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Most of the existing knowledge graph embedding models are supervised methods and largely relying on the quality and quantity
of obtainable labelled training data. The cost of obtaining high quality triples is high and the data sources are facing a serious
problem of data sparsity, which may result in insufficient training of long-tail entities. However, unstructured text encoding
entities and relational knowledge can be obtained anywhere in large quantities. Word vectors of entity names estimated from the
unlabelled raw text using natural language model encode syntax and semantic properties of entities. Yet since these feature vectors
are estimated through minimizing prediction error on unsupervised entity names, they may not be the best for knowledge graphs.
We propose a two-phase approach to adapt unsupervised entity name embeddings to a knowledge graph subspace and jointly
learn the adaptive matrix and knowledge representation. Experiments on Freebase show that our method can rely less on the
labelled data and outperforms the baselines when the labelled data is relatively less. Especially, it is applicable to zero-shot scenario.

1. Introduction

There are various knowledge graphs constructed with great
effort, such as Freebase [1] and WordNet [2], which have
become the fundamental techniques for many intelligent
applications such as web search and question answering [3].
However, the validity and integrity of the knowledge graphs
cannot always be guaranteed. For instance, Freebase [1]
currently contains entities over 80 million and thousands of
relations as well as obtaining billions of facts about these
entities. However, obviously, these are still only a small part
of all human knowledge. In fact, the ability of Q&A system
engine based on knowledge graphs is limited if it could not
infer and fill in the missing facts from the obtained
knowledge. Therefore, knowledge reasoning methods pre-
dicting new facts only based on the knowledge existing in
knowledge graphs are desired. It is a key compensation for
extracting relations from flat text.

Knowledge representation is the basis of knowledge
reasoning. For example, using graph-based knowledge

representation, to compute or infer a semantic relationship
between entities needs to design specific graph-based algo-
rithms. Knowledge graphs represent entities as nodes and
relations as different types of edges in the form of a triple (head
entity, relation, tail entity) [4]. Graph-based knowledge rep-
resentation is facing many challenges, e.g., computing effi-
ciency and data sparseness. In recent years, great progress has
been made in the knowledge representation learning method
based on embedding technology [5]. Embedding learning is to
represent the entities and relations in knowledge graphs as low-
dimensional dense real value vectors and embed the knowledge
graph into a continuous vector space while keeping the
structure characteristic of knowledge graphs [6]. Usually, in
this low-dimensional dense real value vector space, the nearer
the distance of two vectors, the higher the similarity of their
semantics. Since the semantic relation of entities and relations
can be calculated in the low-dimensional space in a highly
efficient way and the problem of data sparseness can be re-
solved dramatically, the performance of knowledge extracting,
fusion, and reasoning is greatly improved.
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Most of the existing embedding learning methods are
supervised methods and generally use the obtained struc-
tured knowledge to train models [7, 8]. The success of the
supervised system largely depends on the quantity and
quality of obtainable training data; it is sometimes even more
important than the choice of specific learning algorithms.
The cost of obtaining high quality structured knowledge is
high and the knowledge graph obtained is facing a serious
problem of data sparseness. Long-tail entities cannot be
efficiently trained. On the other hand, unstructured text data
involving relevant entities and relations information can be
obtained easily in large quantities. Word vector represen-
tations of entity names can be obtained through cooccur-
rence mode of words in large quantities of an unlabelled text
corpus. The word vectors estimated from the raw text
through the natural language model are the low-dimensional
dense vectors containing syntax and semantic attributes of
words [9]. Therefore, since these vectors are obtained by
minimizing the prediction errors in the common unsu-
pervised tasks, they might not be the best for knowledge
graphs.

This paper proposes a knowledge representation learn-
ing approach in which the unsupervised word vectors are
adapted to knowledge graph subspaces with a small number
of labelled data. The intuition behind our approach is the
following. For a specific task, only partial latent aspects
captured by the word vectors will be useful. Hence, instead of
updating the word vectors directly with available labelled
data, we estimate a projection of these vectors into a low-
dimensional subspace. This simple method has two key
advantages. One is that we get low-dimensional vectors,
which are suitable for complex knowledge representation
learning tasks. Another is that we can learn new vectors of all
entities even if they are missing in labelled data.

2. Related Work

2.1. Structure-Based Knowledge Embedding.
Structure-based embedding learning models learn the entity
and relation vector representations through structure in-
formation located in triples of the knowledge graph. Most
existing embedding methods belong to this category.

Most methods of this kind have been designed within the
framework of relational learning from latent features by
operating on latent representations of entities and relations,
such as models based on collective matrix factorization
[10, 11] or tensor factorization [7, 12, 13]. Many approaches
have focused on increasing the expressivity and the gen-
erality of the model in energy-based frameworks for learning
embeddings of entities in low-dimensional spaces [14-16].
The greater expressivity of these models comes at the ex-
pense of substantial increases in model complexity and in
higher computational costs.

Compared to the early embedding models, TransE [8] is
simpler and more effective. TransE regards the relations in
the knowledge graph as certain translation vectors. For a
triple (h, , t), where h represents a head entity, and r is a
relationship that connects h to a tail entity t. TransE use
relation vector r as the translation between the head entity
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vector h and the tail entity vector t. Therefore, TransE is also
referred to as translation model. The basic idea of this model
is to treat relation r as the translation between entities as-
sociated with r. If relation (h, r, t) is established, h+r=t in
the vector space, that is t should be the closest vector of h +r.
Otherwise, h +r should be far away from t.

Later knowledge embedding learning models are mostly
the extension based on TransE, such as TransH [17], TransR
[18], TransD [19], and TransA [20]. PTransE [21] proposes a
multiple-step relation path based representation learning
model. TranSparse [22] deal with the heterogeneity and the
imbalance of knowledge graphs with adaptive sparse ma-
trices. The recently proposed ProjE [23] achieves the state-
of-the-art performance of this branch with relatively less
model parameters.

Luo et al. [24] propose a two-stage embedding scheme to
improve the performance of structure-based embedding
models, such as TransE, SME, and SE. It first uses a word
embedding model to learn initial embeddings of entities and
relations from relation paths, viewing entities and relations
in the path as pseudowords. RDF2Vec [25], metapath2vec
[26] and Hussein et al. [27] transform the graph data into
sequences of entities and use unsupervised language model
to learn entity representations considering sequences of
entities as sentences. However, these method still only utilize
the structure information. Recently, Dettmers et al. [28]
introduce a multilayer convolutional network model,
ConvE, for link prediction, which uses 2D convolution over
embeddings and multiple layers of nonlinear features to
model knowledge graphs.

2.2. Knowledge Embedding With Multisources Information.
Structure-based knowledge embedding learning models
only utilize the triple structure information of the knowledge
graph and a large amount of other related information are
not efficiently used yet, such as the descriptions and cate-
gories of entities and relations.

There are some studies on using the above information
to learn knowledge representation. NTN [7] represents an
entity as the average of its word embeddings in entity name.
Wang et al. [29] align the embeddings of entities and words
in the same space by utilizing entity names and Wikipedea
anchors. Recently, DKRL [30] extends TransE considering
text information of entity descriptions provided by
knowledge bases (i.e., knowledge graph), and building entity
vector representations with CNN model based on entity
descriptions, which can model the word sequence infor-
mation in text. When a new entity that is not in the
knowledge base occurs, DKRL can generate entity vector
based on its simple description. SSP model recently pro-
posed by Xiao et al. [31] learned entity semantic vectors from
entity description text by using topic model, then projected
the structural loss to the semantic space codetermined by the
head entity and tail entity to learn vector representations of
entities and relations. The learning process of SSP model is
more closely related to text information.

Most of the above models mainly use the text infor-
mation of entity names and entity descriptions. This limits
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the use of abundant unstructured text information in the
Web.

3. Knowledge Representation Learning
Based on Subspace Projection

Some work [7, 29-31] shows that learning knowledge
representation through fusing multisource information can
efficiently improve the performance of knowledge repre-
sentations. Abundant Web text contains large quantity of
unstructured knowledge related to entities. Word embed-
ding is a kind of useful unsupervised technology and it can
offer a simplified real value vector representation for each
word from unlabelled free text. We use word embedding
technology to obtain vector representations of entity names
from abundant Web text and then adapt these vectors to a
subspace which is suitable for representations of entities in
the knowledge graph through projection. Therefore,
knowledge representation learning can be divided into two
stages: unsupervised estimation of entity name vectors and
jointly supervised learning of the subspace adaptive matrix
and the knowledge representation.

3.1. Estimation of Unsupervised Entity Vectors. We obtain
vector representations of entity names in knowledge graphs
from unlabelled Web text through unsupervised word vector
learning technology and regard it as the initial vector rep-
resentation estimations of entities. Word vectors are usually
trained through optimizing an objective function with
unlabelled data [9, 32-34]. CBOW [34] and skip-gram [9]
learn word vectors capturing many syntactic and semantic
relations between words. Thus, in this study we use skip-
gram [9] to learn the word vector representations of entity
names.

Given a sequence of training words w,, w,, ..., wy, the
optimizing objective of skip-gram is to maximize the average
log probability:

1 T
T Z Z log P(ij
T t=1

=1-c<j<c j#0

w,), (1)

where c is the size of training context and p(w,;|w,) is
defined using softmax function:

T
exp ( Vwo le )

w rr
szl exp(vw le)

where v,, is the vector representation of word w and W is the
number of words in the vocabulary.

The same as other majority of neural network model,
skip-gram adopts a training method based on gradient
descent. The trained model, embedding vectors v,, € R,
encloses information of each word w and the context around
it. Therefore, these vectors can be used as input of other
learning algorithms to improve performances further.

p(wo | wy) = , (2)

3.2. Embedding Knowledge Graphs into Subspaces. As pre-
viously mentioned, word embedding is a kind of useful

unsupervised technology to obtain the initial feature vector
of entity names before supervised training. These initial
vector representations can be retrained with obtainable la-
belled data. However, the knowledge graph has serious
problem of data sparseness. The quantity of entities in the
database is large; however the quantity of high quality triple
data related to each entity that can be obtained is relatively
small with high cost. Only small quantity of supervised data
causes serious overfitting. Furthermore, it is likely that only a
subset of entities appears in the training triples and the
vector representations of the entities missing in the training
triples will never be updated. We propose a simple solution
to avoid this problem.

We use WE € R®Y to denote the initial entity vector
matrix obtained by skip-gram as stated in the previous
section. We define the adapted embedding matrix W# in
subspace as the following factorization:

wA = ws . wE, (3)

where WS € R, s < e. Next, we estimate parameters of the
matrix WS by using the triples (labelled dataset) in the
knowledge graph and keep WE fixed. That is to say, we find
the best mapping matrix WS that projects the initial vector
matrix WE into the subspace with dimension s.

The idea of embedding knowledge graphs into a sub-
space is based on the following two key principles: (1) With
reduction of embedding dimension, the model can better fit
the complexity of the knowledge graph task and the amount
of obtainable labelled data. (2) Through projection, all the
entity vectors are indirectly updated, not only those of
entities that appear in training triples.

3.3. Jointly Supervised Learning of Subspace Adaptive Matrix
and Knowledge Representation

3.3.1. Jointly Learning Model. After obtaining the initial
vectors of entities, we use a supervised model to jointly learn
the projection matrix and knowledge representation in
subspace based on the idea of subspace projection. The
jointly learning model utilizes the structure information of
triples existing in the knowledge graph.

The concept of embedding subspace can be applied to
any structure-based knowledge representation learning
models. Since currently ProjE gains the best performance in
relation to reasoning task and the parameters are relatively
less, we use this model together with the thought of em-
bedding subspace as a supervised training model. This
method is hereinafter referred to as sub-ProjE. Let n,, n,, e
and s be, respectively, the number of entities, relations,
unsupervised entity vector dimension, and subspace di-
mension. The number of parameters of ProjE is
n, X s+n, x s+ 5s. The number of parameters of sub-ProjE
is s x e +mn, x s+ 5s. Since e < n,, the parameter size of sub-
ProjE is much smaller than that of ProjE.

We consider the relation reasoning as an entity ranking
problem, which takes a partial triple as input and produces a
ranked list of candidate entities as output.



Definition 1. (entity ranking problem). Given a knowledge
graph ¢ = {E,R} and an input tripe (h, r, ?), the entity
ranking problem attempts to find the optimal ordered list
such that Ve Ve;((e;€ E_Ne; € E,) — ei<e]-), where
E, ={ec{e,e,....e}l (hre) € g},

E &ee{{em,em, ..,e|E|}| (h,r,e) ¢g}.

Similarly, we can easily substitute (h, r, ?) for (3, 7, t). The
key thought of ProjE is as follows: given two input vectors,
regard prediction task as a ranking problem, keep the target
of optimizing as the overall order of candidate entities, in
which the entities in the front are correct entities. To gen-
erate this ordered list, we project each candidate vector to the
objective vector defined by a combination operator and two
input vectors. The combination operator is defined as
follows:

edr=D,e+D,r+b, (4)

where e and r are the representations of entities and relations
in embedding space, s is the dimension of the embedding
space, D, and D, is the diagonal matrix of s x s, which serve
as global entity and relation weights, respectively, b, € R® is
the combination bias.

With this combination operator, we can define vector
project function as follows:

h(er) = g(Wf(ear) +b,), (5)
where f and g are activation functions, W° € R® is the
candidate entity matrix, b, is the projection bias, and c is the
quantity of candidate entities. h(e, r) represents the ranking
score vector, in which each element represents the similarity
between candidate entity in W¢ and the combined input
vector.

WF is the candidate entity matrix which contains ¢ rows
that exist in the entity vector matrix WE (i.e., WS . WE in
knowledge graph subspace). So, W¢ does not introduce any
new variables into the model. The model can be regarded as a
neural network that contains an entity vector projection
layer, a combination layer, and an output projection layer.
Figure 1 explains the architecture of this model through an
example with input (?, City Of, Illinois). Given a tail entity
Illinois and a relation City Of, our task is to calculate the
scores of each head entity. In order to make it clear, we only
demonstrate two candidate entities in Figure 1. However, in
fact W may contain candidate entities of any quantity.

Compared to a conventional knowledge embedding
model, this model has two main differences. First, the input
layer is factorized into two components, the initial vector
representations attained in unsupervised stage, W¥, and the
projection matrix WS, Second, the size of the subspace, in
which the initial vectors are projected, is much smaller than
that of the initial embedding space with typical reductions
above one order of magnitude. Same as the usual neural
network model, all the parameters can be trained with
gradient descent methods through backpropagation.

3.3.2. Ranking Method and Loss Function. Following ProjE,
we construct a binary label vector, in which all entities in E_
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have a value of 0 and all entities in E, have a value of 1, then
maximize the likelihood between ranking score vector h(e, r)
and the binary label vector. The loss function is defined as
follows:

Iyl 1( 1_1
Z y _1)

where e and r are the vector representation of input training
sample, y € R®is the binary label vector, where y; = 1 means
candidate entity i is positive, the objective probability of a
positive candidate (objective value) is 1 divided by the total
number of positive candidates. We regard softmax and tanh
function as g(-) and f(-), respectively, then the ranking
score of the ith candidate entity is as follows:

L(er,y) = log(h (e, r),), (6)

exp(W”[i ]tanh (edr) +b )
2 eXp( i tanh (e®r) + b )

where W, ; represents the ith candidate in the candidate
entity matrix.

h(er); = (7)

3.3.3. Algorithms. Since the quantity of candidate entities
(i.e., rows of W) is large, we use candidate sampling to
reduce the number of candidate entities in the training
phase. Given an entity e, a relation r and a binary label vector
y, we calculate projections of all positive candidates. For
negative candidates, we only calculate projections of a
sampled subset. We take negative candidate samples based
on the binomial probability distribution B(1 - p,), in which
p, is the probability of a negative sample which might be
sampled, 1 - p,, is the probability of a negative sample that is
sampled. For each negative candidate in y, we sample a value
from B(1 - p,) to determine whether this candidate is in-
cluded in the candidate entity matrix W* or not.

The complete training process is demonstrated in
Algorithm 1. Given training triples T, we first choose at
random to replace head entity or tail entity to construct
real training dataset and then generate positive and
negative samples from T according to sampling strategy.
Next, calculate loss and update parameters for each
minibatch in the newly generated training dataset.
Among this, o is Hadamard product and xis matrix
product.

4. Experiments

We evaluate our model with entity prediction tasks and
compare the performance against the native ProjE using
experimental procedures, datasets, and metrics established
in the related work. We also give the results of TransE [8] and
TransH [17] implemented by [18] on our datasets.

4.1. Experimental Setting

4.1.1. Dataset. For evaluating our proposed model, we use
FB15K and FB15K-237 datasets to conduct experiments.
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FiGure 1: lllustration of the sub-ProjE model on entity prediction task.

The FB15K dataset released by [8] is a subset of Freebase
[1], which contains 592,213 triples and involves 14,951
entities and 1345 relations. The initial entity vector is in-
dicated with the entity name vector unsupervised pretrained
by word2vec [9] with a large-scale web corpus. The di-
mension of the initial entity vector is 1000. In order to ensure
each entity has a pretrained initial vector representation, we
deleted 1423 entities without entity name vectors from
FB15K and removed triples about these entities accordingly.
The finally retained training set includes 364,424 triples,
validation set includes 37,905 triples and the test set includes
44,565 triples, which totally involves 13,528 entities and 1345
relations.

FB15K-237 introduced by Toutanova and Chen [35] is a
subset of FB15K where inverse relations are removed. We
remove entities without entity name vectors too, the same as
FBI5K. The finally resulted FB15K-237 dataset contains
211,380 training triples, 21,981 validation triples, and 25,666
test triples, which totally involves 13,528 entities and 237
relations.

For zero-shot scenario, we divide entities into two groups:
training entities (10,000) and test entities (3,528), while en-
suring the training set and validation set only contains triples
whose head entity and tail entity are both in training entity
group, and the triple in test set has at least one entity in a test
entity group. Finally, the FBI5K dataset for zero-shot scenario
has 201,272 training triples, 20,968 validation triples, and 3,012
test triples, respectively. The FB15K-237 dataset for zero-shot
scenario has 117,785 training triples, 12,196 validation triples,
and 1,762 test triples, respectively. Table 1 shows the statistical
properties of datasets.

4.1.2. Parameter Setting. In the supervised training phase,
we apply the default setting the same as ProjE: using Adam
[36] as the stochastic optimizer with hyperparameter set-
tings of 8, = 0.9, B; = 0.999, e = le”®; L, regularized to all
parameters during the training and dropout layer on top of
the combination operator to avoid overfitting. Other pa-
rameters are set as follows: learning rate [, = 0.01, batch size
b =200, regularized parameter « = le™>, dropout proba-
bility p ;=0.5, negative sample sampling probability
p, =05.

4.2. Experimental Results

4.2.1. Evaluation Protocol. In the entity prediction tasks, we
predict the missing head entity or tail entity in the triples by
ranking all of the entities in the knowledge graph. Given a
test triple (h, r, t), we remove the head or tail entity and then
replace it with each entity in the knowledge graph and
calculate the ranking score, then rank these replacing
entities in descending order and record the ranking of the
right entities. Following [8], we use mean rank, HITS@k,
filtered mean rank, and filtered HITS@k as our evaluation
metrics.

4.2.2. Results. Table 2 shows the results of different models
in entity prediction tasks trained on FB15K with different
training set sizes. We can see from Table 2 that the Mean
Rank of sub-ProjE is dramatically superior to that of ProjE,
TansH, and TransE when the training data becomes less.
Both sub_ProjE and ProjE outperform TransE and TransH.
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Input: Training triples T'={(h, r, 1)}, entities E, initial entity matrix WE, relations R, embedding subspace dimension s, dropout
probability p ;, candidate sampling rate p,, regularize parameter

Output: subspace adaptive matrix W*, relation embedding matrix WR, combination operators D,;, D,j,, D.;, D,
Algorithm sub-ProjE (T, E, W% R, s, p 4, Py @)
(1) Initializing adaptive matrix W?, relation matrix W&, combination operators (diagonal matrices) D, D,y, D, D,, with uniform
distribution (—=6/+/s,6/+/s).
(2) Loop/* A training iteration/epoch*/
(3) T, C'e, T'—, C'—;//training data
(4) for (h,r,t) € T do/*construct training data using all train triples*/
(5) e«random (h,t)
(6) if e==h then/"tail is missing*/
) T".add ([e, r])
(8) Ch.add({t' | (h,r,t') e T} U sample (E, py))/*all positive tails from T'and some sampled negative candidates*/
(9) else/*head is missing*/
(10) T'.add ([e, r])
@11 Cladd({0'| (W, r,t) € T} Usample (E, py))/ *all positive heads from T and some sampled negative candidates*/
(12) end if
(13) end for
(14) for each (Th,CZ,Tt,Ci) c (T",C",T!, C') do/* minibatches*/
(15) 10
(16) for each (t",c" t',c!) e (TZ,CZ,TZ, C!) do/*training instance*/
(17) O, «softmax ((W* x WE )jet,:1 % tanh (dropout (p d,Det x ((W® x WE ) (¢ 01, ]) +D,, x (W[tt ]) +b.))+b )
(18)  O,«softmax ((W* x WE )ict,. % tanh (dropout (p 4, D, x ((W* x WE )i [0),: )T+D X (WR 1, ) B)) +b )
19) I=1-Y ({1((ht'[1],¢]0 ]) €T)|hecelog(Oy) - Y ({1((t"[0], th[l] t) e T)|te ch}°log(0h)g
(20) end for
(21) 1,«Regu, (W*) + Regu, (WR) + Regu, (D,;,) + Regu, (D,;,) + Regu, (D,,) + Regu, (D,,)
(22) Update all parameters w.r.t I + o,
(23) end for
(24) EndLoop
ALGoriTHM 1: Embedding knowledge graphs into subspace.
TaBLE 1: Statistical properties of the dataset.
Dataset Relation Entity Training set Validation set Test set
FB15K 1345 13528 364424 37905 44565
FB15K-zero-shot 1345 10000 (train)/3528 (test) 201272 20968 3012
FB15K-237 237 13528 211380 21981 25666
FB15K-237-zero-shot 237 10000 (train)/3528 (test) 117785 12196 1762

Since the training data is less, the filtered Mean Rank is
similar to the original Mean Rank. When the training set is
very large, the performances of ProjE, TransE, and TransH
are superior to that of sub-ProjE, which verifies the fact that
sub-ProjE is applicable to less training data scenario. HITs@
10 of ProjE is superior to sub-ProjE. This is because ProjE
only partially updates the entity vectors during training.
Therefore, partially the accuracy of ProjE is higher than that
of sub-ProjE, but on the whole, the performance of sub-
ProjE is superior to that of ProjE. Table 3 shows the results of
different models in entity prediction tasks trained on
FB15K-237 with different training set sizes. The results are
similar to the results of FB15K.

In the zero-shot scenario, at least one entity of a
tested triple is not in the knowledge graph (i.e., the
training set). The original ProjE method cannot deal with
this situation since it cannot generate entity represen-
tation that is not in the knowledge graph. TransE and
TransH cannot apply to zero-shot scenario too for the
same reason. Our sub-ProjE method is capable of dealing
with this situation because it indirectly updates the
missing entity representation during training. Table 4
shows the results of zero-shot scenario experiments on
FB15K and FB15K237. We can see from Table 4 that sub-
ProjE can deal with the entity prediction in zero-shot
scenario even when the training data is very limited.
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TaBLE 2: Prediction results with different training set sizes on FBI15K.

Mean rank HITs@10 (%)

Training set size Method Raw Filtered Raw Filtered
TransE 5042 5030 10.4 10.7
. TransH 5125 5113 10.2 10.5
Train =5000 ProjE 1340 1328 243 32.8
Sub-ProjE 534 522 19.2 19.9
TransE 3372 3358 16.0 16.6
. TransH 3388 3375 16.2 16.8
Train =10000 ProjE 717 705 329 428
Sub-ProjE 408 395 22.8 23.7
TransE 165 98 53.7 70.9
Train = all TransH 166 100 58.0 70.3
- ProjE 157 98 425 66.1
Sub—PrOjE 326 266 24.8 34.3

TaBLE 3: Prediction results with different training set sizes on FB15K-237.
Mean rank HITs@10 (%)

Training set size Method Raw Filtered Raw Filtered
TransE 4559 4544 13.6 14.0
. TransH 4568 4554 13.4 13.9
Train =5000 ProjE 1155 1141 29.6 416
Sub-ProjE 447 434 19.5 20.3
TransE 2902 2886 18.9 19.9
. TransH 2972 2955 18.5 19.5
Train =10000 ProjE 614 599 38.2 522
Sub—ProjE 377 362 23.7 24.9
TransE 297 219 42.9 58.3
Train = all TransH 293 217 42.5 58.0
- ProjE 164 98 40.8 64.9
Sub—ProjE 313 246 25.7 35.3

TABLE 4: Zero-shot scenario results of sub-ProjE with different training set sizes.

Mean rank HITs@10 (%)

Training set size Dataset Raw Filtered Raw Filtered
. FB15K-237 767 769 12.2 12.2
Train = 5000 FB15K 748 746 12.4 12.5
. FB15K-237 699 698 13.0 13.1
Train = 10000 FB15K 669 667 14.4 14.4
Crain — all FB15K-237 524 523 16.3 16.4
ram=a FB15K 531 529 17.4 17.5

With the increase of training data, the performance of the
method is further improved.

In order to further analyze the stability of sub-ProjE
model, we give the mean rank and HITs@10 results of the
first 30 iterations on FB15K in a common scenario and
zero-shot scenario, as Figures 2 and 3 show. We can see
from Figure 2 that the larger the training dataset, the faster
the sub-ProjE model converges. The performance of sub-

ProjE model becomes stable after the first several itera-
tions when all the training dataset is put into training.
When the data is less, sub-ProjE converges slower and
becomes stable after over ten times of iteration. The
convergent speed of the zero-shot scenario is the same as
the general scenario. We get similar results on FB15K-237.
This shows sub-ProjE model is applicable to the zero-shot
scenario.
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5. Conclusions

This paper proposes a new knowledge representation
learning method utilizing unsupervised entity name vectors.
The basic idea is to seek the subspace projection of unsu-
pervised entity vectors in knowledge representation tasks.
This method allows indirect update of entity vectors that do
not appear during the process of training and applicable to
the case that only a few labelled data can be obtained. Ex-
periments on Freebase verify the effectiveness of this
method. Results show that the performance of this simple
method surpasses the best existing knowledge representa-
tion learning model in case the training data is less, and
furthermore, it can be applied to zero-shot scenarios.

Data Availability

The datasets used in this paper to produce the experimental
results are publicly available. FB15k and FB15k-237 can be
downloaded from http://openke.thunlp.org. The unsuper-
vised pretrained entity vectors can be downloaded from
http://code.google.com/p/word2vec.
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