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/is study proposes a synthetic aperture radar (SAR) target-recognition method based on the fused features from the multi-
resolution representations by 2D canonical correlation analysis (2DCCA). /e multiresolution representations were demon-
strated to be more discriminative than the solely original image. So, the joint classification of the multiresolution representations is
beneficial to the enhancement of SAR target recognition performance. 2DCCA is capable of exploiting the inner correlations of
the multiresolution representations while significantly reducing the redundancy. /erefore, the fused features can effectively
convey the discrimination capability of the multiresolution representations while relieving the storage and computational burdens
caused by the original high dimension. In the classification stage, the sparse representation-based classification (SRC) is employed
to classify the fused features. SRC is an effective and robust classifier, which has been extensively validated in the previous works.
/e moving and stationary target acquisition and recognition (MSTAR) data set is employed to evaluate the proposed method.
According to the experimental results, the proposed method could achieve a high recognition rate of 97.63% for the 10 classes of
targets under the standard operating condition (SOC). Under the extended operating conditions (EOC) like configuration
variance, depression angle variance, and the robustness of the proposed method are also quantitively validated. In comparison
with some other SAR target recognition methods, the superiority of the proposed method can be effectively demonstrated.

1. Introduction

Synthetic aperture radar (SAR) plays an important role in
modern battlefield surveillance owing to its all-day, all-
weather capabilities etc. Automatic target recognition
(ATR) has been a hot topic in SAR image interpretation
since it was first researched in 1990s [1]. As a typical su-
pervised pattern-recognition problem, a concrete SARATR
algorithm usually involves two key techniques, i.e., feature
extraction and classification. Feature extraction seeks
discriminative representations from the original SAR im-
ages, which could better embody the target’s properties. At
the present stage, the available features for SAR ATR can be
generally divided into three categories. /e first depicts the
geometrical properties of the target including binary target
region [2–4], target outline [5], and target’s shadow [6].
Ding et al. proposed a binary region matching algorithm

with application to SAR target recognition [2]. In [3], the
Zernike moments were used to describe the binary target
regions from SAR images. Anagnostopoulos employed the
outline descriptors as the basic features for SAR ATR [5].
/e target’s shadow in SAR image was surveyed in [6] for
target recognition. /e second category mainly describes
the intensity discrimination of the original SAR images
using some mathematical tools or signal processing tech-
niques [7–12]. In [7], the principle component analysis
(PCA) and linear discriminant analysis (LDA) were used
for SAR image feature extraction. Cui et al. applied the
nonnegative matrix factorisation (NMF) to SAR ATR [8].
Some manifold learning algorithms were also demon-
strated to be effective for feature extraction of SAR images
[9, 10]. Dong et al. introduced the 2D monogenic signal to
compressively investigate the spectral properties of SAR
images [11, 12]. /e last one reflects the electromagnetic
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characterizes of SAR targets [13–17]. At the high-frequency
region, the backscattering of the whole target can be
modeled as the summation of several local phenomenon,
i.e., scattering centers [13]. In [14], a Bayesian matching
scheme was designed for the attributed scattering centers
for SAR ATR. Ding et al. developed several different ways
of applying attributes scattering centers to SAR target
recognition by exploiting the local structural properties of
the scattering center set.

Based on the extracted features, different kinds of
classification schemes are designed to make decisions on the
target labels. At the early stage, the template matching was
employed to match the test sample with the template ones to
evaluate the intensity divergences between them. In essence,
it is a nearest neighbor (NN) classifier. As a modified version
of NN, K-Nearest Neighbor (KNN) was employed to classify
the PCA and LDA features in [7]. Zhao and Principe applied
the support vector machines (SVM) to SAR target recog-
nition, and it demonstrated good performance [18]. Since
then, many SAR ATR methods employed SVM as the basic
classifier to classify different kinds of features, e.g., region
moments [3], outline descriptors [5], and projection features
[19]. /e sparse representation-based classification (SRC)
was developed based on the compressive sensing theory,
which has been successfully applied to pattern recognition
applications, e.g., face recognition [20] and SAR target
recognition [21] [22]. It was validated in several works that
SRC is an effective and robust classifier for SARATR. In [21],
/iagaraianm et al. introduced SRC to SAR ATR by clas-
sifying the random projection features. Song et al. further
investigated the performance of SRC on different kinds of
features extracted by PCA, down-sampling, etc. Dong and
Kuang employed SRC as the basic classifier for the mono-
genic components in [11]. /e emergence of deep learning
triggers waves of artificial intelligence and machine learning
[23, 24]. As a typical representative, convolutional neural
networks (CNN) have been widely used in the field of image
interpretation including SAR ATR [25–28]. Several different
networks were designed to improve SAR ATR performance.
Chen et al. proposed the all-convolutional networks for SAR
ATR thus significantly reducing the parameters. In [26],
SVM was combined with CNN to enhance the SAR ATR
performance.

/is study proposes a SAR ATR method based on the
fused features of multiresolution representations by 2D
canonical correlation analysis (2DCCA) [29]. In the pre-
vious works, the multiresolution representations were
demonstrated effective for SAR ATR. In [30], the multi-
resolution representations were independently classified by
SRC, and their results are combined using a score-level
fusion. In order to capture the inner correlations of different
resolutions, the joint sparse representation was adopted to
jointly classify all the resolutions [31]. Furthermore, con-
sidering that there may be some resolutions with low dis-
criminability, the discrimination analysis was performed
before the joint sparse representation of the multiresolution
representations [32]. /en, only those highly discriminative
resolutions are used for the final decision. /ese works
effectively improved SAR ATR performance. However, they

indeed have some shortages. First, the inner correlations
among the multiresolution representations cannot be
exploited fully. In [30], different resolutions were classified
independently, so their correlations are actually neglected.
For the methods using joint sparse representation [31, 32],
the correlations were reflected by the sparsity constraint
during the solution of the multitask learning problem.
However, such constraint is not robust especially when there
are some nuisances in the multiresolution representations.
Second, each resolution is conveyed by an SAR image of the
same size with the original SAR image. Hence, it is inevitable
that the previous methods with notably increase the storage
and computation loads. As a remedy, this study aims to seek
a unified representation of the multiresolution SAR images,
thus better capturing the inner correlations while improving
the classification efficiency. In detail, 2DCCA is employed to
fuse the multiresolution representations sequentially.
2DCCA is the generation of CCA [33] to the 2D space, which
considers the structural information of the 2D images. In
addition, 2DCCA could maintain the inner correlations of
the components while reducing the redundancy, which is
beneficial to improve the overall classification accuracy and
efficiency. At each turn, 2DCCA is performed to capture the
correlations between the highest two resolutions. And the
two resolutions are combined as a new feature matrix. /en,
the new feature matrix is combined with the next resolution
(the highest one in the remaining). A final feature matrix is
obtained after processing the last resolution, which is used
for target classification. SRC is adopted as the classifier in
this study. As demonstrated in previous works, SRC could
work very well on different kinds of features for SARATR. In
addition, it is demonstrated to have good robustness to
nuisance conditions, e.g., noise contamination and partial
occlusion.

/e remainder of this study is organized as four sections.
Section 2 introduces feature generation from multi-
resolution representations based on 2DCCA. In Section 3,
the basic theory of SRC is described with application to SAR
target recognition. Section 4 presents the experimental re-
sults of the proposed method on the moving and stationary
target acquisition and recognition (MSTAR) data sets.
Conclusions are drawn in Section 5 to summarize the whole
paper.

2. 2D Canonical Correlation Analysis of
Multiresolution Representations

According to SAR imaging mechanism, the low-resolution
representations of a SAR image can be conveniently gen-
erated by using only a proportion of the original frequency
spectrum. /e detailed procedure can be referred to the
previous works in [30–32]. Figure 1 illustrates the multi-
resolution representations of a BMP2 SAR image from the
MSTAR data set. /e original image with the resolution of
0.3m× 0.3m is used to generate the low-resolution images
of 0.4m× 0.4m, 0.5m× 0.5m, 0.6m× 0.6m, respectively.
As shown, the multiresolution representations are capable of
describing the target from coarse to fine. At a very low
resolution, the region information of the target is mainly
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manifested. With the increase of the resolution, more details
of the target can be observed, e.g., the distribution of the
scattering centers. It is assumed that the multiresolution
representations of the same SAR image share some inner
correlations. Meanwhile, they have much redundancy, e.g.,
the backgrounds./erefore, this study aims to construct new
features from the multiresolution representations, which
could exploit their inner correlations while reducing the
redundancy.

2DCCA [29] is the extension of the conventional CCA to
the 2D space, which is capable of investigating the corre-
lations between two 2D variables. For two matrix sets
Xt ∈ Rmx×nx , t � 1, . . . , N􏼈 􏼉 and Yt ∈ Rmy×ny , t � 1, . . . , N􏼈 􏼉,
they can be regarded as the realizations of random variable
matrix X and Y, respectively. In the CCA, the 2D matrices
are first transformed into 1D vectors and the canonical
analysis is conducted afterwards. However, the vectorization
operation may probably lose the 2D structural information
of the matrices. /en, the 2DCCA is proposed to directly
analyze the correlations between the two matrix sets.

At first, the mean matrices of Xt and Yt are obtained as

Mx �
1
N

􏽘

N

t�1
Xt,

My �
1
N

􏽘

N

t�1
Yt.

(1)

Afterwards, the original matrices are centralized as
􏽥Xt � Xt − Mx,

􏽥Yt � Yt − My.
(2)

/e objective of 2DCCA is to seek left transforms (lx and
ly) and right transforms (rx and ry), which maximize the
correlations between lTxXrx and lTyYry. So, 2DCCA can be
solved as follows:

argmax cov l
T
xXrx, l

T
yYry􏼐 􏼑, 􏽥Yt � Yt − My,

s.t. var l
T
xXrx􏼐 􏼑 � 1, var l

T
yYry􏼐 􏼑 � 1, 􏽥Yt � Yt − My.

(3)

/e detailed solutions of 2DCCA can be referred to the
original work in [29]. Based on the resulted left and right

transforms, the correspondingmatrices from the two sets are
fused as a unified feature matrix, which could maintain their
inner correlations.

χt �� l
T
x Xtrx + l

T
yYtry. (4)

In this study, 2DCCA is used for the fusion of multi-
resolution representations. Assume there are M resolutions
to be fused, i.e., Zi

t ∈ R
m×n, t � 1, . . . , N􏼈 􏼉(i � 1, . . . , M).,

which are arranged according to the resolution in a
descending manner. Figure 2 gives an illustration of feature
generation based on the multiresolution representations
using 2DCCA. At the start, the first two resolution, i.e., Z1

t

and Z2
t (t � 1, . . . , N) are combined using 2DCCA. After-

wards, the fused feature matrix is combined with the third
resolution. /e process is repeated until theMth resolution.
In this way, M − 1 sets of transformation matrices are cal-
culated and each set contain four transforms (two left and
two right ones).

3. Sparse Representation of Fused Feature for
Target Recognition

3.1. SRC. SRC is a newly proposed classification scheme
based on the sparse signal processing technique [20]. /e
basis of SRC lies on the assumption that the test sample from
a certain class can be linearly reconstructed using the
training samples from that class.

Denote the training samples from the kth class as
Φk � [xk,1, . . . , xk,nk

] ∈ Rd×nk (k � 1, . . . , C), where d is the
dimension of the atoms. /en, the test sample from the kth
class can be linearly represented as

y � xk,1αk,1 + · · · + xk,nk
αk,nk

� Φkαk, (5)

where αk � [αk,1, . . . , αk,nk
]T ∈ Rnk .

Actually, in a classification task, the target label of the test
sample is unknown. /erefore, the global dictionary is often
used in the sparse representation as follows:

􏽢α � argmin
α

‖α‖0,

s.t. ‖y − Φα‖
2
2 ≤ ε,

(6)

where Φ � [Φ1, . . . ,ΦC] ∈ Rd×n denotes global dictionary
formed by n training samples from the C classes;
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Figure 1: Illustration of multiresolution representations with a BMP2 SAR image at resolutions being: (a) original: 0.3m× 0.3m; (b)
0.4m× 0.4m; (c) 0.5m× 0.5m; (d) 0.6m× 0.6m.
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α � [α1, . . . , αC]T ∈ Rn represents the coefficient vector over
the global dictionary; and ε is the preset error tolerance.

/e optimization task in equation (6) is proven to be a
nondeterministic polynomial (NP) hard problem. As a re-
sult, it is hard to directly find the optimal solution of
equation (2). Considering the high sparsity of the coefficient
vector, it is feasible to replace the ℓ0 norm in equation (6) by
the ℓ1 norm, thus relaxing it as a convex optimization
problem. In addition, the greedy algorithms, e.g., the or-
thogonal matching pursuit (OMP) [19, 20], are also effective
to find the approximate solutions to equation (6).

Ideally, the nonzero elements in the solved sparse
coefficient vector 􏽢αmainly occur in the corresponding class
to the test sample. In this sense, the representation capa-
bility of different training classes can be reflected by their
reconstruction errors. /en, the minimum reconstruction
error criterion is adopted to make decision on the target
label as

r(i) � y − Φi􏽢αi

����
����
2
2 (i � 1, 2, . . . , C),

identity (y) � argmin
i

(r(i)),
(7)

where 􏽢αi denotes the coefficient vector related to the ith
training class and r(i) represents the error as for repre-
senting the test sample using the atoms in ith training class.

3.2. Target Recognition. /e fused features from the mul-
tiresolution representations are classified by SRC with ap-
plication to target recognition. Figure 3 shows the
implementation procedure of the proposed target recogni-
tion method. In detail, it can be summarized as the following
six steps:

Step 1: generate the multiresolution representations of
all the training samples
Step 2: analyze the multiresolution representations to
calculate the transform matrices
Step 3: calculate the feature matrix of each training
sample and use the vectorized forms of the all the
feature matrices to build the overcomplete dictionary

Step 4: generate the same multiresolution representa-
tions of the test sample
Step 5: calculate the feature matrix of the test sample
using the transform matrices and vectorize it
Step 6: classify the feature vector of the test sample by
SRC to determine its target label

Specially, in this paper, three resolutions are generated
from the original MSTAR images, i.e., 0.4m× 0.4m,
0.5m× 0.5m, and 0.6m× 0.6m. Together with the original
resolution (0.3m× 0.3m), the four resolutions are fused by
2DCCA to produce the final feature matrix with a size of
20× 20. /en, the feature vectors classified by SRC have the
dimension of 400.

4. Experiment

4.1. Data Set and ReferenceMethods. To quantitatively verify
the performance of the proposed method, the MSTAR data
set is used for experiments. /e data set collects SAR images
of 10 classes of ground targets (shown as Figure 4) with the
10GHz HH-polarization SAR sensors. /e resolution of the
original SAR images is 0.3m× 0.3m. Table 1 presents the 10-
class training and test, which is a classical experimental setup
for the recognition under the standard operating condition
(SOC). Images at 17° depression angle are used for training,
whereas those at 15° are tested. Both the training and test sets
cover the full azimuths of 0∼359°.

Some other SAR ATR is used for comparison as listed in
Table 2. SVM, SRC, and CNN are the most prevalent
classification schemes in SAR ATR at present stage. In detail,
SVM [18] and SRC [21] are used to classify the features
extracted by PCA, which is a common feature extraction
method in SAR ATR. And the feature dimension is set to be
80. For CNN, the network architecture in [25] is adopted.
PAR-Res and JSR-Res are the methods proposed in [30] and
[31], respectively, which also perform on the multiresolution
resolutions. In [30], the score-level fusion is used to par-
allelly combine the decisions from individual resolutions. In
[31], the joint sparse representation is adopted to jointly
classify themultiresolution representations. In the following,
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Figure 2: Illustration of fusing multiresolution representations based on 2DCCA.
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Figure 4: Optical and SAR images of the ten military targets. (a) BMP2, (b) BTR70, (c) T72, (d) T62, (e) BRDM2, (f ) BTR60, (g) ZSU23/4,
(h) D7, (i) ZIL131, and (j) 2S1.
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Dictionary
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SRC

2DCCA

Target label

Feature generation

...

...

Reconstruction
error
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Figure 3: Illustration of implementation procedure of the proposed method.

Table 1: Details of the 10-class training and test samples.

Depr. BMP2 BTR70 T72 T62 BDRM2 BTR60 ZSU23/4 D7 ZIL131 2S1
Training set 17° 233 (Sn_9563) 233 232 (Sn_132) 299 298 256 299 299 299 299

Test set 15°
195 (Sn_9563)

196
196 (Sn_132)

273 274 195 274 274 274 274196 (Sn_9566) 195 (Sn_812)
196 (Sn_c21) 191 (Sn_s7)
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the proposed method is tested under different conditions
including SOC and several typical extended operating
conditions (EOC).

4.2. Recognition of 10-Class Targets under SOC. /e pre-
liminary performance of the proposed method is first tested

under SOC based on the 10-class training and test samples in
Table 1. /e confusion matrix of the proposed method for
the recognition of 10-class targets under SOC is given in
Figure 5, in which the each element on the diagonal denotes
the recognition rate of the corresponding target. As shown,
all the targets can be classified with recognition rates over

Table 2: Descriptions of the reference methods.

Abbreviation Feature Decision engine Reference
SVM PCA features SVM [18]
SRC PCA features SRC [21]
CNN Original image intensities CNN [25]
PAR-res Multiresolution representations Score-level fusion [30]
JSR-res Multiresolution representations Joint sparse representation [31]
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Figure 5: Confusion matrix of the proposed method for the recognition of 10-class targets under SOC.

Table 3: Comparison of the average recognition rates of different
methods under SOC.

Method Proposed SVM SRC CNN PAR-res JSR-res
Average (%) 97.63 94.22 93.66 97.24 96.41 96.86

Table 4: Details of the training and test samples for the recognition
under configuration variance.

Depr. BMP2 T72 BTR60 T62
Training set 17° 233 (Sn_9563) 232 (Sn_132) 256 299

Test set 15° 196 (Sn_9566) 195 (Sn_812) 195 273196 (Sn_c21) 191 (Sn_s7)

Table 5: Comparison of the average recognition rates of different
methods under configuration variance.

Method Proposed SVM SRC CNN PAR-res JSR-res
Average (%) 94.72 92.79 91.17 93.18 93.08 93.75

Table 6: Details of the training and test samples for the recognition
under depression angle variance.

Depr. 2S1 BDRM2 ZSU23/4
Training set 17° 299 298 299

Test set 30° 288 287 288
45° 303 303 303
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96% and the average is 97.63%, indicating the high effec-
tiveness of the proposed method under SOC. Table 3 com-
pares the average recognition rates of differentmethods under
SOC, which validates the superiority of the proposed method
over the reference methods. It is noticeable that the methods
based onmultiresolution representations achieve much better
performance than SVM and SRC./e results demonstrate the
good discriminability of multiresolution representations as
for SAR ATR. Owing to the powerful feature learning ability
of CNN, it achieves the second highest recognition rate
among all the methods. Compared with PAR-Res and JSR-
Res methods, the higher recognition rate of the proposed
method shows that the 2DCCA can better exploit the dis-
crimination capability of the multiresolution representations
to improve the ATR performance.

4.3. Configuration Variance. As a common EOC in SAR
ATR, the configuration variance indicates the different
configurations of the same targets, which usually have some
locally structural modifications. Based on the MSTAR data
set, the training and test samples for this experiment are set
as Table 4. Among the four targets, the configurations of
BMP2 and T72 are to be classified are totally different with
their training configurations. /e average recognition rates
of different methods are showcased in Table 5, where the
highest one is achieved by the proposedmethod. Also, in this
case, the methods using multiresolution representations
generally achieve better performance than the remaining
ones. As analyzed in Section 2, the multiresolution repre-
sentations could describe the target’s characteristics from
coarse to fine, so they are able to capture the local variations
caused by the configuration variance./e higher recognition
rate of the proposed method over PAR-Res and JSR-Res
indicates that 2DCCA is more capable of maintaining the
stable features under configuration variance.

4.4. Depression Angle Variance. For SAR images captured at
different depression angles, they have much differences
embodied in both the target region and shadow. Table 6
showcases the training and test samples for the recognition
under depression angle variance. /e training samples are

measured at the depression angle of 17° and the test ones are
from 30° and 45°. Table 7 presents the classification results of
the proposed method at different depression angles. A
notably high recognition rate of 98.15% is achieved at 30°
depression angle because the images at 17° and 30° still share
many resemblances. In addition, the 3-class recognition
problem here is much easier than the 10-class one. However,
for the test samples at 45° depression angle, they are classified
with a much lower recognition rate of 72.50%. /e large
depression angle variance causes many differences between
the test and training samples, which severely degrades the
recognition performance. /e average recognition rates of
different methods are compared in Table 8. All the methods
share similar trend under depression angle variance. With
the highest recognition rates at both depression angles, the
proposed method is validated to be the most robust to
depression angle variance.

4.5. Noise Corruption. /e MSTAR data set are collected at
high signal-to-noise ratios (SNR), which indeed relieve the
burden of the following target recognition. Actually, in the
practical applications, the measured SAR images to be
classified are probably to be contaminated by the noises
from the background environment [34, 35]. Hence, it is
desired that the target-recognition methods could cor-
rectly classify the noisy SAR images. In this experiment,
the noisy test samples are first generated by adding dif-
ferent levels of additive Gaussian noises to the original 10-
class test images./e detailed process of noise addition can
be referred to [35]./en, the noisy samples are classified by
different methods to examine their robustness. Figure 6
shows the average recognition rates of different methods
changing with the SNR. In comparison, the proposed
method defeats all the reference methods at each SNR,
indicating its best noise-robustness. In addition, the
methods using sparse representation (SRC, PAR-Res, JSR-
Res, and the proposal) outperform the remaining ones
(SVM and CNN) especially at low SNRs. /erefore, the
good performance of the proposed method benefits from
the high effectiveness of 2DCCA as well as the robustness
of sparse representation.

Table 8: Comparison of the average recognition rates of different methods under depression angle variance.

Method Proposed SVM SRC CNN PAR-res JSR-res

Average (%) 30° 98.15 97.22 96.88 97.96 97.84 98.12
45° 72.50 66.24 64.74 67.36 72.06 71.82

Table 7: Classification results of the proposed method at 30° and 45° depression angles.

Depr. Class
Results

Recognition rate (%) Average (%)
2S1 BDRM2 ZSU23/4

30°
2S1 284 2 2 98.61

98.15BDRM2 3 282 2 98.26
ZSU23/4 2 4 282 97.92

45°
2S1 197 74 32 65.02

72.50BDRM2 24 224 55 73.93
ZSU23/4 14 51 238 78.55
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5. Conclusion

/e multiresolution representations are exploited using
2DCCA with application to SAR target recognition. /e
multiresolution representations from the same SAR image
describe the target from coarse to fine. So, they complement
each other to provide more information for the following
classification. In addition, they share inner correlations,
which also benefit the correct classification. 2DCCA is
adopted to fuse the multiresolution representations, and the
resulted features describe the correlations among different
resolutions while greatly reducing the high dimension. Fi-
nally, SRC is employed to classify the fused features to
determine the target label. Experiments are implanted on the
MSTAR data set to evaluate the performance of the proposed
method. According to the experimental results, the superior
effectiveness and robustness is quantitively validated in
comparison with several reference methods.
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