therefore defined by the following formula:

Ocomm (X) = 2A(£+£) = 2A£+2Al—x. (11)
x y x n

Then, we derive (11) and equate to zero:

/ (x)=—2AL2+2A1=0—>x=\/ﬁ~ (12)
x n

Ocomm

The last equation proves that the communications
overhead is minimum when x = +/n, as we already saw in
Figure 4.

Following the same line of thought, we derived the
overhead of the cache misses. The cache miss overhead could
be defined by the dimension of the longitudes (I/y) mul-
tiplied by the overhead B introduced for every cache miss.
From this, we obtain the cache miss overhead for a specific x
as

11
Opies (x) = B— = B—. (13)
y n

Equation (13) represents a monotonic increasing func-
tion whose minimum value is obtained for x = 1. This result
supports the finding that the lower the y dimension is, the
better the cache usage is. From the previous results, we can
obtain the combined overhead o(x) of (11) and (13):

I l
0(x) = Oomm + Omiss (X) = 2A—+ 2A= + B (14)
x n n

After deriving (14) to obtain the x value where the
combined overhead is minimum, we obtained:

l l l 2An
"(x)=2A—+2A-+B-=0 =\/ :
o (x) x2 n n X 2A+B

(15)

Therefore, from (9) and (15), the optimal « where the
combined overhead is minimum is

.o 2An e 2A . (16)
2A+ B 2A+ B

This result clearly shows the influence of both overheads
(communication and cache misses) on the final computing
performance.

5.2. Obtaining an Alpha Value. Note that A and B are un-
known constants in equation (16), which impeded us from
calculating the optimal «. On the other hand, we still needed
to assign a value to « in order to obtain any distribution
using (10). The problem is that it is not trivial to theoretically

(or even empirically) calculate these constants and so we
attempted another empirical approach to obtain an ap-
proximation of the optimal a.

For this purpose, we first defined a,, values for each of
our training cases. From Table 1, we obtained the (x,, x y,)
distributions with the best y,, of every n. We then used the x,,
and y, from these distributions to define «,, as

«, =2n.
" In 1

In the same way, we obtain the values «,, for the dis-
tributions presented in Johnsen et al. [3] (Table 2). Finally,
we fit a 4/a- 11 curve to these data («, values) and obtain as
result & = 0.43.

5.3. Near-Optimal Process Distribution. After applying (10)
and a = 0.43 to our valuesn = 9,n = 16, n = 25, and n = 36,
we obtained the optimal distributions of (1 x9), (2 x8),
(5x5), and (4 x9), respectively. In these cases, WRF
picked the orthogonal distributions, which were subop-
timal. Our process distribution implementation is pre-
sented in Algorithm 2. Algorithm 2 admits two call
parameters, the number of nodes considered (n) and the
alpha value, and returns the value of x which is divisor of n
and which is closer to the one calculated by the formula
x = +Jan. To do this, function F(x,n) first looks for values
smaller than x (decreasing a unit in each step) until it finds
a divisor of n and then repeats the process with values
greater than x. Finally, both obtained values are compared
and the one closest to the initial x is chosen. Finally y is
calculated as y = n/x.

We were unable to perform simulations with # higher
than 40 MPI processes in our platform, but we applied our
distribution algorithm to the # values in Johnsen et al. The
resulting x values from our algorithm (marked with x) are
shown in Figure 7 along with the x values used by Johnsen
et al. (marked with +). The top solid line represents x = /n
(orthogonal), whereas the bottom solid line represents the x
values obtained by (9). Using our algorithm achieves a
smoother adjustment of x while increasing n.

To perform our tests with different distributions, we used
the outputs of Algorithm 2 to change the value of the nproc_x
and nproc_y parameters in the WRF namelist file. Never-
theless, the WRF distribution code can be modified to im-
plement our algorithm without the need to externally modify
(via automatic scripting or manual way) the namelist.

6. WRF Scalability and Energy Analysis

The improved distribution algorithm allowed us to boost in
performance for our simulations, but we wanted to deter-
mine how this performance could be further increased. The
second part of this work consisted of a study of the scalability
of WRF and its efficiency when increasing the available
processing power from the perspective of performance and
energy consumption. Our target was to increase perfor-
mance without significantly increasing the energy
consumption.
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TaBLE 2: Rounded average wall times y,, in seconds when using #
processing nodes and ¢ processor cores per node.

c\n 10 20 30 40

8 2024 1182 896 774
6 2288 1333 964 812
4 3049 1733 1220 952
2 3895 2316 1612 1239

600 Values of x for different number of processes

100000 150000 200000

Number of nodes (1)

0 50000

-+~ xused by Johnsen et al.
-X~- xused by our algorithm

—— Orthogonal x=Vn
— x=na

FIGURE 7: Final x values obtained from our distribution algorithm.
The orthogonal x = +/n values (top solid line) and raw values from
equation (9) (bottom solid line) are plotted. The x values obtained
by our algorithm are very similar to those chosen by Johnsen et al.

6.1. Scalability. For our scalability study, we tested dif-
ferent cases using a variable number of computing nodes
n and processing cores ¢ from these nodes. After per-
forming 10 simulations of every combination and ap-
plying (1), we obtained the y,, values shown in Table 2.
The same results are presented in Figure 8, where we can
see the enormous differences in performance when 7 is
low. In contrast, when # is high, the four cases shorten
the distance between each other and converge to the
same values of y,.

The processing cores ¢ were handled by OpenMP
threads, which provided good performance and a reduced
memory footprint. After applying (2) and (3) to the values in
Table 2, we obtained the efficiency values e, presented in
Table 3.

From the information in Tables 2 and 3, we inferred the
following observations:

(i) As expected, the average time per simulation is
reduced when increasing the total number of pro-
cessing units used (1 x c)

(ii) Decreasing the number of ¢ cores per node and
increasing the number of nodes n greatly increase
efficiency e

(iii) When the total number of processing units (n x ¢) is
greater than 180, efficiency e plummets

Scientific Programming

Require: n e N, a € R, n>0and a>0
(1) function F(x,n) > f (x,n) implementation
(2) fori=0tondo plterate possible decrements

(3) Xpe—x—i
(4) re—nmodx
(5) if r == 0 then
(6) break > Nearest divisor below x has been found
(7) end if
(8) end for
(9) fori=0tondo > Iterate possible increments
(10) X, —X+i
1) r «—nmod x,
(12) if r == 0 then
(13) break > Nearest divisor over x has been found
(14) end if

(15)  end for
(16) if (x—xf) < (x. - x) then > Return the nearest to x

(17) return x
(18) else

(19) return x,
(20) end if

(21) end function

(22) procedure DISTRIBUTE (n, &) > Distribution algorithm
(23) xe—+Ja-n > Get the first candidate

(24) xe— f(x,n) > Get the nearest divisor of #n to x
(25) ye—nlx

(26)  Distribute processes using the (x x y) distribution
(27) end procedure

ALGORITHM 2: New WREF process distribution algorithm and
f(x',n) implementation.

From the first observation, we see that increasing the
number of nodes #n reduces the wall times in all the cases
when the number of ¢ used per node is constant. In the case
of using all the cores of every node, efficiency is greatly
undermined when increasing the number of nodes. How-
ever, when the number of used cores per node is four or less,
the efficiency keeps stable. This circumstance is clearly
observed in Table 3.

One clear example to see the impact of using more nodes
with limited cores is when comparing the cases that used 80
processing units: (n=10,c=8), (n=20,c=4), and
(n=40,c =2). The (n =20,c = 4) case is =~ 14% faster than
the (n = 10, c = 8) case, even at the expense of an increase in
the MPI communications. Again, we see that communica-
tions are not the critical factor for performance when using
WRE. The gap is even larger in the case of (n=40,c =2)
where only 25% (2 cores) of the nodes’ processing capacity is
being used, reducing the wall times by = 38%.

After profiling the processor performance when exe-
cuting (n=10,c = 8) and (n =40, ¢ = 2) cases, we found
that the number of minor memory page faults in the
second case was = 75% lower than that in the first one.
Additionally, the number of cache misses was reduced by
6% in the second case. We therefore conclude that the
reason for these differences in performance is the better
cache usage because of the reduced size of the data
structure.
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TaBLE 4: Estimated energy consumption J for using n processing
nodes and ¢ processor cores.

c\n 10 20 30 40

8 3238400 3782400 4300800 4953600
6 3660800 4265600 4627200 5196800
4 2439200 2772800 2928000 3046400
2 3116000 3705600 3868800 3964800

Wall time
4000 .
N
\\
3500 F - Sncs e
N
\\
3000%K - - - - N
\\ \\
S ~
2 2500 |- ol N
(") B B\
PR .
£ 2000F T~ L ~i
SN \\X ~<.
1500 p s o Teeeso o Bel
. SRR SN |
500 1 1 1 1 1
10 15 20 25 30 35 40
Number of nodes
-+- 8 cores -3~ 4 cores
-~ 6 cores —-[=]- 2 cores

FIGURE 8: Execution time y,, for different numbers of processing
nodes n.

TasLe 3: Efficiency e for using n processing nodes and ¢ processor
cores, relative to the number of cores.

c\n 10 20 30 40
8 1 0.86 0.75 0.65
6 1 0.86 0.79 0.70
4 1 0.88 0.83 0.80
2 1 0.84 0.81 0.79

When we combined the second observation with the
conclusions of the first one, we saw that memory man-
agement greatly improves when the size of the data
structures per node is low enough but also the number of
processing cores ¢ is not too high for that size. This is
reflected in the efficiency e values obtained in Table 3 for
the cases with less than 180 total processing units
(nx c<180), which is also supported by the third ob-
servation. As a conclusion, we state that in order to
maintain a high parallel efficiency, the size of the problem
should be proportional to the used processing capacity.
For the size of the problem in our simulations, 180
processing units are a good compromise between per-
formance and efficiency. Increasing this number or the
number of MPI processes n would divide the domains into
small partitions that are too small and cannot be efficiently
fed to the processors.

Looking at the previous observations, we conclude and
recommend that WRF should be executed in computational
resources that prioritize the size and latency of the cache
memory more than the complexity and quantity of the
computing cores. This recommendation is supported by the
better efficiency observed in our simulations with the low
values of ¢, which is in line with the results obtained in Shainer
et al. [4]. Moreover, the available processing power should be
appropriate to the size of the problem (resolution and domain
dimensions), being neither too high nor too low.

6.2. Energy Efficiency. As we stated in the introduction
section, when dealing with exascale platforms, a small
reduction on performance could become a large reduction
on energy consumption. This is why it is so important to
balance the performance of the whole system when
considering its energy consumption.

There is a limit at which increasing the number of
computational resources barely improves performance, at
the cost of skyrocketing energy consumption. Therefore,
energy consumption is a factor when deciding how many
computational resources are needed to satisty the estab-
lished requirements. Table 4 shows the estimated energy
consumption J after applying (4) to the y,, times presented
in Table 2. The estimated energy consumption J is also
presented in Figure 9, where we can see that the greatest
energy savings corresponding to the use of 4 cores.

In consequence, it may be thought possible to find a good
balance between the time spent on an execution and energy
consumption. Evidently, if time is the most critical variable
in an experiment, the energy consumption becomes irrel-
evant. For instance, if the simulations of this paper must be
executed in less than 800 seconds, the only feasible con-
figuration corresponds to 8 cores and 40 nodes. But, if the
time to execute the simulation is represented by a limit, e.g.,
1000 seconds, then we can play with other variables such as
the energy consumption. We scatter plotted all the com-
binations in Figure 10 so we could choose a good combi-
nation for the last example. With 1000 seconds as a limit and
looking at Figure 10, we have 4 options: (n =40,c =4),
(n=30,c=8), (n=30,c =6), and (n=40,c = 8). In this
case, the best option is clearly (n = 40, ¢ = 4) because of the
enormous difference in Joules between this and the other
options.

In other cases, the best option is not so clear and de-
pends on the priorities. For example, with a limit of 1900
seconds, the reader might agree with us that of all the
possibilities, only three are feasible: (n=20,c=4),
(n=30,c=4),and (n =40,c = 4). The (n = 20,c = 4) case
is the least energy consuming but much slower than the
other two. (n = 40, c = 4) consumes a little more than (n =
20, ¢ = 4) but, in contrast, is twice as fast. (n = 30,c = 4)isa
compromise between both. Depending on our priorities,
we would choose

(i) (n=40,c =4) for maximizing performance
(ii) (n=20,c = 4) for maximizing energy savings

(iii) (n = 30,c = 4) if the priority is to harmonize per-
formance and energy consumption
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FIGURE 10: Scatter plot of time (ordinates) and energy consumption
(abscissas) for the different combinations of n processes (below the
points) and c¢ cores.

In our simulations, we needed the fastest distribution
possible, which was the (n=40,c=8) distribution. The
other option we considered was the (n = 40,c = 4) distri-
bution, which obtained a 38% energy saving with an increase
of 23% in the wall time. The problem with this distribution
was that the wall times were far from our target time re-
quirements and therefore not a feasible choice.

7. Conclusions

This paper proposes a new distribution algorithm that works
better than the one implemented by WREF. This algorithm
was devised from the results of a performance study over
different process distributions with a different number of
total processes.

We also present a study of the performance of the WRE-
ARW model in terms of three main variables: process
distribution, execution time, and energy consumption. The
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authors had to comply with the execution time requirements
imposed by the ICE-POP 2018 project, with regard to 2018
Winter Olympics held in Pyeongchang, but also taking into
account the appropriate use of resources and energy con-
sumption imposed by the authors’ research institution.
However, this study is essential for any research group
working in this area, so this paper could be considered as a
guideline.

Beyond this guideline, the following main contributions
emerge from this work:

(i) Orthogonal distributions are optimal for commu-
nications and interprocessor performance.

(ii) Latitude dominant dimensions are optimal for
cache usage and intraprocessor performance.

(iii) WREF performance therefore depends on the balance
between orthogonality (communications) and efhi-
cient cache usage (longer latitudes per subdomain).
We proposed an algorithm to obtain a balanced
distribution.

(iv) In our platform, the WRF model works better when
using less cores per node.

(v) WRF consumes less energy using less nodes,
achieving a good execution time.

(vi) To execute WREF, it is thus recommended to use
simple machines (not so many cores and more
energy efficient than complex ones) with quality
cache memories.

Related to the grid distribution used in the WRF
software package, the authors evidence that for the plat-
form used in this experiment, the best process distribution
is not always the orthogonal one. To address this issue, the
authors proposed a new distribution algorithm to calculate
a better distribution layout than the default one imple-
mented by WRE. As a future work, the authors propose to
corroborate the results of this paper in other platforms
completely different to that used in this work, especially
platforms where the number of processes could be higher
than 10,000. In this work, we obtained a good « value from
near-optimal distributions used in other works, but we
expect to find a better a value from the best process dis-
tributions when 7 is high enough. We also proved that the
combined overhead of the communications and cache
misses follows a relationship between two constants that we
propose to determine in future works. These two constants
would allow us to obtain the optimal process distribution
for any number of MPI processes.

In order to test our algorithm in our simulations, we
externally modified the WRF namelist's nproc_x and
nproc_y parameters in our simulations, but the algorithm is
easily implementable as an alternative distribution option
inside WREF source code.

From the study of WRF source code, we think it is
possible to optimize the data locality and hence remove the
limitation of having latitude dominant dimensions to
achieve the best performance. This could be achieved by
modifying the details of the tiling processing code.
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Furthermore, and from the previous contributions, we
explored different ways of saving energy by changing the
process locations. The authors used a graphical method to
obtain the best configuration by plotting energy and time
together. Depending on the priorities (performance or
energy savings), different options could be chosen from
this plot. In addition, in this work, we are not considering
the use of accelerator due to the fact that the use of GPUs
on WREF software is reduced to a short set of functions.
Our purpose in this paper was to study the influence of
process distribution both in terms of performance and
energy consumption without comparing against other
WRF implementations that consider GPUs. This com-
parison (with WRF and without using GPUs) could be
interesting as a future work.
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