
Research Article
A Hybrid Algorithm Framework with Learning and
Complementary Fusion Features for Whale
Optimization Algorithm

Wangyu Tong 1,2

1School of Computer Science and Technology, Wuhan University of Technology, Wuhan 430070, Hubei, China
2School of Computer Science, Hubei University of Technology, Wuhan 430068, Hubei, China

Correspondence should be addressed to Wangyu Tong; ruyu319@hbut.edu.cn

Received 29 October 2019; Accepted 16 January 2020; Published 18 February 2020

Academic Editor: Cristian Mateos

Copyright © 2020 Wangyu Tong. (is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

It has been observed that the structure of whale optimization algorithm (WOA) is good at exploiting capability, but it easily suffers
from premature convergence. Hybrid metaheuristics are of the most interesting recent trends for improving the performance of
WOA. In this paper, a hybrid algorithm framework with learning and complementary fusion features forWOA is designed, called
hWOAlf. First, WOA is integrated with complementary feature operators to enhance exploration capability. Second, the proposed
algorithm framework adopts a learning parameter lp according to adaptive adjustment operator to replace the random parameter
p. To further verify the efficiency of the hWOAlf, the DE/rand/1 operator of differential evolution (DE) and the mutate operator of
backtracking search optimization algorithm (BSA) are embedded into WOA, respectively, to form two new algorithms called
WOA-DE and WOA-BSA under the proposed framework. Twenty-three benchmark functions and six engineering design
problems are employed to test the performance of WOA-DE and WOA-BSA. Experimental results show that WOA-DE and
WOA-BSA are competitive compared with some state-of-the-art algorithms.

1. Introduction

Nowadays, most function optimization problems and en-
gineering design problems are turning out to be compli-
cated, which prevents traditional methods from providing
accurate or even satisfactory solutions. However, the
emergence of the metaheuristic optimization algorithms
breaks this situation and attracts the attention of many
researchers because of their flexibility, derivation-free
mechanisms, and local optima avoidance. Generally, met-
aheuristic algorithms can be divided into two main cate-
gories. (e first category is evolutionary algorithms (EAs)
that are a new family of optimization algorithms inspired
from the evolutionary procedure or intelligent behaviors of
organisms such as genetic algorithm (GA) [1], differential
evolution (DE) algorithm [2], biogeography-based algo-
rithm (BBO) [3], backtracking search optimization algo-
rithm (BSA) [4], grey prediction evolution algorithm

(GPEA) [5], and so on. (e second category is swarm in-
telligence algorithms (SIs) which mimic the social behaviors
of groups of animals. (e most popular SI is particle swarm
optimization (PSO) [6]. Other popular algorithms are ar-
tificial bee colony (ABC) [7], cuckoo search (CS) [8], grey
wolf optimizer (GWO) [9], and so on.

Whale optimization algorithm, proposed by
Mirjalili.et al.in 2016 [10], is one of the most recent SIs. Al-
though it has strong local search capability due to its bubble-
net attacking method, it is easy to get into local optimization
and is weak in exploration. Hybrid metaheuristic algorithms,
as one of the most efficient methods for enhancing the per-
formance of algorithm, have been testified to be more efficient
than the method that uses solely an algorithm. Since WOA
was proposed, it has been widely promoted in various fields by
combining with other algorithms. One of themost widely used
strategies to construct hybrid WOA is by simply hybridizing
two algorithms according to a certain way. For example,

Hindawi
Scientific Programming
Volume 2020, Article ID 5684939, 25 pages
https://doi.org/10.1155/2020/5684939

mailto:ruyu319@hbut.edu.cn
https://orcid.org/0000-0002-4165-4057
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/5684939

Bentouati et al. [11] designed a hybrid whale optimization
algorithm and pattern search technique called WOA-PS and
tested it in optimal power flow problem. Xiong et al. [12] put
forward a hybrid algorithm called DE/WOA, which combined
the exploration of DE with the exploitation of WOA for
extracting the accurate parameters of PV models. Luo et al.
[13] proposed a MDE-WOA algorithm which combines
modified DEGL algorithm and WOA to solve global opti-
mization problems. Mafarja et al. [14] introduced a hybrid
algorithm with whale optimization algorithm and simulated
annealing, in which two hybridization models are considered
for solving the feature selection problem.

Another strategy to construct hybridWOA is by combining
operators with complementary fusion features into WOA to
form a superior algorithm. Trivedi et al. [15] hybridized particle
swarm optimization with whale optimization algorithm called
PSO-WOA to handle global numerical function optimization.
(e main idea is to combine best characteristic of both algo-
rithms to form a novel mutation operator. Korashy et al. [16]
hybridized whale optimization algorithm and grey wolf opti-
mizer algorithm called WOA-GWO for optimal coordination
of direction overcurrent relays. Xu et al. [17] proposed a
memetic WOA (MWOA) through incorporating a chaotic
local search into WOA to enhance its exploitation ability.
Kaveh et al. [18] attempted to enhance the original formulation
of the WOA by hybridizing it with some concepts of the
colliding bodies optimization (CBO). (e new method, known
as WOA-CBO algorithm, is applied to building site layout
planning problem. Khalilpourazari et al. [19] introduced a
novel hybrid algorithm termed as sine-cosineWOA (SCWOA)
for parameter optimization problem of multipass milling
process to decrease total production time. Singh and Hachimi
[20] proposed a new hybrid whale optimization algorithm with
mean grey wolf optimizer (WOA-MGWO) for global opti-
mization. Abdel-Basset et al. [21] proposed a new algorithm
which combines theWOAwith a local search strategy to defeat
the permutation flow shop scheduling problem. Laskar et al.
[22] proposed a new population-based hybrid metaheuristic
algorithm called whale-PSO algorithm (HWPSO) to manage
complex optimization problems.

In this paper, a hybrid algorithm framework named
hWOAlf is proposed by combining learning and comple-
mentary fusion features into WOA. Specifically, the pro-
posed algorithm framework adopts a learning parameter lp

according to adaptive adjustment operator instead of the
random parameter p, namely, the selection of search
equation depends on the process of lp learning from the
subpopulation. Additionally, to improve the exploration of
WOA, operators with complementary fusion features are
employed to balance exploration and exploitation capacity.
(is paper adopts the DE/rand/1 operator of differential
evolution (DE) and the mutate operator of backtracking
search optimization algorithm (BSA) to form two new al-
gorithms, respectively, called WOA-DE and WOA-BSA.
(en, twenty-three benchmark functions and six engi-
neering design problems are employed to test the perfor-
mance of WOA-DE and WOA-BSA. Experimental results
show that WOA-DE and WOA-BSA are competitive
compared with some state-of-the-art algorithms.

(e main contributions of this paper can be summarized
as follows:

(i) Proposing a hybrid algorithm framework for WOA,
named hWOAlf. First, designing a learning pa-
rameter lp according to adaptive adjustment oper-
ator. Second, combining complementary fusion
feature operators into WOA.

(ii) Forming two new algorithms WOA-DE and WOA-
BSA by complementary fusion features, in which the
DE/rand/1 operator of DE and the mutation oper-
ator of BSA are incorporated to WOA, respectively.

(e rest of the paper is organized as follows. Section 2
gives a brief review of WOA, DE, and BSA. (e proposed
hybrid algorithm framework is presented in Section 3. In
Section 4, the experimental results and analysis are given.
Finally, the conclusions are shown in Section 5.

2. Preliminary

2.1. Whale Optimization Algorithm (WOA). Whale opti-
mization algorithm is a new swarm-based metaheuristic
optimization algorithm, proposed by Mirjalili and Lewis in
2016 [10], which mimics the intelligent foraging behavior of
humpback whales. (e algorithm is inspired by bubble-net
hunting strategy. WOA includes three operators to simulate
the search for prey, encircling prey, and bubble-net foraging
behavior of humpback whales. Among them, the encircling
prey and spiral bubble-net attacking method is the exploi-
tation phase, while searching for prey is the exploration
phase.(emathematical model of the two phase is presented
below.

2.1.1. Stage 1: Exploitation Phase (Encircling Prey/Bubble-Net
Attacking Method). During the exploitation phase, hump-
back whales update their position according to two mech-
anisms: shrinking encircling mechanism (encircling prey)
and spiral updating position (spiral bubble-net attacking
method). Shrinking encircling mechanism is represented by
the following equations:

X
→

(t + 1) � X
∗��→
(t) − A

→
· Dis
��→

, Dis
��→

� C
→

· X
∗��→
(t) − X

→
(t)

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌,

(1)

where t represents the current iteration, X∗
��→

(t) is the position
vector of the best solution obtained so far, and X

→
(t) is the

position vector. A
→

and C
→

are coefficient vectors and the
calculation methods are as follows:

A
→

� 2 a
→

· r
→

− a
→

,

C
→

� 2 · r
→

,
(2)

where a
→ is linearly decreased from 2 to 0 over the course of

iterations (in both exploration and exploitation phases) and
r
→ is a random vector in [0, 1].

(en, the spiral updating position is mathematically
expressed by the following equation:

2 Scientific Programming

X
→

(t + 1) � Dis′
���→

· e
bl

· cos(2πl) + X
∗��→
(t),

Dis′
���→

� X
∗��→
(t) − X

→
(t)

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌,

(3)

where Dis′
���→

represents the distance of the ith humpback
whale to best solution obtained so far, b is a constant de-
fining the logarithmic spiral shape, l is a random number in
[− 1, 1], and · is the element-by-element multiplication.

When whales capture their prey, it is worth noting that
the two mechanisms mentioned above, that is, shrinking
encircling mechanism and spiral updating position, are
executed simultaneously. In order to imitate this behavior, a
probability of 50% is assumed to choose between them. (e
mathematical model is as follows:

X
→

(t + 1) �
X
∗��→
(t) − A

→
· Dis
��→

, if p< 0.5,

Dis′
���→

· ebl · cos(2πl) + X
∗��→
(t), if p≥ 0.5,

⎧⎪⎨

⎪⎩

(4)

where p is a random number in [0, 1].

2.1.2. Stage 2: Exploration Phase (Searching for Prey). In this
stage, in order to enhance the exploration capability in
WOA, we update the position of whale according to a
randomly chosen whale instead of the best whale found so
far. (erefore, a coefficient vector A with the random values
greater than 1 or less than -1 is used to force the whale to
move far away from the best known whale.(emodel can be
mathematically expressed as follows:

X
→

(t + 1) � X
→

rand(t) − A
→

· Dis
��→

,

Dis
��→

� C
→

· X
→

rand(t) − X
→

(t)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,
(5)

where X
→

rand is a random position vector selected from the
current population.

2.2. Differential Evolution (DE). Differential evolution (DE)
algorithm is a population-based approach firstly proposed by
Storn and Price in 1997 [2] and proven to be one of the most
promising global search methods. After generating initial
population, the population is updated by looping mutation,
crossover, and selection operations. (is paper adopts a
classic mutation operation, called DE/rand/1. In brief, DE
procedures can be summarized in the following four steps.

2.2.1. Step 1: Initialization. At the beginning, an initial
population is generated by means of random number dis-
tribution. We can initialize the jth dimension of the ith
individual according to

xi,j � Lj + rand(0, 1)∗ Uj − Lj􏼐 􏼑, i � 1, 2, . . . , N;

j � 1, 2, . . . , D,
(6)

where N is the population size, D is the dimensional of
individual, rand(0, 1) denotes an uniformly distributed

random number in [0, 1] range, and Uj and Lj denote the
upper and lower bounds of the jth dimension, respectively.

2.2.2. Step 2: Mutation. After the initialization, DE enters its
main loop. Each target individual xi in the population is used
to generate a mutant individual vi via mutation operators
(DE/rand)/1, where the generated vi can be represented as

vi � xr1 + F∗ xr2 − xr3(􏼁, r1≠ r2≠ r3≠ i, (7)

where r1, r2, and r3 are randomly selected from the current
population and F is the mutation control parameter to scale
the difference vector. Similarly, we give another five fre-
quently used mutation operators as follows:

(1) “DE/rand/2”

vi � xr1 + F∗ xr2 − xr3(􏼁 + F∗ xr4 − xr5(􏼁,

r1≠ r2≠ r3≠ r4≠ r5≠ i.
(8)

(2) “DE/best/1”

vi � xbest + F∗ xr1 − xr2(􏼁, r1≠ r2≠ i. (9)

(3) “DE/best/2”

vi � xbest + F∗ xr1 − xr2(􏼁 + F∗ xr3 − xr4(􏼁,

r1≠ r2≠ r3≠ r4≠ i.
(10)

(4) “DE/rand-to-best/1”

vi � xi + F∗ xbest − xi(􏼁 + F∗ xr1 − xr2(􏼁, r1≠ r2≠ i.

(11)

(5) “DE/current-to-best/1”

vi � xi + F∗ xr1 − xi(􏼁 + F∗ xr2 − xr3(􏼁, r1≠ r2≠ r3≠ i.

(12)

where xbest is the individual that has the best fitness function
value.

2.2.3. Step 3: Crossover. (en, a binomial crossover oper-
ation is applied to the target individual xi and mutant in-
dividual vi to generate a trial individual ui as follows:

ui,j �
vi,j, if rand(0, 1)≤CR or j � jrand,

xi,j, otherwise,
⎧⎨

⎩ (13)

where jrand is a randomly chosen integer in [1, D] and
CR ∈ [0, 1] is called the crossover control parameter.

Scientific Programming 3

2.2.4. Step 4: Selection. Finally, the greedy selection oper-
ation is used to select the better one from the target indi-
vidual xi and crossover individual ui into the next
generation. (is operation is mainly based on the com-
parison of the fitness value and is performed as shown below:

x
t+1
i �

ui, if fitness ui(􏼁< fitness xi(􏼁,

xi, otherwise,
􏼨 (14)

where fitness is the fitness function.

2.3. Backtracking Search Optimization Algorithm (BSA).
Backtracking search optimization algorithm (BSA) is a
population-based metaheuristic algorithm, proposed by
Pinar Civicioglu in 2013 [4]. Similar to most metaheuristic
algorithms, the algorithm achieves the purpose of optimi-
zation through the mutation, crossover, and selection of
population. What makes the BSA unique is its ability to
remember historical populations, which enables it to benefit
from previous generation populations by mining historical
information. (ere are five steps contained in original BSA
called initialization, selection-I, mutation, crossover, and
selection-II. (e five steps of BSA are simply introduced as
follows.

2.3.1. Step 1: Initialization. BSA initializes the population P
and the historical population oldP with the following for-
mula, respectively:

Pi,j ∼ U lowj, upj􏼐 􏼑, (15)

oldPi,j ∼ U lowj, upj􏼐 􏼑, (16)

where i � 1, 2, . . . , N, j � 1, 2, . . . , D. N and D represent
the population size and the population dimension, respec-
tively. U is the uniform distribution. lowj and upj are the
lower and upper boundaries of variables.

2.3.2. Step 2: Selection-I. Firstly, the historical population
oldP is updated according to equation (17). (en, the lo-
cations of individuals in oldP are randomly changed as
shown in equation (18).

if a< b(a, b ∼ U(0, 1)), then oldP � P, (17)

oldP ≔ permuting(oldP), (18)

where permuting(·) performs a random permutation of the
integers from 1 to N.

2.3.3. Step 3: Mutation. (e mutation operator of BSA can
generate the initial trial population which takes advantage of
the historical information and the current information. (e
mutation operation can be expressed as follows:

Mi,j � Pi,j + F∗ oldPi,j − Pi,j􏼐 􏼑, (19)

where F is a control parameter and F � 3 · rand
n(rand n ∼ U(0, 1)). (is operation gives the algorithm
powerful global search ability.

2.3.4. Step 4: Crossover. BSA’s crossover process has two
steps. (e first step generates a binary integer-valued matrix
map of size N∗D. (e second step is to determine the
positions of crossover individual elements in population P
according to the generated matrix map and then exchange
such individual elements in P with the corresponding po-
sition elements in population M to obtain the final trial
population T. (e crossover operation can be expressed as
follows:

Vi,j �
Pi,j, if mapi,j � 1,

Mi,j, otherwise.
⎧⎨

⎩ (20)

After crossover operation, some individuals of the trial
population T obtained at the end of BSA’s crossover process
may overflow the allowed search space limits. At this point,
the individuals beyond the boundary control will be
regenerated according to equation (15).

2.3.5. Step 5: Selection-II. (e greedy selection mechanism is
employed to maintain the most promising trial individuals
into the next generation. Compare the fitness values of the
target individuals and trial individuals; if the fitness value of
trial individual is less than that of the target individual, then
the trial individual is accepted for the next generation;
otherwise, the target individual is retained in the population.
(e selection operator is defined as

Pi �
Ti, if fitness Ti(􏼁< fitness Pi(􏼁,

Pi, otherwise,
􏼨 (21)

where f(·) is the objective function value of an individual.

3. Proposed Hybrid Framework
for WOA: hWOAlf

WOA which imitates the hunting behavior of humpback
whales is one of the most recent SIs. It includes three stages:
searching for prey, encircling prey, and hunting prey. (e
basic WOA has the disadvantage of weak exploration ca-
pability. (is paper proposes a hybrid algorithm framework
(hWOAlf) to improve the global search capability of WOA.
Operators with complementary fusion features, DE/rand/1
operator of DE and mutation operator BSA, are embedded
into WOA to form two new algorithms which include
WOA-DE and WOA-BSA, respectively. In addition, a
learning parameter lp adjusted by adaptive adjustment
operator will replace the random parameter p of the original
WOA, which can continuously balance exploration and
exploitation through learning mechanism. (e proposed
framework consists of two main parts, hybrid framework
and learning parameter mechanism, explained below.

4 Scientific Programming

3.1. Proposed Hybrid Framework for WOA. (e mutation
operators of equations (1) and (3) in WOA have strong
exploitation capability, but only the mutation operator of
equation (5) has a strong exploration capability. (is makes
WOA more capable of exploitation and less capable of
exploration. In order to balance the exploration and ex-
ploitation capabilities of WOA, a generic framework flow-
chart was developed and is shown in Figure 1. With this
framework, BSA mutation operator (equation (7)) and DE/
rand/1 mutation operator (equation (19)) are used to im-
prove the exploration capability of WOA.

In order to have a clearer understanding of our proposed
hWOAlf, we summarize the four mutation operators used in
this framework as follows:

(i) Operator 1: if p< r and|A|< 1

T
→

i � X
∗��→

i − A
→

· C
→

· X
∗��→

i − X
→

i

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌. (22)

(ii) Operator 2: if p< r and|A|≥ 1

T
→

i � X
→

other − A
→

· C
→

· X
→

other − X
→

i

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌. (23)

(iii) Operator 3: if p≥ r and|A|< 1

T
→

i � X
∗��→

i − X
→

i

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌 · e
bl

· cos(2πl) + X
∗��→

i. (24)

(iv) Operator 4: if p≥ r and|A|≥ 1

T
→

i � X
→

i + F1 · oldX
�����→

i − X
→

i􏼒 􏼓or T
→

i � X
→

r1 + F2 · X
→

r2 − X
→

r3􏼒 􏼓,

(25)

where Ti is a test individual.

3.2. Proposed Learning Parameter Mechanism. In basic
WOA, p is a random number. In this paper, we design lp as a
function with learning strategy. When the population is fully
evolved in the current iteration, the following four numbers
are recorded: the number of individuals mutated by operator
1 and operator 2 is n1, and the number of individuals
mutated by these two operators that can successfully enter
the next generation is s1; similarly, the number of indi-
viduals mutated by operator 3 and operator 4 is n2. (e
number of individuals better than their parents after the
mutation of these two operators is s2. (e learning pa-
rameter lp is designed as follows:

lp �
1 +(s1/n1)

2 +(s1/n1) +(s2/n2)
. (26)

(e initial lp value is 0.5 and needs to be updated after
each iteration. In this paper, lp is designed to control the
execution frequency of the search operators in equations

(22) and (23) and those in equations (24) and (25). In the
process of algorithm evolution, when lp is less than a
random number, operator 1 and operator 2 are used to
mutate; otherwise, operator 3 and operator 4 are selected to
mutate. (is continuous adaptive process will enable the
algorithm to choose themost suitable learning strategy in the
evolution process.

3.3. >e Pseudocode of hWOAlf. For clarity, the pseudocode
of hWOAlf is given in Algorithm 1.

4. Experimental Results and Discussion

In this section, to verify the validity of the proposed hybrid
algorithm framework, WOA-DE and WOA-BSA are dem-
onstrated on twenty-three benchmark functions and six
engineering design problems. Experimental results and
comparisons with other representative algorithms show that
the proposed hWOAlf is effective and efficient. All experi-
ments are implemented in the software of MATLAB 2012a.
(e computer system running the program is Intel(R)
Core(TM) i5-3230M CPU @ 2.60GHz and 4GB RAM.

4.1.Twenty->reeBenchmarkFunctions. In order to evaluate
the performance of the proposed algorithm framework,
WOA-DE andWOA-BSA are compared with some EAs and
SIs, i.e., DE, BBO, BSA, PSO, HS, GSA, and WOA on
twenty-three benchmark functions listed in Tables 1–3.
(ese functions can be divided into three groups: unimodal,
multimodal, and fixed-dimension multimodal. (e uni-
modal functions F1 − F7 have only one global optimum, so
they are used to investigate the exploitation capability, while
the remaining functions F8 − F23 with more than two local
optima are utilized to evaluate the exploration ability. In
addition, in the tables, D denotes the number of function
dimensions, Range is the boundary of the function search
space, and fmin is the theoretical optimum. In order to have
a fair comparison, each experiment is independently run 30
times for all the compared algorithms, and the results of
every run are recorded. (e maximal iteration number
(Maxiter) is used as the termination condition for all al-
gorithms, which is set to 1000, and population size is set to
30.

4.2. Comparison Results of Twenty->ree Benchmark
Functions. Tables 4 and 5 tabulate the Best, Mean, and Std
results of twenty-three benchmark functions for WOA-DE,
WOA-BSA, and other seven compared algorithms. (e
results of WOA-DE and WOA-BSA are shown in bold.

4.2.1. Exploitation Capability. Functions F1–F7 can be used
to evaluate the exploitation capability of the proposed al-
gorithms, since each of them has only one global optimal
value. (e results from Table 4 show that with respect to the
best, WOA-DE and WOA-BSA rank first and second, re-
spectively, for functions F1–F7 among all compared algo-
rithms, which means that the results obtained by WOA-DE

Scientific Programming 5

and WOA-BSA are closer to the theoretical optimal solu-
tions on these functions andWOA-DE andWOA-BSA have
very strong exploitation capacity compared with other al-
gorithms. In terms of Mean and Std index, WOA-BSA
outperforms the other algorithms, while WOA-DE is not the
best but it is better than the other six algorithms.

4.2.2. Exploration Capability. Functions F8–F23 are multi-
modal functions. (ey include many local optima, and the
number of local optima increases exponentially with the
increase of dimension D. So, these functions are considered
to be very useful in evaluating the exploration capabilities of
algorithms. (e results of F8–F23 test functions for WOA-
DE and WOA-BSA are shown in Table 5, where F8–F13 are
multimodal functions and F14–F23 are fixed-dimension
multimodal functions. (e results from Table 5 show that
WOA-DE and WOA-BSA have no advantage in terms of
Best, Mean, and Std compared to the other six algorithms
(such as DE, BBO, BSA, PSO, HS, and GSA). However, both
of them are better than the original algorithm WOA, which
indicates that our proposed hybrid algorithm framework can
effectively improve the performance of the original algo-
rithm WOA.

Figure 2 represents six convergence graphs obtained by
the nine algorithms for F1, F5, and F7 (unimodal functions),

F10 and F11 (multimodal functions), and F15 (hybrid com-
position function). As can be seen from Figure 2, WOA-BSA
has faster convergence speed for F1, F5, F7, F10, F11, and F15;
meanwhile, WOA-DE also has faster speed. Based on the
above results, we can see that WOA-DE and WOA-BSA
have competitive performance, although they are not better
than the compared algorithms in all aspects.

4.3. Engineering Design Problems. In order to further ex-
amine the proposed hybrid framework, it is applied to six
well-known engineering design problems mixed the vari-
ables taken from the optimization literatures. (e descrip-
tion of these problems including three-bar truss, pressure
vessel, speed reducer, gear train, cantilever beam, and
I-beam is given in Appendix A. Table 6 shows the parameter
settings of six engineering problems according reference
[23, 24], whereN, T, andD represent the population size, the
maximum number of iterations, and the dimension of
optimization problems, respectively. However, there are a
number of complex constraints in each problem, which
make it challenging to find the optimal solution satisfying all
the constraints. So, a constraint handling method, such as
penalty functions, feasibility and dominance rules, stochastic
ranking, multiobjective concepts, ε-constrained methods,
and Deb’s heuristic constraints processing method [25, 26],

Start

Is the stopping
criterion satisfied?

Generate a random initial population

Evaluate the fitness for each individual

Determine the best individual

Initialize the iteration counter t = 1 and the
variation probability lp = 0.5

For each individual

Update the individual if its trial vector is better

Update the best position found so far if
there is a better position

Update a, A, C, l, and lp

Select a random individual Xrand from population

Set parameters of BSA\DE and WOA

 lp < rand?

Generate Ti using equation (22)

Generate Ti using equation (23)

Generate Ti using equation (24)

Generate Ti using equation (25)

Evaluate the fitness for the trial individual Ti

Update lp using equation (26)

|A| < 1?

Yes

Yes

No

No

No

Output the results

t = t + 1

Yes WOA

BSA or DE

|A| < 1?

Yes

No

Figure 1: Flowchart of the proposed hWOAlf.

6 Scientific Programming

is necessary. (is paper adopts Deb’s heuristic constraints
processing method. Each experiment is independently run
30 times and the results obtained include the worst value
(Worst), the mean value (Mean), the best function value
(Best), the standard deviation (Std), and the function
evaluations (FEs).

4.3.1. >ree-Bar Truss Design Problem. (ree-bar truss de-
sign (as shown in Figure 3) is to minimize the weight of a
truss with three bars, subject to stress constraints. (e
problem has two design variables and three nonlinear in-
equality constraints. (e formulation for this problem is
shown in Appendix A.1.

Input: ObjFun, N, D, Tmax, lb1: D, ub1: D

Output: Leaderminimum, X∗

(1) //rand ∼ U (0, 1), randperm (N) ∼ random permutation of the integers 1 :N, normrnd (u, d) ∼ random number chosen from a
normal distribution with mean u and standard deviation d

(2) Initialization for i � 1 to N do
(3) for j � 1 to D do
(4) xij � lbj + rand∗ ubj% Generate an initial whales population P � X1, . . . , XN􏼈 􏼉

(5) end
(6) end
(7) finess � ObjFun(P)% Calculate the fitness of each search agent
(8) X∗ � the best search agent
(9) Leaderminimum� the fitness of the best search agent
(10) t � 1 and lp � 0.5
(11) while t≤Tmax do
(12) Mutation
(13) %% Update the Position of search agents
(14) for i � 1 to N do
(15) Update a, A, C and l
(16) if lp< rand then
(17) if |A|< 1 then
(18) the individual is mutated by equation (22)
(19) else
(20) Select a random individual Xrand; the individual is mutated by equation (23)
(21) end
(22) else
(23) if |A|< 1 then
(24) the individual is mutated by equation (24)
(25) else
(26) the individual is mutated by equation (25)
(27) end
(28) end
(29) end
(30) %% Checking allowable range
(31) for i � 1 to N do
(32) for j � 1 to D do
(33) if xij < lxj or xij > uxj then
(34) xij � lxj + rand∗ uxj

(35) end
(36) end
(37) end
(38) %% Update the leader
(39) for i � 1 to N do
(40) fitness(i) � ObjFun(Xi)% Calculate objective function values of T
(41) if fitness(i)< Leaderminimum then
(42) Leaderminimum � fitness(i)

(43) X∗ � Xi

(44) end
(45) end
(46) %% Update the learning parameter lp

(47) the lp is updated by equation (26)
(48) t � t + 1
(49) end

ALGORITHM 1: (e pseudocode of hWOAlf.

Scientific Programming 7

(e results of WOA-DE and WOA-BSA are compared
with WOA, dynamic stochastic selection (DEDS) [27],
hybrid evolutionary algorithm (HEAA) [28], hybrid particle
swarm optimization with differential evolution (PSO-DE)
[29], differential evolution with level comparison (DELC)
[30], mine blast algorithm (MBA) [31], and crow search
algorithm (CSA) [32]. (e best solutions obtained from
these algorithms are presented in Table 7. From Table 7,
within the allowable error range of the constraint function
value, the function value of the best solutions of WOA-DE
and WOA-BSA is the smallest among all the comparison
algorithms, equaling to 263.895711. As can be seen from
Table 8, although the FEs (equaling to 10000) obtained by
DELC are the smallest, WOA-DE and WOA-BSA find out
the current best solution of this problem. In addition,
Figure 4 shows the convergence figure of WOA-DE, WOA-
BSA, and WOA on three-bar truss design problem, which
indicates the convergence speed of WOA-DE, and WOA-
BSA is faster than that of WOA. (at is to say, the proposed
hybrid framework is effective.

4.3.2. Pressure Vessel Design Problem. (is problem aims to
minimize the total cost of a cylindrical vessel subject to
constraints on the material, forming, and welding as shown in
Figure 5. From this picture, we can see that when the head is
hemispherical and both ends of the cylindrical container are
sealed by hemispherical heads. Four optimization variables
are the thickness of the shell Ts (x1), thickness of the head Th

(x2), inner radius R (x3), and cylindrical section length L
(x4), where Ts and Th need to be integer multiple of 0.0625,
while R (x3) and L (x4) are continuous variables. In addition,
the formulation of this problem is shown in Appendix A.2.

(e approaches applied to this problem include GA
based on coevolution model (CGA) [33], GA based on a
dominance-based tour tournament selection (DGA) [34],
coevolutionary PSO (CPSO) [35], hybrid PSO (HPSO) [36],
coevolutionary differential evolution (CDE) [37], CSA, and
WOA. WOA-DE and WOA-BSA are compared with the
seven algorithms listed above, and the best solutions ob-
tained by these methods are shown in Table 9. From Table 9,
we can see that the objective function values of the best
solutions ofWOA-DE (equaling to 6059.708057) andWOA-
BSA (equaling to 6059.708025) are superior to those of
comparison algorithms. Moreover, as can be seen from
Table 10, the FEs obtained by the proposed WOA-DE and
WOA-BSA are minimal, equaling to 30240 and 30140, re-
spectively. (is suggests that WOA-DE and WOA-BSA can

find out the current best solution of this problem with the
smallest computational overhead. Figure 6 shows that
WOA-DE and WOA-BSA have a faster convergence rate
than the original WOA on pressure vessel design issues.

4.3.3. Speed Reducer Design Problem. (e speed reducer
design problem, shown in Figure 7, is a practical design
problem that has been often used as a benchmark problem
for testing the performance of different optimization algo-
rithms.(e objective is to find the minimumweight of speed
reducer under the constraints of bending stress of the gear
teeth, surface stress, transverse deflections of the shafts, and
stresses in the shafts. (ere are seven design variables,
namely, the face width b (x1), the tooth module m (x2), the
number of teeth in pinion z (x3), the length of the first shaft
between bearings l1(x4), the length of the second shaft
between bearings l2(x5), and the diameter of the first shaft
d1(x6) and the second shaft d2(x7). (e mathematical
formulation of the problem is shown in Appendix A.3.

Tables 11 and 12 show the best solutions and statistical
results of MDE, DEDS, DELC, HEAA, PSO-DE, MBA, and
WOA. From Table 11, it can be seen that the function values
of the current best feasible solutions ofWOA-DE andWOA-
BSA are equal to 2994.469448 and 2994.469656, respectively.
(e statistical results are given in Table 12. From the results
of this table, we can see that the FEs ofWOA-DE andWOA-
BSA equaling to 15000 are better than those of the other
algorithms except MBA equaling to 6300. (is indicates that
WOA-DE and WOA-BSA in the framework, compared to
other algorithms, can obtain a relatively better solution by
sacrificing a little computational overhead on this problem.
Moreover, Figure 8 presents the convergence figure of
WOA-DE, WOA-BSA, and WOA on this problem. From
Figure 8, the convergence speeds of WOA-DE and WOA-
BSA are faster than WOA, and their solutions are closer to
the optimal solution.

4.3.4. Gear Train Design Problem. Gear train design aims to
minimize the cost of the gear ratio of the gear train. It has
only boundary constraints in parameters. Variables to be
optimized are in discrete form since each gear has to have an
integral number of teeth. In the problem, the design vari-
ables are nA(x1), nB(x2), nD(x3), and nF(x4), which are
discrete and must be integers. (e gear ratio is defined as
nBnD/nFnA. (e formulation of this problem is shown in
Appendix A.4. Figure 9 shows the speed reducer and its
parameters.

Table 1: Description of unimodal benchmark functions.

Function D Range fmin

F1(x) � 􏽐
D
i�1x

2
i 30 [− 100, 100] 0

F2(x) � 􏽐
D
i�1|xi| + 􏽑

D
i�1 |xi| 30 [− 10, 10] 0

F3(x) � 􏽐
D
i�1(􏽐

i
j�1 xj)

2 30 [− 100, 100] 0
F4(x) � max1≤i≤D|xi| 30 [− 100, 100] 0
F5(x) � 􏽐

D− 1
i�1 [100(xi+1 − x2

i)2 + (xi − 1)2] 30 [− 30, 30] 0
F6(x) � 􏽐

D
i�1(xi + 0.5)2 30 [− 100, 100] 0

F7(x) � 􏽐
D
i�1 ix4

i + random[0, 1) 30 [− 1.28, 1.28] 0

8 Scientific Programming

Ta
bl

e
2:

D
es
cr
ip
tio

n
of

m
ul
tim

od
al

be
nc
hm

ar
k
fu
nc
tio

ns
.

Fu
nc
tio

n
D

Ra
ng

e
f
m
in

F
8(

x
)

�
􏽐

D i�
1

−
x

i
sin

(
�

��
|x

i|
􏽰

)
30

[−
50
0,

50
0]

−
41
8.
98
29

×
5

F
9(

x
)

�
􏽐

D i�
1(

x
2 i

−
10

co
s(
2π

x
i)

+
10

)
30

[−
5.
12
,5

.1
2]

0

F
10

(
x

)
�

−
20

ex
p(

−
0.
2

�
�

�
�

�
�

�
�

�
��

(
1/

D
)􏽐

D i�
1x

2 i

􏽱

)
−
ex
p(

(
1/

D
)􏽐

D i�
1c
os

(
2π

x
i)

)
+
20

+
e

30
[−
32
,3

2]
0

F
11

(
x

)
�

(
1/
40
00

)􏽐
D i�
1x

2 i
−

􏽑
D i�
1
co
s(

x
i/

� i
√

)
+
1

30
[−
60
0,

60
0]

0
F
12

(
x

)
�
π/

D
10

sin
(
πy

1)
+

􏽐
D

−
1

i�
1

(
y

i
−
1)

2 [1
+
10

sin
2 (
πy

i+
1)

]
+

(
y

D
−
1)

2
􏽮

􏽯
+

􏽐
D i�
1u

(
x

i,
10

,1
00

,4
)

30
[−
50
,5

0]
0

y
i

�
1

+
x

i
+
1/
4,

u
(

x
i,

a
,k

,m
)

�

k
(

x
i
−

a
)m

,
x

i
>

a

0,
−

a
<

x
i
<

a

k
(

−
x

i
−

a
)m

,
x

i
<

a

⎧⎪ ⎨ ⎪ ⎩

F
13

(
x

)
�
0.
1
sin

2 (
3π

x
1)

+
􏽐

D i�
1

(
x

i
−
1)

2 [1
+
sin

2 (
3π

x
i+
1

+
1)

]
+

(
x

D
−
1)

2 [1
+
sin

2 (
2π

x
D

)]
􏽮

􏽯
+

􏽐
D i�
1u

(
x

i,
5,
10
0,
4)

30
[−
50
,5

0]
0

Scientific Programming 9

Ta
bl

e
3:

D
es
cr
ip
tio

n
of

fix
ed
-d
im

en
sio

n
m
ul
tim

od
al

be
nc
hm

ar
k
fu
nc
tio

ns
.

Fu
nc
tio

n
D

Ra
ng

e
f
m
in

F
14

(
x

)
�

((
1/
50
0)

+
􏽐

25 j�
1(
1/

j
+

􏽐
2 i�
1(

x
i
−

a
ij

)6
))

−
1

2
[−
65
,6

5]
1

F
15

(
x

)
�

􏽐
11 i�
1[

a
i
−

(
x
1(

b
2 i

+
b

ix
2)
/b

2 i
+

b
ix

3
+

x
4)

]2
4

[−
5,

5]
0.
00
03
0

F
16

(
x

)
�
4x

2 1
−
2.
1x

4 1
+

(
1/
3)

x
6 1

+
x
1x

2
−
4x

2 2
+
4x

4 2
2

[−
5,

5]
−
1.
03
16

F
17

(
x

)
�

(
x
2

−
(
5.
1/
4π

2)
x
2 1

+
(
5/
π)

x
1

−
6)

2
+
10

(
1

−
(
1/
8π

))
co
s

x
1

+
10

2
[−
5,

5]
0.
39
8

F
18

(
x

)
�

[1
+

(
x
1

+
x
2

+
1)

2 (
19

−
14

x
1

+
3x

2 1
−
14

x
2

+
6x

1x
2

+
3x

2 2)
]

×
[3
0

+
(
2x

1
−
3x

2)
2 (
18

−
32

x
1

+
12

x
2 1

+
48

x
2

−
36

x
1x

2
+
27

x
2 2)

]
2

[−
2,

2]
3

F
19

(
x

)
�

−
􏽐

4 i�
1c

i
ex
p(

−
􏽐

3 j�
1

a
ij

(
x

j
−

p
ij

)2
)

3
[1
,3

]
−
3.
86

F
20

(
x

)
�

−
􏽐

4 i�
1c

i
ex
p(

−
􏽐

6 j�
1

a
ij

(
x

j
−

p
ij

)2
)

6
[0
,1

]
−
3.
32

F
21

(
x

)
�

−
􏽐

5 i�
1[

(
X

−
a

i)
(

X
−

a
i)

T
+

c i
]−

1
4

[0
,1

0]
−
10
.1
23
2

F
22

(
x

)
�

−
􏽐

7 i�
1[

(
X

−
a

i)
(

X
−

a
i)

T
+

c i
]−

1
4

[0
,1

0]
−
10
.4
02
8

F
23

(
x

)
�

−
􏽐

1 i�
10

[(
X

−
a

i)
(

X
−

a
i)

T
+

c i
]−

1
4

[0
,1

0]
−
10
.5
36
3

10 Scientific Programming

Ta
bl

e
4:

C
om

pa
ri
so
n
of

op
tim

iz
at
io
n
re
su
lts

ob
ta
in
ed

fo
r
th
e
un

im
od

al
be
nc
hm

ar
k
fu
nc
tio

ns
.

A
L

Ru
ns

�
30
,N

�
30
,a

nd
T

�
10
00

f
ra
nk

D
E

BB
O

BS
A

PS
O

H
S

G
SA

W
O
A

W
O
A
-D

E
W
O
A
-B
SA

F 1
Be

st
2.
90
E

−
12

(
5)

0.
45
46
43

(
9)

0.
00
09
08

(
7)

1.
04
E

−
11

(
6)

0.
04
23
85

(
8)

4.
64
E

−
17

(
4)

2.
76
E

−
16
7(

3)
6.
92
E

−
19
0(

1)
1.
62
E

−
18
7(

2)

M
ea
n

1.
33
E

−
11

(
5)

1.
01
32
23

(
9)

0.
00
62
57

(
7)

9.
73
E

−
09

(
6)

0.
06
32
36

(
8)

1.
01
E

−
16

(
4)

1.
46
E

−
15
3(

3)
1.
07
E

−
16
8(

2)
1.
45
E

−
17
2(

1)

St
d

9.
98
E

−
12

(
4)

0.
31
15
71

(
8)

0.
01
09
17

(
7)

4.
23
E

−
08

(
5)

0.
01
08
99

(
6)

3.
76
E

−
17

(
3)

7.
91
E

−
15
3(

2)
0(

1)
0(

1)

F 2
Be

st
3.
99
E

−
08

(
5)

0.
27
17
33

(
8)

0.
00
67
26

(
7)

1.
00
E

−
05

(
6)

0.
57
57
24

(
9)

3.
50
E

−
08

(
4)

3.
31
E

−
11
4(

3)
2.
46
E

−
12
4(

2)
2.
01
E

−
12
4(

1)

M
ea
n

6.
80
E

−
08

(
5)

0.
32
42
36

(
8)

0.
02
04
18

(
7)

0.
00
13
13

(
6)

0.
72
77
65

(
9)

5.
20
E

−
08

(
4)

9.
88
E

−
10
5(

3)
8.
47
E

−
11
3(

1)
1.
27
E

−
11
2(

2)

St
d

1.
95
E

−
08

(
5)

0.
04
10
92

(
8)

0.
01
49
74

(
7)

0.
00
49
47

(
6)

0.
05
86
5(

9)
1.
17
E

−
08

(
4)

4.
94
E

−
10
4(

3)
4.
21
E

−
11
2(

1)
5.
75
E

−
11
2(

2)

F 3
Be

st
10
80
8.
03
59
7(

9)
83
.7
65
44
4(

2)
39
4.
95
21
76

(
5)

3.
20
85
62

(
1)

30
84
.5
02
85

(
8)

19
5.
53
81
97

(
4)

16
77
.3
09
74

(
7)

17
5.
10
16
2(

3)
53
2.
87
12
48

(
6)

M
ea
n

15
72
3.
12
59

(
9)

13
5.
93
42
73

(
2)

87
8.
22
20
6(

4)
14
.9
04
55
1(

1)
52
28
.2
01
44
5(

5)
40
9.
45
68
76

(
3)

97
35
.5
12
83
6(

7)
10
04
5.
18
14
4(

8)
76
21
.7
28
20
2(

6)

St
d

26
83
.1
55
99
4(

6)
34
.0
26
32
6(

2)
31
5.
58
92
52

(
4)

7.
67
79
07

(
1)

15
91
.5
52
75
5(

5)
12
9.
83
50
9(

3)
38
98
.8
90
19
2(

7)
59
86
.4
81
78

(
9)

41
99
.0
58
74
9(

8)

F 4
Be

st
1.
08
08
85

(
7)

0.
74
22
44

(
6)

3.
26
28
76

(
8)

0.
31
11
11

(
5)

4.
21
69
35

(
9)

1.
35
E

−
08

(
3)

0.
01
90
63

(
4)

5.
68
E

−
10

(
2)

4.
30
E

−
19

(
1)

M
ea
n

1.
57
50
45

(
5)

0.
97
27
36

(
2)

5.
96
99
96

(
6)

0.
56
30
87

(
1)

6.
11
35
42

(
7)

1.
26
43
62

(
3)

17
.7
04
82
5(

9)
14
.2
59
81
9(

8)
1.
56
22
63

(
4)

St
d

0.
38
75
1(

3)
0.
12
37
37

(
1)

1.
57
96
8(

6)
0.
15
39
09

(
2)

1.
24
66
67

(
4)

1.
28
43
82

(
5)

14
.5
81
12

(
8)

17
.5
66
09
2(

9)
6.
51
96
26

(
7)

F 5
Be

st
25
.3
98
27
3(

2)
39
.4
74
19
9(

7)
43
.6
78
35

(
8)

11
.7
16
82
3(

1)
91
.0
50
67
7(

9)
25
.8
61
83
6(

3)
26
.6
07
34
1(

5)
25
.8
86
81
2(

4)
26
.8
35
69
7(

6)

M
ea
n

38
.3
11
35

(
5)

14
9.
88
48
22

(
8)

11
4.
03
20
52

(
7)

60
.3
88
77
8(

6)
34
2.
97
35
93

(
9)

37
.2
44
87
4(

4)
27
.1
47
1(

1)
27
.5
12
33
4(

3)
27
.4
96
50
6(

2)

St
d

21
.4
17
57
8(

4)
18
1.
59
02
32

(
8)

35
.2
16
40
2(

6)
43
.2
41
12
3(

7)
49
2.
14
47
58

(
9)

24
.8
82
94
1(

5)
0.
48
51
47

(
1)

0.
54
73
47

(
3)

0.
53
95
86

(
2)

F 6
Be

st
2.
88
E

−
12

(
2)

0.
62
27

(
9)

0.
00
07
6(

4)
2.
51
E

−
11

(
3)

0.
04
81
28

(
8)

4.
50
E

−
17

(
1)

0.
00
71
48

(
5)

0.
01
29
86

(
6)

0.
01
54
06

(
7)

M
ea
n

8.
90
E

−
12

(
2)

1.
07
11
14

(
9)

0.
00
78
8(

4)
9.
68
E

−
09

(
3)

0.
07
00
02

(
6)

1.
03
E

−
16

(
1)

0.
05
76
61

(
5)

0.
26
36
33

(
8)

0.
20
12
5(

7)

St
d

5.
67
E

−
12

(
2)

0.
27
94
22

(
9)

0.
00
83
19

(
4)

3.
00
E

−
08

(
3)

0.
01
11
99

(
5)

4.
46
E

−
17

(
1)

0.
07
85
59

(
6)

0.
22
43
46

(
8)

0.
19
27
54

(
7)

F 7
Be

st
0.
01
62
52

(
6)

0.
00
20
11

(
4)

0.
01
20
74

(
5)

0.
03
71
04

(
9)

0.
03
52
29

(
8)

0.
01
67
33

(
7)

0.
00
01
15

(
2)

0.
00
01
6(

3)
0.
00
01

(
1)

M
ea
n

0.
02
73
22

(
5)

0.
00
63
96

(
4)

0.
03
06
74

(
6)

0.
07
81
77

(
9)

0.
05
53
69

(
8)

0.
04
97
62

(
7)

0.
00
19
35

(
3)

0.
00
15

(
1)

0.
00
15
79

(
2)

St
d

0.
00
57
43

(
5)

0.
00
21
54

(
4)

0.
01
27
99

(
7)

0.
02
37
69

(
9)

0.
01
18
01

(
6)

0.
02
15
87

(
8)

0.
00
19
59

(
3)

0.
00
16
92

(
1)

0.
00
17
61

(
2)

Ra
nk

Be
st

6
8

7
5

9
3

4
1

2
M
ea
n

5
7

6
4

8
2

3
3

1
St
d

1
5

6
4

7
1

2
3

1

Scientific Programming 11

Ta
bl

e
5:

C
om

pa
ri
so
n
of

op
tim

iz
at
io
n
re
su
lts

ob
ta
in
ed

fo
r
th
e
m
ul
tim

od
al

be
nc
hm

ar
k
fu
nc
tio

ns
.

A
L

Ru
ns

�
30
,N

�
30
,a
nd

T
�
10
00

F
ra
nk

D
E

BB
O

BS
A

PS
O

H
S

G
SA

W
O
A

W
O
A
-D

E
W
O
A
-B
SA

F 8
Be

st
−
12
56
9.
48
66
2(

1)
−
92
88
.8
59
11
5(

5)
−
12
31
9.
85
52

(
3)

−
85
62
.0
82
03
6(

8)
−
12
56
9.
47
15
4(

2)
−
32
57
.7
15
63
7(

9)
−
86
74
.3
43
57
2(

7)
−
89
85
.6
61
30
3(

6)
−
10
57
7.
83
34
5(

4)

M
ea
n

−
12
56
5.
53
86
5(

2)
−
82
97
.6
53
05
1(

4)
−
11
98
2.
40
96
6(

3)
−
61
18
.6
55
93
6(

8)
−
12
56
8.
80
51
3(

1)
−
24
34
.3
24
31

(
9)

−
66
58
.4
10
19
7(

7)
−
76
00
.1
41
18
4(

6)
−
76
57
.9
17
37
2(

5)

St
d

21
.6
23
78
1(

2)
49
7.
30
10
94

(
5)

22
2.
38
50
6(

3)
15
74
.8
30
60
3(

9)
0.
90
91
11

(
1)

35
5.
93
70
95

(
4)

86
3.
97
12
62

(
7)

86
1.
18
10
57

(
6)

11
83
.2
24
50
2(

8)

F 9
Be

st
44
.3
07
25
3(

7)
29
.2
44
53
8(

6)
16
.5
98
59
7(

4)
14
.9
92
99
2(

3)
17
.9
49
82
6(

5)
14
.9
24
38
1(

2)
0(

1)
0(

1)
0(

1)

M
ea
n

56
.7
83
47
5(

8)
53
.4
37
98
5(

7)
25
.7
88
63
3(

4)
46
.5
38
30
6(

6)
25
.4
66
45
2(

3)
25
.8
02
58
7(

5)
0(

1)
3.
67
22
48

(
2)

0(
1)

St
d

6.
26
64
86

(
4)

14
.3
33
43
5(

7)
4.
03
67
3(

2)
14
.2
70
92
7(

6)
4.
77
26
48

(
3)

6.
63
04
17

(
5)

0(
1)

20
.1
13
73
2(

8)
0(

1)

F 1
0

Be
st

4.
23
E

−
07

(
3)

0.
22
69
71

(
6)

0.
00
75
36

(
5)

3.
00
E

−
06

(
4)

1.
08
09
69

(
7)

5.
45
E

−
09

(
2)

8.
88
E

−
16

(
1)

8.
88
E

−
16

(
1)

8.
88
E

−
16

(
1)

M
ea
n

7.
02
E

−
07

(
5)

0.
34
92
44

(
8)

0.
02
07
86

(
6)

0.
08
32
3(

7)
2.
06
36
48

(
9)

7.
70
E

−
09

(
4)

4.
44
E

−
15

(
3)

4.
20
E

−
15

(
2)

3.
97
E

−
15

(
1)

St
d

1.
52
E

−
07

(
5)

0.
07
01
99

(
7)

0.
01
13
33

(
6)

0.
31
74
95

(
8)

0.
42
52
32

(
9)

1.
50
E

−
09

(
4)

2.
29
E

−
15

(
3)

1.
30
E

−
15

(
1)

2.
03
E

−
15

(
2)

F 1
1

Be
st

1.
44
E

−
11

(
3)

0.
50
37
13

(
6)

0.
00
12
24

(
4)

7.
42
E

−
12

(
2)

0.
12
06
91

(
5)

3.
00
97
29

(
7)

0(
1)

0(
1)

0(
1)

M
ea
n

9.
80
E

−
10

(
1)

0.
76
60
39

(
8)

0.
02
68
51

(
6)

0.
01
14
93

(
5)

0.
61
87
27

(
7)

8.
56
84
61

(
9)

0.
00
31
04

(
4)

0.
00
10
92

(
2)

0.
00
12
82

(
3)

St
d

3.
07
E

−
09

(
1)

0.
11
03
1(

7)
0.
02
92
55

(
6)

0.
00
97
01

(
4)

0.
27
50
77

(
8)

4.
06
58
95

(
9)

0.
01
18
16

(
5)

0.
00
59
81

(
2)

0.
00
70
21

(
3)

F 1
2

Be
st

2.
39
E

−
13

(
3)

0.
00
11
93

(
6)

3.
00
E

−
06

(
4)

3.
38
E

−
14

(
2)

0.
00
03
83

(
5)

3.
75
E

−
19

(
1)

0.
00
13
52

(
7)

0.
00
31
79

(
9)

0.
00
29
84

(
8)

M
ea
n

1.
00
E

−
12

(
1)

0.
00
25
05

(
4)

6.
30
E

−
05

(
2)

0.
00
34
56

(
5)

0.
00
05
81

(
3)

0.
15
16
27

(
8)

0.
00
61
88

(
6)

0.
01
34
32

(
7)

0.
40
92
58

(
9)

St
d

1.
05
E

−
12

(
1)

0.
00
08
44

(
4)

8.
00
E

−
05

(
2)

0.
01
89
27

(
7)

0.
00
01
21

(
3)

0.
21
09
23

(
8)

0.
00
69
62

(
6)

0.
00
44
44

(
5)

1.
60
17
4(

9)

F 1
3

Be
st

1.
70
E

−
12

(
2)

0.
02
39
21

(
6)

8.
00
E

−
05

(
4)

5.
23
E

−
12

(
3)

0.
00
61
45

(
5)

5.
94
E

−
18

(
1)

0.
02
52
11

(
7)

0.
12
27
58

(
9)

0.
08
05
48

(
8)

M
ea
n

4.
31
E

−
12

(
1)

0.
04
46
01

(
6)

0.
00
07
41

(
2)

0.
00
18
31

(
3)

0.
01
32
34

(
5)

0.
00
73
31

(
4)

0.
23
32
07

(
7)

0.
46
84
82

(
8)

0.
47
47
5(

9)

St
d

2.
69
E

−
12

(
1)

0.
01
28
81

(
5)

0.
00
09
69

(
2)

0.
00
41
65

(
3)

0.
00
59
65

(
4)

0.
02
57
45

(
6)

0.
18
16
59

(
7)

0.
23
85
98

(
9)

0.
22
41
47

(
8)

F 1
4

Be
st

0.
99
80
04

(
1)

0.
99
80
04

(
1)

0.
99
80
04

(
1)

0.
99
80
04

(
1)

0.
99
80
04

(
1)

0.
99
81
18

(
2)

0.
99
80
04

(
1)

0.
99
80
04

(
1)

0.
99
80
04

(
1)

M
ea
n

0.
99
80
04

(
1)

6.
81
39
74

(
7)

0.
99
80
04

(
1)

3.
45
95
39

(
5)

0.
99
80
04

(
1)

4.
08
22
77

(
6)

2.
47
57
9(

3)
3.
45
46
12

(
4)

2.
10
88
94

(
2)

St
d

0(
1)

5.
36
36
13

(
9)

4.
12
E

−
17

(
2)

2.
86
36
28

(
7)

1.
87
E

−
14

(
3)

2.
69
06
71

(
5)

2.
44
54
73

(
4)

3.
27
31
13

(
8)

2.
79
04
61

(
6)

F 1
5

Be
st

0.
00
03
52

(
3)

0.
00
04
19

(
5)

0.
00
03
07

(
1)

0.
00
03
08

(
2)

0.
00
04
01

(
4)

0.
00
12
84

(
6)

0.
00
03
08

(
2)

0.
00
03
07

(
1)

0.
00
03
07

(
1)

M
ea
n

0.
00
05
77

(
4)

0.
00
60
93

(
9)

0.
00
03
29

(
1)

0.
00
07
94

(
6)

0.
00
40
04

(
8)

0.
00
25
84

(
7)

0.
00
06
01

(
5)

0.
00
05
13

(
3)

0.
00
04
68

(
2)

St
d

0.
00
01
09

(
2)

0.
00
87
61

(
9)

4.
10
E

−
05

(
1)

0.
00
02
33

(
3)

0.
00
74
44

(
8)

0.
00
20
19

(
7)

0.
00
03
15

(
4)

0.
00
03
77

(
5)

0.
00
03
82

(
6)

F 1
6

Be
st

−
1.
03
16
28

(
1)

−
1.
03
16
28

(
1)

−
1.
03
16
28

(
1)

−
1.
03
16
28

(
1)

−
1.
03
16
28

(
1)

−
1.
03
16
28

(
1)

−
1.
03
16
28

(
1)

−
1.
03
16
28

(
1)

−
1.
03
16
28

(
1)

M
ea
n

−
1.
03
16
28

(
1)

−
0.
97
72
17

(
2)

−
1.
03
16
28

(
1)

−
1.
03
16
28

(
1)

−
1.
03
16
28

(
1)

−
1.
03
16
28

(
1)

−
1.
03
16
28

(
1)

−
1.
03
16
28

(
1)

−
1.
03
16
28

(
1)

St
d

6.
71
E

−
16

(
4)

0.
20
70
68

(
8)

6.
12
E

−
16

(
3)

6.
78
E

−
16

(
5)

3.
53
E

−
08

(
7)

5.
13
E

−
16

(
1)

3.
86
E

−
11

(
6)

6.
71
E

−
16

(
4)

5.
98
E

−
16

(
2)

F 1
7

Be
st

0.
39
78
87

(
1)

0.
39
78
87

(
1)

0.
39
78
87

(
1)

0.
39
78
87

(
1)

0.
39
78
87

(
1)

0.
39
78
87

(
1)

0.
39
78
87

(
1)

0.
39
78
87

(
1)

0.
39
78
87

(
1)

M
ea
n

0.
39
78
87

(
1)

0.
39
78
87

(
1)

0.
39
78
87

(
1)

0.
39
78
87

(
1)

0.
39
78
87

(
1)

0.
39
78
87

(
1)

0.
39
78
88

(
2)

0.
39
78
87

(
1)

0.
39
78
87

(
1)

St
d

0(
1)

9.
33
E

−
11

(
3)

0(
1)

0(
1)

4.
37
E

−
08

(
4)

0(
1)

9.
30
E

−
07

(
5)

0(
1)

1.
25
E

−
13

(
2)

F 1
8

Be
st

3(
1)

3(
1)

3(
1)

3(
1)

3(
1)

3(
1)

3(
1)

3(
1)

3(
1)

M
ea
n

3(
1)

3.
9(

3)
3(

1)
3(

1)
3.
90
01
37

(
4)

3(
1)

3.
00
00
14

(
2)

3(
1)

3(
1)

St
d

1.
27
E

−
15

(
2)

4.
92
95
03

(
9)

2.
02
E

−
15

(
5)

1.
52
E

−
15

(
3)

4.
92
94
83

(
8)

2.
67
E

−
15

(
6)

3.
80
E

−
05

(
7)

7.
82
E

−
16

(
1)

1.
66
E

−
15

(
4)

F 1
9

Be
st

−
3.
86
27
82

(
1)

−
3.
86
27
82

(
1)

−
3.
86
27
82

(
1)

−
3.
86
27
82

(
1)

−
3.
86
27
82

(
1)

−
3.
86
27
82

(
1)

−
3.
86
27
82

(
1)

−
3.
86
27
82

(
1)

−
3.
86
27
82

(
1)

M
ea
n

−
3.
86
27
82

(
1)

−
3.
86
27
82

(
1)

−
3.
86
27
82

(
1)

−
3.
86
27
82

(
1)

−
3.
86
27
82

(
1)

−
3.
86
27
82

(
1)

−
3.
86
26
28

(
2)

−
3.
86
27
82

(
1)

−
3.
86
27
82

(
1)

St
d

2.
71
E

−
15

(
6)

2.
29
E

−
15

(
1)

2.
71
E

−
15

(
6)

2.
70
E

−
15

(
5)

1.
00
E

−
06

(
7)

2.
39
E

−
15

(
2)

0.
00
03
66

(
8)

2.
66
E

−
15

(
4)

2.
51
E

−
15

(
3)

F 2
0

Be
st

−
3.
32
19
95

(
1)

−
3.
32
19
95

(
1)

−
3.
32
19
95

(
1)

−
3.
32
19
95

(
1)

−
3.
32
19
94

(
2)

−
3.
32
19
95

(
1)

−
3.
32
19
89

(
3)

−
3.
32
19
95

(
1)

−
3.
32
19
95

(
1)

M
ea
n

−
3.
32
19
89

(
2)

−
3.
27
04
75

(
6)

−
3.
32
19
95

(
1)

−
3.
28
23
64

(
5)

−
3.
30
21
7(

3)
−
3.
32
19
95

(
1)

−
3.
26
49
59

(
7)

−
3.
29
38
15

(
4)

−
3.
25
45
99

(
8)

St
d

3.
20
E

−
05

(
3)

0.
05
99
23

(
7)

1.
73
E

−
14

(
2)

0.
05
70
05

(
6)

0.
04
50
65

(
4)

1.
47
E

−
15

(
1)

0.
07
18
26

(
9)

0.
05
19
95

(
5)

0.
05
99
44

(
8)

F 2
1

Be
st

−
10
.1
53
2(

1)
−
10
.1
53
2(

1)
−
10
.1
53
2(

1)
−
10
.1
53
2(

1)
−
10
.1
53
19
9(

2)
−
10
.1
53
2(

1)
−
10
.1
53
18
1(

3)
−
10
.1
53
2(

1)
−
10
.1
53
2(

1)

M
ea
n

−
10
.0
49
11
2(

2)
−
5.
72
51
56

(
8)

−
10
.1
53
2(

1)
−
8.
06
25
79

(
6)

−
5.
40
62
65

(
9)

−
6.
04
36
04

(
7)

−
8.
88
22
56

(
4)

−
8.
88
28
41

(
3)

−
8.
46
21
51

(
5)

St
d

0.
53
14
74

(
2)

3.
32
76
02

(
7)

1.
15
E

−
09

(
1)

3.
09
12
28

(
6)

3.
67
36
77

(
9)

3.
49
59
36

(
8)

2.
37
87
58

(
3)

2.
37
88
93

(
4)

2.
68
66
26

(
5)

12 Scientific Programming

Ta
bl

e
5:

C
on

tin
ue
d.

A
L

Ru
ns

�
30
,N

�
30
,a
nd

T
�
10
00

F
ra
nk

D
E

BB
O

BS
A

PS
O

H
S

G
SA

W
O
A

W
O
A
-D

E
W
O
A
-B
SA

F 2
2

Be
st

−
10
.4
02
94
1(

1)
−
10
.4
02
94
1(

1)
−
10
.4
02
94
1(

1)
−
10
.4
02
94
1(

1)
−
10
.4
02
94

(
2)

−
10
.4
02
94
1(

1)
−
10
.4
02
92

(
3)

−
10
.4
02
94
1(

1)
−
10
.4
02
94
1(

1)

M
ea
n

−
10
.2
11
00
1(

2)
−
5.
52
95
95

(
8)

−
10
.4
02
94
1(

1)
−
9.
52
11
78

(
3)

−
6.
54
51
24

(
7)

−
10
.4
02
94
1(

1)
−
8.
44
89
55

(
4)

−
7.
76
30
89

(
6)

−
7.
96
33
2(

5)

St
d

1.
04
50
29

(
3)

3.
34
30
34

(
8)

1.
69
E

−
14

(
2)

2.
00
54
06

(
4)

3.
68
69
37

(
9)

1.
32
E

−
15

(
1)

2.
83
69
06

(
5)

3.
12
81
03

(
7)

2.
86
34
5(

6)

F 2
3

Be
st

−
10
.5
36
41

(
1)

−
10
.5
36
41

(
1)

−
10
.5
36
41

(
1)

−
10
.5
36
41

(
1)

−
10
.5
36
41

(
1)

−
10
.5
36
41

(
1)

−
10
.5
36
33
5(

2)
−
10
.5
36
41

(
1)

−
10
.5
36
41

(
1)

M
ea
n

−
10
.5
36
38
3(

2)
−
5.
85
57
53

(
8)

−
10
.5
36
41

(
1)

−
9.
16
09
3(

4)
−
5.
18
02
75

(
9)

−
10
.1
75
83
5(

3)
−
9.
00
30
07

(
5)

−
7.
99
02
87

(
7)

−
8.
64
75
63

(
6)

St
d

0.
00
01
08

(
2)

3.
65
55
94

(
9)

1.
11
E

−
09

(
1)

2.
57
04
28

(
4)

3.
32
93
07

(
8)

1.
48
54
36

(
3)

2.
59
14
15

(
5)

3.
22
58
05

(
7)

2.
73
38
22

(
6)

Ra
nk

Be
st

1
8

3
2

7
5

6
4

2
M
ea
n

2
9

1
6

8
7

5
3

4
St
d

1
9

2
6

8
3

7
4

5

Scientific Programming 13

Table 13 shows the comparison of best solutions for
artificial bee colony algorithm (ABC) [39], MBA, CSA,
WOA, WOA-DE, and WOA-BSA. From the table, we can

see that the best solutions obtained by the six algorithms are
the same (equaling to 2.7e − 12). In addition, the statistical
results of all six algorithms are shown in Table 14. WOA-DE

200 400 600 800 1000

10−150

10−100

10−50

100

Iteration

A
ve

ra
ge

 ln
 (f

∗
 −

 f m
in

)

DE
BBO
BSA

PSO
HS
GSA

WOA
WOA-DE
WOA-BSA

(a)

200 400 600 800 1000

102

104

106

108

Iteration

A
ve

ra
ge

 ln
 (f

∗
 −

 f m
in

)

DE
BBO
BSA

PSO
HS
GSA

WOA
WOA-DE
WOA-BSA

(b)

A
ve

ra
ge

 ln
 (f

∗
 −

 f m
in

)

200 400 600 800 1000

10−2

100

102

Iteration
DE
BBO
BSA

PSO
HS
GSA

WOA
WOA-DE
WOA-BSA

(c)

200 400 600 800 1000

10−10

10−5

100

Iteration

A
ve

ra
ge

 ln
 (f

∗
 −

 f m
in

)

DE
BBO
BSA

PSO
HS
GSA

WOA
WOA-DE
WOA-BSA

(d)

200 400 600 800 1000

10−15

10−10

10−5

100

Iteration

A
ve

ra
ge

 ln
 (f

∗
 −

 f m
in

)

DE
BBO
BSA

PSO
HS
GSA

WOA
WOA-DE
WOA-BSA

(e)

200 400 600 800 1000

10−4

10−3

10−2

10−1

Iteration

A
ve

ra
ge

 ln
 (f

∗
 −

 f m
in

)

DE
BBO
BSA

PSO
HS
GSA

WOA
WOA-DE
WOA-BSA

(f)

Figure 2: Convergence graphs of six functions. (a) F1. (b) F5. (c) F7. (d) F10. (e) F11. (f) F15.

14 Scientific Programming

with FEs of 940 and WOA-BSA with FEs of 1900 rank
second and fourth, respectively, among all the six compared
algorithms. (e FEs of the top one are 60 belonging to ABC.
In addition, WOA-DE and WOA-BSA have faster con-
vergence speeds than WOA from the function convergence
graphs of WOA-DE, WOA-BSA, and WOA (see Figure 10).

4.3.5. Cantilever Beam Design Problem. (e objective of
cantilever beam design problem is to minimize the weight of
a cantilever beam consisting of five hollow sections with

fixed diameters as shown in Figure 11. (e design variables
are the heights of all beam elements, and there is a constraint
that should not be violated by the final optimization design.
(e formulation of this problem is shown in Appendix A.5.

Table 15 provides the comparison results betweenWOA-
DE, WOA-BSA, WOA, MMA [40], GCAI [40], GCAII [40],
cuckoo search algorithm (CS) [41], symbiotic organisms
search (SOS) [42], and moth-flame optimization algorithm
(MOF) [43].(e results in Table 15 show that WOA-DE and
WOA-BSA can also effectively solve such problems. Con-
vergence plot using WOA-DE, WOA-BSA, and WOA for

Table 6: Parameter setting for engineering problems.

Problem N T D
(ree-bar truss 40 500 2
Pressure vessel 20 5000 4
Speed reducer 30 500 7
Gear train 20 500 4
Cantilever beam 30 1000 5
I-beam 25 500 4

l l

l x1 x1x2

P

Figure 3: (ree-bar truss design problem.

Table 7: Comparison of best solutions of the three-bar truss design problem.

Method DEDS [27] HEAA [28] PSO-DE [29] DELC [30] MBA [31] CSA [32] WOA WOA-DE WOA-BSA
X1 0.788675 0.788680 0.788675 0.788675 0.788565 0.788675 0.786042 0.788686 0.788674
X2 0.408248 0.408234 0.408248 0.408248 0.408560 0.408248 0.415745 0.408215 0.408250
g1(X) 1.77E − 08 N.A − 5.29E − 11 N.A − 5.29E − 11 − 1.69E − 14 9.88E − 07 1.00E − 06 1.00E − 06
g2(X) − 1.464102 N.A − 1.463748 N.A − 1.463748 − 1.464102 − 1.455608 − 1.464139 − 1.464099
g3(X) − 0.535898 N.A − 0.536252 N.A − 0.536252 − 0.535898 − 0.544390 − 0.535860 − 0.535900
f (X) 263.895843 263.895843 263.895843 263.895843 263.895852 263.895843 263.900852 263.895711 263.895711

Table 8: Comparison of statistical results of the three-bar truss design problem.

Method Worst Mean Best Std FEs
DEDS [27] 263.895849 263.895843 263.895843 9.7e − 07 15,000
HEAA [28] 263.896099 263.895865 263.895843 4.9e − 05 15,000
PSO-DE [29] 263.895843 263.895843 263.895843 4.5e − 10 17,600
DELC [30] 263.895843 263.895843 263.895843 4.3e − 14 10,000
MBA [31] 263.915983 263.897996 263.895852 3.93e − 03 13,280
CSA [32] 263.895843 263.895843 263.895843 1.01e − 10 25,000
WOA 266.116794 264.248699 263.900852 0.604342 20,000
WOA-DE 263.936409 263.897097 263.895711 0.007425 19,920
WOA-BSA 264.011056 263.912284 263.895711 0.028964 15,200

Scientific Programming 15

0 100 200 300 400 500
2.42

2.422

2.424

2.426

2.428

2.43

2.432

2.434

Number of iterations

M
ea

n
lo

g 1
0F

(x
)

WOA
WOA-DE
WOA-BSA

Figure 4: Convergence plots using WOA, WOA-DE, and WOA-BSA for the three-bar truss design problem.

Th

R

Ts

R

L

Figure 5: Pressure vessel design problem.

Table 9: Comparison of best solutions of the pressure vessel design problem.

Method CGA [33] DGA [34] CPSO [35] HPSO [36] CDE [37] CSA [32] WOA WOA-DE WOA-BSA
X1 0.812500 0.812500 0.812500 0.812500 0.812500 0.812500 0.812500 0.812500 0.812500
X2 0.437500 0.437500 0.437500 0.437500 0.437500 0.437500 0.437500 0.437500 0.437500
X3 40.323900 42.097400 42.091300 42.098400 42.098411 42.098445 41.825682 42.098497 42.098497
X4 200.000000 176.654000 176.746500 176.636600 176.637690 176.636599 180.046141 176.635957 176.635954
g1(X) − 3.42e − 02 − 2.01e − 03 − 1.37e − 06 − 8.80e − 07 − 6.67e − 07 − 4.02e − 09 − 0.005264 9.95E − 07 1.00E − 06
g2(X) − 5.28e − 02 − 3.58e − 02 − 3.59e − 04 − 3.58e − 02 − 3.58e − 02 − 0.035880 − 0.038483 − 0.035880 − 0.035880
g3(X) − 304.402000 − 24.759300 − 118.768700 3.122600 − 3.705123 − 7.12e − 04 − 0.000719 1.00E − 06 1.00E − 06
g4(X) − 400.000000 − 63.346000 − 63.253500 − 63.363400 − 63.362310 − 63.363401 − 59.953859 − 63.364043 − 63.364046
f (X) 6288.744500 6059.946300 6061.077700 6059.714300 6059.734000 6059.714363 6093.211997 6059.708057 6059.708025

Table 10: Comparison of statistical results of the pressure vessel design problem.

Method Worst Mean Best Std FEs
CGA [33] 6308.497000 6293.843200 6288.744500 7.413300 900,000
DGA [34] 6469.322000 6177.253300 6059.946300 130.929700 80,000
CPSO [35] 6363.804100 6147.133200 6061.077700 86.450000 240,000
HPSO [36] 6288.677000 6099.932300 6059.714300 86.200000 81,000
CDE [37] 6371.045500 6085.230300 6059.734000 43.013000 204,800
CSA [32] 7332.841621 6342.499106 6059.714363 384.945416 250,000
WOA 8564.987629 7124.412382 6093.211997 715.900580 99,940
WOA-DE 44828.494260 8946.493319 6059.708057 7565.793120 30,240
WOA-BSA 12956.012602 7114.983582 6059.708025 1679.555214 30,140

16 Scientific Programming

0 1000 2000 3000 4000 5000
3.5

4

4.5

5

5.5

6

Number of iterations

M
ea

n
lo

g 1
0F

(x
)

WOA
WOA-DE
WOA-BSA

Figure 6: Convergence plots using WOA, WOA-DE, and WOA-BSA for pressure vessel design problem.

l1

d1

d2
l2

z1 z2

Figure 7: Speed reducer design problem.

Table 11: Comparison of best solutions for the speed reducer design problem.

Method MDE [38] DEDS [27] DELC [30] HEAA [28] PSO-DE [29] MBA [31] WOA WOA-DE WOA-BSA
X1 3.500010 3.500000 3.500000 3.500023 3.500000 3.500000 3.500000 3.500000 3.500000
X2 0.700000 0.700000 0.700000 0.700000 0.700000 0.700000 0.700000 0.700000 0.700000
X3 17.000000 17.000000 17.000000 17.000013 17.000000 17.000000 1.0000007 17.000000 17.000000
X4 7.300156 7.300000 7.300000 7.300428 7.300000 7.300033 7.942261 7.300000 7.300000
X5 7.800027 7.715320 7.715320 7.715377 7.800000 7.715772 7.919344 7.715310 7.715310
X6 3.350221 3.350215 3.350215 3.350231 3.350215 3.350218 3.352296 3.350213 3.350213
X7 5.286685 5.286654 5.286654 5.286664 5.286683 5.286654 5.286722 5.286652 5.286653
f(X) 2996.356689 2994.471066 2994.47106 2994.499107 2996.348167 2994.482453 3005.192607 2994.469448 2994.469656

Table 12: Comparison of statistical results for the speed reducer design problem.

Method Worst Mean Best Std FEs
MDE [38] 2996.390137 2996.367220 2996.356689 8.2e − 03 24,000
DEDS [27] 2994.471066 2994.471066 2994.471066 3.58e − 12 30,000
DELC [30] 2994.471066 2994.471066 2994.471066 1.9e − 12 30,000
HEAA [28] 2994.752311 2994.613368 2994.499107 7.0e − 02 40,000
PSO-DE [29] 2996.348204 2996.348174 2996.348167 6.4e − 06 54,350
MBA [31] 2999.652444 2996.769019 2994.482453 1.560000 6300
WOA 3561.958300 3065.730259 3005.192607 108.307891 15,000
WOA-DE 3013.442478 2998.271376 2994.469448 4.750316 15,000
WOA-BSA 3007.155564 2997.610011 2994.469656 3.292733 15,000

Scientific Programming 17

0 100 200 300 400 500
3.45

3.5

3.55

3.6

3.65

3.7

Number of iterations

M
ea

n
lo

g 1
0F

(x
)

WOA
WOA-DE
WOA-BSA

Figure 8: Convergence plots using WOA, WOA-DE, and WOA-BSA for speed reducer design problem.

A D

B

C

Figure 9: Gear train design problem.

Table 13: Comparison of best solutions of the gear train design problem.

Method ABC [39] MBA [31] CSA [32] WOA WOA-DE WOA-BSA
X1 49.000000 43.000000 49.000000 43.000000 49.000000 43.000000
X2 16.000000 16.000000 19.000000 16.000000 19.000000 19.000000
X3 19.000000 19.000000 16.000000 19.000000 16.000000 16.000000
X4 43.000000 49.000000 43.000000 49.000000 43.000000 49.000000
f(X) 2.7e − 12 2.7e − 12 2.7e − 12 2.7e − 12 2.7e − 12 2.7e − 12

Table 14: Comparison of statistical results of the gear train design problem.

Method Worst Mean Best Std FEs
ABC [39] N.A 3.6e − 10 2.7e − 12 5.52E − 10 60
MBA [31] 2.1e − 08 2.5e − 09 2.7e − 12 3.94e − 09 1120
CSA [32] 3.2e − 08 2.06e − 09 2.7e − 12 5.1e − 09 100,000
WOA 2.73E − 08 3.26E − 09 2.7E − 12 5.97E − 09 6800
WOA-DE 4.47E − 08 4.80E − 09 2.7E − 12 9.51E − 09 940
WOA-BSA 3.98E − 08 4.03E − 09 2.7E − 12 7.40E − 09 1900

18 Scientific Programming

cantilever beam design problem (as shown in Figure 12)
indicates that WOA-DE and WOA-BSA have faster rates of
convergence, which are close to the optimal solution.

4.3.6. I-Beam Design Problem. In this problem, the goal is to
minimize the vertical deflection of the beam shown in
Figure 13. (ere are four design variables for this problem:
length (x1), height (x2), and two thicknesses (x3, x4). (e
problem includes only one optimization constraint and is
formulated in Appendix A.6.

Table 16 compares the best solutions of seven state-of-the-
art methods including adaptive response surface method
(ARSM) [44], improvedARSM (IARSM) [44], CS, SOS,WOA,
WOA-DE, and WOA-BSA for I-beam design problem. From
the results of this table, we can see that the optimal values
obtained by SOS,WOA-DE, andWOA-BSA are the same.(e
convergence plots of the three algorithms (WOA, WOA-DE,
and WOA-BSA) are shown in Figure 14. We can see that
WOA-DE and WOA-BSA have faster convergence speed.

4.4. Analysis and Discussion of Experimental Results.
Taking the experimental results on twenty-three benchmark
functions and six engineering design problems into con-
sideration simultaneously, the comprehensive performance
of the proposed hybrid framework is discussed based on
WOA-DE and WOA-BSA from three aspects, including the
solution accuracy, convergence rate, and algorithmic
robustness.

4.4.1. Discussion of the Solution Accuracy. (e Best values in
the above tables can reflect the solution accuracy of an al-
gorithm in solving twenty-three benchmark functions and six
engineering design problems. (e smaller the Best values, the
better the solution accuracy. On the one hand, compared with
eight algorithms on twenty-three benchmark functions,
WOA-DE ranks first among seven unimodal functions;
however, it ranks fourth among multimodal functions, which
means that WOA-DE is not competitive enough for more
complex functions. WOA-BSA ranks second for both uni-
modal functions (except WOA-DE) and multimodal func-
tions (except DE). (is shows that WOA-BSA is competitive
in solving function optimization problems. On the other
hand, compared with some state-of-the-art algorithms on
engineering design problems, WOA-DE can find out the
current best optimal solutions in four problems, including
three-bar truss design problem, speed reducer design prob-
lem, gear train design problem, and I-beam design problem.
WOA-BSA can obtain the current best feasible solutions in
four engineering problems. All the above experimental results
indicate that the proposed hybrid framework has excellent
performance with respect to solution accuracy.

4.4.2. Discussion of the Convergence Rate. (e FE values
reflect the computational overhead of an algorithm when
finding out the best solution of an optimization problem. (e
smaller the computational overhead of an algorithm, the faster
the convergence rate. On the one hand, when solving the six

0 100 200 300 400 500
−9

−8

−7

−6

−5

−4

−3

−2

Number of iterations

M
ea

n
lo

g 1
0F

(x
)

WOA
WOA-DE
WOA-BSA

Figure 10: Convergence plots using WOA, WOA-DE, and WOA-BSA for gear train design problem.

1 2 3 4 5

xi

xiConstant
thickness

Figure 11: Cantilever beam design problem.

Scientific Programming 19

engineering design problems, although the FEs by WOA-DE
are not the smallest, its ranking among all compared algo-
rithms is competitive. (e convergence speed of WOA-BSA,
compared withWOA-DE and originalWOA, is far faster than
the original WOA. On the other hand, when solving the
twenty-three benchmark functions, all the compared algo-
rithms search within the same FE limit. At this time, the
convergence rate of the compared algorithms can be reflected
by the trend of the convergence curves. As illustrated in
Figure 2, WOA-BSA and WOA-DE have better performance
in convergence rate when compared with other algorithms.

4.4.3. Discussion of the Algorithmic Robustness. (e Mean
and Std values in the above tables can reflect the robustness

of an algorithm. (e smaller the Mean and Std values, the
higher the robustness of an algorithm. On the one hand, on
twenty-three benchmark functions, the Mean and Std values
of WOA-DE rank third in unimodal functions and rank
third and fourth in multimodal functions, respectively, while
the ranking of the Mean and Std values obtained by WOA-
BSA is fourth and fifth for unimodal functions, respectively.
For multimodal functions, the ranking of WOA-BSA is the
first for the Mean and Std values, which indicates that the
algorithm has strong robustness. On the other hand, on six
engineering problems, unfortunately, the Mean and Std
values obtained by WOA-DE are mediocre, while the per-
formance of WOA-BSA on Mean and Std values of 30 run
times is also not competitive enough. All in all, theWOA-DE
and WOA-BSA have better overall performance in terms of
robustness, but there is still much room for improvement.

From the analysis of results based on the above two sets
of experiments on WOA-DE and WOA-BSA, we can
provide insight into the following two characteristics about
the proposed algorithm framework. Firstly, the proposed
framework is an effective and generic technique for
function optimization and engineering constrained prob-
lems. Secondly, the overall performance of the framework
is outstanding, but there is still space to improve its
robustness.

0 200 400 600 800 1000
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of iterations

M
ea

n
lo

g 1
0F

(x
)

WOA
WOA-DE
WOA-BSA

Figure 12: Convergence plots using WOA, WOA-DE, and WOA-BSA for cantilever beam design problem.

Table 15: Comparison results for cantilever design problem.

Method x1 x2 x3 x4 x5 f(X)

MMA [40] 6.010000 5.300000 4.490000 3.490000 2.150000 1.340000
GCAI [40] 6.010000 5.300000 4.490000 3.490000 2.150000 1.340000
GCAII [40] 6.010000 5.300000 4.490000 3.490000 2.150000 1.340000
CS [41] 6.008900 5.304900 4.502300 3.507700 2.150400 1.339990
SOS [42] 6.018780 5.303440 4.495870 3.498960 2.155640 1.339960
MFO [43] 5.984872 5.316727 4.497333 3.513616 2.161620 1.339988
WOA 5.649936 5.132520 4.730823 3.669160 2.462567 1.350648
WOA-DE 5.776867 5.139076 4.972515 3.507170 2.197960 1.347440
WOA-BSA 5.848097 5.461858 4.480823 3.482342 2.223440 1.341385

P

h

b

tf
twL

Figure 13: I-beam design problem.

20 Scientific Programming

5. Conclusion

(e original WOA is easy to fall into local optimum when it
carries out the operation of prey encircling. To address this
issue, a hybrid algorithm framework with learning and
complementary fusion features for WOA called hWOAlf is
proposed in this paper. First, a learning parameter lp

according to adaptive adjustment operator is proposed to
balance exploration and exploitation capability. Further-
more, the proposed hybrid algorithm framework called
hWOAlf takes advantage of the complementary fusion
feature operator to enhance the exploration capability of
WOA. Two new algorithms, WOA-DE and WOA-BSA, are
formed by embedding the DE/rand/1 operator of DE and the
mutate operator intoWOA, respectively.(e effectiveness of
the proposed hWOAlf framework is exhaustively demon-
strated through comparing WOA-DE and WOA-BSA with
some state-of-the-art optimization algorithms on twenty-
three continuous benchmark functions and six engineering
design problems.

In the future, there are two further studies to be done;
on the one hand, better parameter tuning strategies can be
developed to balance the exploration and exploitation
capabilities of WOA; on the other hand, more meta-
heuristics are expected to be added to the proposed hybrid
framework.

Appendix

A. Engineering Design Problems

A.1. >ree-Bar Truss Design Problem.

minf(x) � 2
�
2

√
x1 + x2(􏼁 × l,

subject to :

g1(x) �

�
2

√
x1 + x2�

2
√

x2
1 + 2x1x2

P − σ ≤ 0,

g2(x) �
x2�

2
√

x2
1 + 2x1x2

P − σ ≤ 0,

g3(x) �
1

�
2

√
x2 + x1

P − σ ≤ 0,

0≤xi ≤ 1, i � 1, 2,

l � 100 cm,

P � 2 kN/cm2
,

σ � 2 kN/cm2
.

(A.1)

Table 16: Comparison results for I-beam design problem.

Method x1 x2 x3 x4 f(X)

ARSM [44] 37.050000 80.000000 1.710000 2.310000 0.015700
IARSM [44] 48.420000 79.990000 0.900000 2.400000 0.131000
CS [41] 50.000000 80.000000 0.900000 2.321675 0.013075
SOS [42] 50.000000 80.000000 0.900000 2.32179 0.013074
WOA 44.000000 80.000000 0.900815 2.644304 0.0131734
WOA-DE 50.000000 80.000000 0.900000 2.321792 0.013074
WOA-BSA 50.000000 80.000000 0.900000 2.321792 0.013074

0 100 200 300 400 500
−1.88

−1.86

−1.84

−1.82

−1.8

−1.78

−1.76

Number of iterations

M
ea

n
lo

g 1
0F

(x
)

WOA
WOA-DE
WOA-BSA

Figure 14: Convergence plots using WOA, WOA-DE, and WOA-BSA for I-beam design problem.

Scientific Programming 21

A.2. Pressure Vessel Design Problem.

minf(x) � 0.6224x1x3x4 + 1.7781x2x
2
3

+ 3.1661x
2
1x4 + 19.84x

2
1x3,

subject to :

g1(x) � − x1 + 0.0193x3 ≤ 0,

g2(x) � − x2 + 0.00954x3 ≤ 0,

g3(x) � − πx
2
3x4 − (4/3)πx

3
3 + 1,296,000≤ 0,

g4(x) � x4 − 240≤ 0,

0≤xi ≤ 100, i � 1, 2,

10≤ xi ≤ 200, i � 3, 4.

(A.2)

A.3. Speed Reducer Design Problem.

minf(x) � 0.7854x1x
2
2 3.3333x

2
3 + 14.9334x3 − 43.0934􏼐 􏼑 − 1.508x1 x

2
6 + x

2
7􏼐 􏼑

+ 7.4777 x
3
6 + x

3
7􏼐 􏼑 + 0.7854 x4x

2
6 + x5x

2
7􏼐 􏼑,

subject to :

g1(x) �
27

x1x
2
2x3

− 1≤ 0,

g2(x) �
397.5

x1x
2
2x

2
3

− 1≤ 0,

g3(x) �
1.93x3

4
x2x

4
6x3

− 1≤ 0,

g4(x) �
1.93x3

5
x2x

4
7x3

− 1≤ 0,

g5(x) �
745x4/ x2x3(􏼁(􏼁

2
+ 16.9 × 106􏽨 􏽩

1/2

110x3
6

− 1≤ 0,

g6(x) �
745x5/ x2x3(􏼁(􏼁

2
+ 157.5 × 106􏽨 􏽩

1/2

85x3
7

− 1≤ 0,

g7(x) �
x2x3

40
− 1≤ 0,

g8(x) �
5x2

x1
− 1≤ 0,

g9(x) �
x1

12x2
− 1≤ 0,

g10(x) �
1.5x6 + 1.9

x4
− 1≤ 0,

g11(x) �
1.1x7 + 1.9

x5
− 1≤ 0,

(A.3)

22 Scientific Programming

where

2.6≤ x1 ≤ 3.6,

0.7≤ x2 ≤ 0.8,

17≤ x3 ≤ 28,

7.3≤ x4, x5 ≤ 8.3,

2.9≤ x6 ≤ 3.9,

5.0≤ x7 ≤ 5.5.

(A.4)

A.4. Gear Train Design Problem.

minf(x) �
1

6.931
−

x3x2

x1x4
􏼠 􏼡

2

,

subject to :

12≤ x1, x2, x3, x4 ≤ 60.

(A.5)

A.5. Cantilever Beam Design Problem.

minf(x) � 0.6224 x1 + x2 + x3 + x4 + x5,(􏼁,

subject to :

g1(x) �
61
x3
1

+
27
x3
2

+
19
x3
3

+
7
x3
4

+
1
x3
5

− 1≤ 0,

0.01≤ x1, x2, x3, x4, x5 ≤ 100.

(A.6)

A.6. I-Beam Design Problem.

minf(x) �
5000

x3 x2 − 2x4(􏼁
3/12􏼐 􏼑 + x1x

3
4(􏼁/6(􏼁 + 2x1x4 x2 − x4(􏼁/2(􏼁

2,

subject to :

g1(x) � 2x1x3 + x3 x2 − 2x4(􏼁≤ 300,

g2(x) �
180,000x2

x3 x2 − 2x4(􏼁
3

+ 2x1x4 4x2
4 + 3x2 x2 − 2x4(􏼁(􏼁

+
15,000x1

x2 − 2x4(􏼁x3
3 + 2x3x

3
1
≤ 6,

10≤ x1 ≤ 50, 10≤x2 ≤ 80,0.9≤x3 ≤ 5, 0.9≤ x4 ≤ 5.

(A.7)

Data Availability

(e data used to support the findings of this study are in-
cluded within the article. In addition, in order to better share
the research results, the LaTeX codes related to the data are
available from the corresponding author upon request.

Conflicts of Interest

(e author declares that there are no conflicts of interest.

References

[1] J. H. Holland, Adaptation in Natural and Artificial Systems:
An Introductory Analysis with Applications to Biology, Con-
trol, and Artificial Intelligence, MIT Press, Cambridge, MA,
USA, 1992.

[2] R. Storn and K. Price, “Differential evolution Ca simple and
efficient heuristic for global optimization over continuous
spaces,” Journal of Global Optimization, vol. 11, no. 4,
pp. 341–359, 1997.

[3] D. Simon, “Biogeography-based optimization,” IEEE Trans-
actions on Evolutionary Computation, vol. 12, no. 6,
pp. 702–713, 2008.

[4] P. Civicioglu, “Backtracking search optimization algorithm
for numerical optimization problems,” Applied Mathematics
and Computation, vol. 219, no. 15, pp. 8121–8144, 2013.

[5] Z. Hu, X. Xu, Q. Su, H. Zhu, and J. Guo, “Grey prediction
evolution algorithm for global optimization,” Applied
Mathematical Modelling, vol. 79, no. 79, pp. 145–160, 2020.

[6] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in
Proceedings of the ICNN’95 - International Conference on
Neural Networks, IEEE, Perth, Australia, November 1995.

[7] D. Karaboga, An Idea Based on Honey Bee Swarm for Nu-
merical Optimization, Technical Report-tr06, Erciyes Uni-
versity, Engineering Faculty, Computer Engineering
Department, Kayseri, Turkey, 2005.

[8] X. S. Yang and S. Deb, “Cuckoo search via Lvy flights,” in
Proceedings of the World Congress on Nature & Biologically
Inspired Computing (NaBIC), pp. 210–214, IEEE, Kitakyushu,
Japan, December 2009.

[9] S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey wolf opti-
mizer,” Advances in Engineering Software, vol. 69, pp. 46–61,
2014.

[10] S. Mirjalili and A. Lewis, “(e whale optimization algorithm,”
Advances in Engineering Software, vol. 95, pp. 51–67, 2016.

[11] B. Bentouati, L. Chaib, and S. Chettih, “A hybrid whale al-
gorithm and pattern search technique for optimal power flow
problem,” in Proceedings of the International Conference on

Scientific Programming 23

Modelling, Identification and Control (ICMIC), pp. 1048–
1053, IEEE, Dubai, UAE, 2016.

[12] G. Xiong, J. Zhang, X. Yuan, D. Shi, Y. He, and G. Yao,
“Parameter extraction of solar photovoltaic models by means
of a hybrid differential evolution with whale optimization
algorithm,” Solar Energy, vol. 176, pp. 742–761, 2018.

[13] J. Luo and B. Shi, “A hybrid whale optimization algorithm
based on modified differential evolution for global optimi-
zation problems,” Applied Intelligence, vol. 49, no. 5,
pp. 1982–2000, 2019.

[14] M. M. Mafarja and S. Mirjalili, “Hybrid whale optimization
algorithm with simulated annealing for feature selection,”
Neurocomputing, vol. 260, pp. 302–312, 2017.

[15] I. N. Trivedi, P. Jangir, A. Kumar, N. Jangir, and R. Totlani, “A
novel hybrid PSO-WOA algorithm for global numerical
functions optimization,” Advances in Computer and Com-
putational Sciences, pp. 53–60, 2018.

[16] A. N. Jadhav and N. Gomathi, “WGC: hybridization of ex-
ponential grey wolf optimizer with whale optimization for
data clustering,” Alexandria Engineering Journal, vol. 57,
no. 3, pp. 1569–1584, 2018.

[17] Z. Xu, Y. Yu, H. Yachi, J. Ji, Y. Todo, and S. Gao, “A novel
memetic whale optimization algorithm for optimization,”
Lecture Notes in Computer Science, pp. 384–396, 2018.

[18] A. Kaveh and M. Rastegar Moghaddam, “A hybrid WOA-
CBO algorithm for construction site layout planning prob-
lem,” Scientia Iranica, vol. 25, no. 3, pp. 1094–1104, 2018.

[19] S. Khalilpourazari and S. Khalilpourazary, “SCWOA: an ef-
ficient hybrid algorithm for parameter optimization of multi-
pass milling process,” Journal of Industrial and Production
Engineering, vol. 35, no. 3, pp. 135–147, 2018.

[20] N. Singh and H. Hachimi, “A new hybrid whale optimizer
algorithmwith mean strategy of grey wolf optimizer for global
optimization,” Mathematical and Computational Applica-
tions, vol. 23, no. 1, p. 14, 2018.

[21] M. Abdel-Basset, G. Manogaran, D. El-Shahat, and
S. Mirjalili, “A hybrid whale optimization algorithm based on
local search strategy for the permutation flow shop scheduling
problem,” Future Generation Computer Systems, vol. 85,
pp. 129–145, 2018.

[22] N. M. Laskar, K. Guha, I. Chatterjee, S. Chanda,
K. L. Baishnab, and P. K. Paul, “HWPSO: a new hybrid whale-
particle swarm optimization algorithm and its application in
electronic design optimization problems,” Applied Intelli-
gence, vol. 49, no. 1, pp. 265–291, 2019.

[23] H. Wang, Z. Hu, Y. Sun et al., “Modified backtracking search
optimization algorithm inspired by simulated annealing for
constrained engineering optimization problems,” Computa-
tional Intelligence and Neuroscience, vol. 2018, Article ID
9167414, 27 pages, 2018.

[24] Z. Li, Z. Hu, Y. Miao et al., “Deep-mining backtracking search
optimization algorithm guided by collective wisdom,”
Mathematical Problems in Engineering, vol. 2019, Article ID
2540102, 2019.

[25] H. Wang, Z. Hu, Y. Sun, Q. Su, and X. Xia, “A novel modified
BSA inspired by species evolution rule and simulated
annealing principle for constrained engineering optimization
problems,” Neural Computing and Applications, vol. 31, no. 8,
pp. 4157–4184, 2019.

[26] Z. Hu, Q. Su, X. Yang, and Z. Xiong, “Not guaranteeing
convergence of differential evolution on a class of multimodal
functions,” Applied Soft Computing, vol. 41, pp. 479–487,
2016.

[27] M. Zhang, W. Luo, and X. Wang, “Differential evolution with
dynamic stochastic selection for constrained optimization,”
Information Sciences, vol. 178, no. 15, pp. 3043–3074, 2008.

[28] Y. Wang, Z. Cai, Y. Zhou, and Z. Fan, “Constrained opti-
mization based on hybrid evolutionary algorithm and
adaptive constraint-handling technique,” Structural and
Multidisciplinary Optimization, vol. 37, no. 4, pp. 395–413,
2009.

[29] H. Liu, Z. Cai, and Y. Wang, “Hybridizing particle swarm
optimization with differential evolution for constrained nu-
merical and engineering optimization,” Applied Soft Com-
puting, vol. 10, no. 2, pp. 629–640, 2010.

[30] L. Wang and L.-p. Li, “An effective differential evolution with
level comparison for constrained engineering design,”
Structural and Multidisciplinary Optimization, vol. 41, no. 6,
pp. 947–963, 2010.

[31] A. Sadollah, A. Bahreininejad, H. Eskandar, and M. Hamdi,
“Mine blast algorithm: a new population based algorithm for
solving constrained engineering optimization problems,”
Applied Soft Computing, vol. 13, no. 5, pp. 2592–2612, 2013.

[32] A. Askarzadeh, “A novel metaheuristic method for solving
constrained engineering optimization problems: Crow search
algorithm,” Computers & Structures, vol. 169, pp. 1–12, 2016.

[33] C. A. C. Coello, “Use of a self-adaptive penalty approach for
engineering optimization problems,” Computers in Industry,
vol. 41, no. 2, pp. 113–127, 2000.

[34] C. A. C. Coello and E. M. Montes, “Constraint-handling in
genetic algorithms through the use of dominance-based
tournament selection,” Advanced Engineering Informatics,
vol. 16, no. 3, pp. 193–203, 2002.

[35] Q. He and L. Wang, “An effective co-evolutionary particle
swarm optimization for constrained engineering design
problems,” Engineering Applications of Artificial Intelligence,
vol. 20, no. 1, pp. 89–99, 2007.

[36] Q. He and L. Wang, “A hybrid particle swarm optimization
with a feasibility-based rule for constrained optimization,”
Applied Mathematics and Computation, vol. 186, no. 2,
pp. 1407–1422, 2007.

[37] F.-z. Huang, L. Wang, and Q. He, “An effective co-evolu-
tionary differential evolution for constrained optimization,”
Applied Mathematics and Computation, vol. 186, no. 1,
pp. 340–356, 2007.

[38] E. Mezura-Montes, C. A. C. Coello, and J. Velzquez-Reyes,
“Increasing successful offspring and diversity in differential
evolution for engineering design,” in Proceedings of the
Seventh International Conference on Adaptive Computing in
Design andManufacture, pp. 131–139, Bristol, UK, April 2006.

[39] B. Akay and D. Karaboga, “Artificial bee colony algorithm for
large-scale problems and engineering design optimization,”
Journal of Intelligent Manufacturing, vol. 23, no. 4,
pp. 1001–1014, 2012.

[40] H. Chickermane and H. C. Gea, “Structural optimization
using a new local approximation method,” International
Journal for Numerical Methods in Engineering, vol. 39, no. 5,
pp. 829–846, 1996.

[41] A. H. Gandomi, X.-S. Yang, and A. H. Alavi, “Cuckoo search
algorithm: a metaheuristic approach to solve structural op-
timization problems,” Engineering with Computers, vol. 29,
no. 1, pp. 17–35, 2013.

[42] M.-Y. Cheng and D. Prayogo, “Symbiotic organisms search: a
new metaheuristic optimization algorithm,” Computers &
Structures, vol. 139, pp. 98–112, 2014.

24 Scientific Programming

[43] S. Mirjalili, “Moth-flame optimization algorithm: a novel
nature-inspired heuristic paradigm,” Knowledge-Based Sys-
tems, vol. 89, pp. 228–249, 2015.

[44] G. G. Wang, “Adaptive response surface method using
inherited Latin hypercube design points,” Journal of Me-
chanical Design, vol. 125, no. 2, pp. 210–220, 2003.

Scientific Programming 25

