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Multiview active learning (MVAL) is a technique which can result in a large decrease in the size of the version space than
traditional active learning and has great potential applications in large-scale data analysis. ,is paper made research on MVAL-
based scene classification for helping the computer accurately understand diverse and complex environments macroscopically,
which has been widely used in many fields such as image retrieval and autonomous driving.,emain contribution of this paper is
that different high-level image semantics are used for replacing the traditional low-level features to generate more independent
and diverse hypotheses in MVAL. First, our algorithm uses different object detectors to achieve local object responses in the
scenes. Furthermore, we design a cascaded online LDA model for mining the theme semantic of an image. ,e experimental
results demonstrate that our proposed theme modeling strategy fits the large-scale data learning, and our MVAL algorithm with
both high-level semantic views can achieve significant improvement in the scene classification than traditional active learning-
based algorithms.

1. Introduction

Scene classification is defined as using a computer to
understand the class of an image scene. ,e related re-
search studies can be roughly divided into two branches:
some focus on fast holistic scene perception based on
visual psychology and physiology [1, 2], while others build
the statistical models through local image analysis to
understand the scene, which is also the main developing
tendency [3–5]. ,ere have been many methods for image
representation in the past two decades, which is a key step
for scene classification. Low-level features such as color,
texture, and edge have been widely used to represent the
local regions of an image. Some researchers trained object
detectors to achieve high-level semantics such as object’s
class, size, and shape for more accurate image represen-
tation [6, 7]. Prevailing statistical models are bag-of-words
(BoW) and related theme statistical models. ,ese models

reduce the gap between the low-level features and high-
level semantics by mining the hidden themes from local
image regions such as pLSA [8] and LDA [9]. Other new
scene statistical models [10–12] were proposed for more
accurate object recognition in the scene. However, these
mentioned models above mainly focus on the occurrence
of the image semantics, and the spatial semantic corre-
lations between different image regions are usually
ignored.

For mining the spatial context information from an
image, some researchers considered the information inter-
action between different spatial pyramid levels [13–15], and
how to build reasonable attention mechanisms also can lead
to significant improvement for scene classification. ,ese
methods used deep neural networks, and their large-scale
network parameter estimation tasks usually lead to much
higher computational complexity than nondeep learning
based methods.
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Active learning ranks the unlabeled samples iteratively
and only selects the samples with high uncertainty or which
cause great ambiguity for the classifier. In PAC learning
theory, compared with traditional passive learning, it can
exponentially reduce its sample complexity to O(log(1/ε))
in the feature space for learning a classifier with expectation
classification error ε [16–18], which has good potential of
wide application in large-scale data leaning. However, most
of the traditional active learning algorithms’ lack of diversity
of the hypotheses is generated usually by low-level image
features, which affects their performances. ,is paper pro-
posed a MVAL-based scene classification algorithm, which
uses different high-level semantics as its views and can re-
alize a decrease in more than a half size of the version space,
and it is more efficient than both single-hypothesis-based
and committee-based active learning [19].

2. Materials and Methods

2.1. Proposed Algorithm. ,e flowchart of our proposed
algorithm is illustrated in Figure 1. Our algorithm uses
different high-level semantics as its views to generate the
corresponding hypotheses. First, object detectors are trained
to achieve the responses of different object classes in image
regions. Furthermore, we design a cascaded online LDA
(CO-LDA) as a secondary view for achieving more accurate
image representation. Finally, a fine-tunedMVAL algorithm
is utilized with both two high-level image semantics as its
views for classifying the scene of an image.

2.2.Object Semantic-Based ImageRepresentation. Our object
semantic-based image representation is illustrated in
Figure 2.

First, multiple object objectors are used to achieve the
local object response maps. Second, these maps are

decomposed into three spatial pyramid levels, and the
maximal object responses are computed in image blocks in
each spatial level, which is annotated as red blocks in Fig-
ure 2. Finally, an object response histogram is computed,
which can effectively reduce the influence of object response
error in the whole image. For generating the object response,
a latent SVM-based detector [7] is applied for recognizing
the object classes with bulk type such as car and pedestrian.
Another geometric context-based detector [6] is utilized for
recognizing the object classes with different textures such as
tree, sky, and building.

2.3. 4eme Semantic-Based Image Representation. For sat-
isfying the dynamic update of an active learning training set,
an online LDA model [20] based on stochastic gradient
descent strategy is used. It adds new samples sequentially,
and old samples have been no longer stored, which can
achieve efficient and accurate parameter estimation in large-
scale data training.

Online LDA computes the posterior probability distri-
bution p(θ, z, w, β | α, η) of the hidden nodes based on
observed samples. It actually uses variational inference to
estimate the maximum likelihood of p(w | α, η) based on α
and η. ,ree variational parameters ϕ, c, and λ follow the
distributions: ϕ ∼ multinomial(ε), c ∼ Dirichlet(ε), and
λ ∼ Dirichlet(ε). ,e variational distribution follows

q β1:k, θ1:M, z1:M
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,e optimal (c, ϕ) is solved by maximizing the lower
bound in the following equation:

logp(w | α, η)≥L(w, ϕ, c, λ) � Eq[logp(θ, z, w, β | α, η)] − Eq[log q(θ, z, β)], (2)

where Eq denotes the conditional mathematical expectation.
Maximizing the lower bound L(w, ϕ, c, λ) is equivalent to
minimizing KL divergence of q(θ, z, β | c,ϕ) and
p(θ, z, β | w, α, η):

logp(w | α, η) � L(w, ϕ, c, λ) + KL(q(θ, z, β)‖p(θ, z, β | w, α, η)),

(3)

where L(w, ϕ, c, λ) is factorized as follows:
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(4)

Equation (4) can be transformed into formula (5). In
equation (5), ndw denotes the frequency that word w occurs
in text d. l(nd, ϕd, cd, λ) reflects the contribution of d for the

lower bound, which is iteratively optimized by a coordinate
ascent algorithm:
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Figure 1: ,e flowchart of our scene classification algorithm.
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Figure 2: ,e flowchart of object semantic-based image representation.
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ϕdw kin equation (5) is iteratively solved:

ϕdw k∝ exp Eq log θdk( 􏼁􏼂 􏼃 + Eq log βkw( 􏼁􏼂 􏼃􏼐 􏼑,
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where digamma functionΨ is the first-order derivative of
function Γ. cdk and λkw are iteratively solved in the following
way: cdk � α + 􏽐wndwϕdw k,λkw � η + 􏽐dndwϕdw k.

Whentth vector of word frequency nt is observed, we
keep λ unchanged and update the local optimal solution of ct

and ϕt in E step. In M step, ϕt and λ from last iteration are
both used to update λ:

λ � 1 − ρt( 􏼁λ + ρt
􏽥λ,

ρt � (τ + t)
−k

.
(7)

􏽥λ in formula (7) is solved as follows:

􏽥λkw � η +
M

S
􏽘

s

ntskϕtskw, (8)

where nts is sth text in each batch text set, M is the number of
the training text set, and Sis the size of each batch text set.
Hyperparameters α and η are updated by the New-
ton–Rapson method: α⟵ α − ρt􏽥α(ct) and η⟵ η − ρt

􏽥η(λ). Here, 􏽥α(ct) is the product of Hessian matrix and
gradient ∇αl of the objective function l(nd,ϕd, cd, λ). 􏽥η(λ) is
the product of Hessian matrix and gradient ∇ηL of the
objective function L(w, ϕ, c, λ).

Based on online LDA, we proposed the CO-LDA theme
model, which is similar with the classic SP-pLSA model in
structure for enhancing the spatial correlation between
different image regions. ,e framework of CO-LDA is il-
lustrated in Figure 3. ,e main difference between CO-LDA
and SP-pLSA is that different online LDAs (LDA1, LDA2,
and LDA3) are applied in different spatial levels to jointly
mine the theme of an image. ,e main advantage of CO-
LDA is that it integrates the spatial correlation of objects in
different image resolutions, which further improves the
holistic scene understanding. ,e visual histogram com-
putation in online LDA is the same as the way of object
response histogram in Section 2.2, and the theme feature of
each spatial block is represented by variational parameter c

of the online LDA model.
Finally, the theme feature c of the whole image is

achieved by concatenating the theme features of different
blocks of different spatial pyramid levels:

c � w1 · cL0
􏼐 􏼑⊕ w2 · cL1

􏼐 􏼑⊕ w3 · cL2
􏼐 􏼑, (9)

where cLi
denotes the theme feature of the corresponding

block in Li
th pyramid level, ⊕ denotes the linear concate-

nation between feature vectors, and the weights of different
spatial levels are configured as follows: w1 � (1/2),

w2 � (1/2), andw3 � (1/4).

2.4. Multiview Active Learning. ,e MVAL referred in this
paper is our previous work [21], which has two im-
provements in both hypothesis generation and selective
sampling. First, boosting-like technique is integrated into
MVAL, which uses a similar way of iterative weak classifier
optimization, and the current hypothesis is boosted by
weighted voting of all the hypotheses from the past queries.
Furthermore, an adaptive hierarchical competition sam-
pling is presented. In this sampling strategy, if the number
of the contention samples is large, an unsupervised spectral
clustering is activated to obtain the coarse spatial distri-
bution of these contention samples in the high-dimen-
sional feature space, and then, a multiview-based batch
mode selective sampling is run based on two measures:
sample uncertainty and redundancy by solving quadratic
programming to determine the queried samples in each
cluster.

2.4.1. Hypothesis Generation. If an active learning can select
enough number of contention samples, which could im-
prove the hypothesis in each query, the number of unlabeled
samples, which are incorrectly classified, will decrease. It is
quite similar with boosting technique in weak classifier
optimization. ,e MVAL incorporates the AdaBoost algo-
rithm into our framework to boost the generated hypothesis
in each query, and the main flowchart is described in
Figure 4.

In Figure 4, a support vector machine (SVM) is used as a
base classifier to construct a multiview classifier, which
replaces the single-view classifier in AdaBoost, and this
multiview classifier in each query can be considered as a
weak classifier in each iteration in AdaBoost. ,e hypothesis
of multiview classifier hi(x) is computed by weighted voting
of n SVM base classifiers v1, v2, . . . , vn whose weights are
ω1,ω2, . . . ,ωn. Unlike traditional query by boosting, we
update the weight of each base classifier in each query and
obtain the boosted hypothesis Hi(x) by weighting all the
hypotheses from the past queries and not from the current
query only.

,e detailed process of the MAVL’s hypothesis gener-
ation based on AdaBoost is as follows:

(a) In iteration ht(xj) � 􏽐f∈ ft
1 ,ft

2 ,...ft
n{ }ω

t
if

t
i(xj),

weighted voting is used to generate the initial
multiview-based hypothesis:

h
t

xj􏼐 􏼑 � 􏽘

f∈ ft
1 ,ft

2 ,...,ft
n{ }

ωt
if

t
i xj􏼐 􏼑,

(10)

where ft
i(xj) is the classification confidence of sample

xj by view i, and ωt
i denotes the contribution of view i

for classification which is determined by the soft
classification error rate εt

i , which defines how correctly
a sample is classified:

εt
i �

1
􏽐x∈L,y�1f

t
i (x) − 􏽐x∈L,y�−1f

t
i(x)􏼐 􏼑

, (11)
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where 􏽐x∈L,y�1f
t
i(x) and 􏽐x∈L,y�−1f

t
i (x) denote the

sum of classification confidence of unlabeled samples,
which are labeled as y � 1 and y � −1, respectively. For
a “positive/negative” sample, the distance of it to the
decision boundary in the “positive/negative” side re-
flects the degree of how correctly it is classified, and this
information is utilized to calculate the error degree εt

i

here instead of the traditional classification error cal-
culated by the decision hypothesis in AdaBoost. Also,
ωt

i is updated through the following way:
ωt

i � (1/Zt
1)ln(1 − εt

i /ε
t
i), where Zt

1 is the normalized
weight. ,en, the classification confidence δt of the
multiview classifier can be computed by the following
equation:

δt
� 􏽘

N

j�1
βt

j h
t

xj􏼐 􏼑 − yj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌. (12)

(b) After iteration t, the size of the labeled sample set is
increased as follows: Jt � Jt− 1 ∪Lt. Jt denotes the
labeled sample set in iteration t, and Lt denotes the
newly added samples after query. As we know, the
size of the labeled samples set |Jt| is increased during
iteration in active learning. ,us, if the size of the
initial labeled training set is small, the influence of
|Jt| should be considered when updating the weight
ηt of the multiview classifier, which is illustrated by
the following equation:

ηt �
1

Z
t
2

ln
1 − δt

δt􏼠 􏼡 + λ J
t

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼠 􏼡. (13)

,en, the weight of each sample is updated through the
following way: ωt+1

j � ωt
jβ

1−et

t , where
βt � (δt/(1 − δt)), if xj is correctly classified, ej � 0,
otherwise, ej � 1.

(c) ,e final boosted hypothesis Ht(x) of the queried
sample xi is equivalent to the weighted sum of all the
hypotheses from the past K queries, which is defined
by

H
t
(x) �

1, 􏽘
K

t�1
ηth

t
(x)≥

1
2

􏽘

K

t�1
ηt,

0, else.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(14)

2.4.2. Sampling Strategy. ,eMVAL uses a new hierarchical
competition-based sampling strategy in order to query the
contention samples with high probability in different sample
distributions, which is illustrated in Figure 5.

(1) Intercluster Sampling Competition. In the MVAL, a
fast approximate spectral clustering algorithm is designed to
reduce the computational complexity significantly to
O(KNT) + O(K3), where T is the iteration number of K
mean clustering, and N is the total number of contention
samples. ,e detailed process is illustrated as follows: (a)

perform traditional K mean clustering on the contention
unlabeled samples x1, x2, . . . , xN, compute the centroid of
each cluster y1, y2, . . . , yK as K representative points, and
build a correspondence table to associate each xi with the
nearest cluster centroid yiyi; (b) run the normalized cut
algorithm on y1, y2, . . . , yK to obtain a m-way cluster
membership for each of yi; and (c) recover the cluster
membership for each xi by looking up the cluster mem-
bership of the corresponding centroid yi in the corre-
sponding table.

After fast spectral clustering, two intercluster sampling
measures are defined: the number of samples in the cluster
and its information entropy. Both measures are weighted to
obtain the number of selected samples NS

C in cluster C in the
following equation:

N
S
C �

NT

Z
[cNum(C) +(1 − c)Ent(C)], C � 1, 2, . . . , K,

(15)

where Num(C) is proportional to the total number of
samples NC in cluster C, and computing Ent(C) is equiv-
alent to kernel density estimation of x in cluster C. Weight
c � 0.5 reflects the impact of both measures in intercluster
sampling competition, Z is the normalized factor, NT is the
total number of selected samples in the current query, and [·]

is rounding operation.
(2) Intracluster Sampling Competition. In the MVAL, an

efficient quadratic programming based-method [22] is uti-
lized, which dynamically estimates the weights of the re-
dundancy and uncertainty of an unlabeled sample in each
query. It is used for intracluster selective sampling and
solved by minimizing the following object function:

min
p∈Rn−l

p
T 􏽥fv +

1
2
p

T
Ku,up

s.t. p
T
u � k, 0≤p≤ 1.

(16)

Equation (16) aims to estimate the normalized parameter
pi ∈ [0, 1], which reflects how probable the unlabeled
sample is selected. 􏽢fv � (|fv(x1)|, . . . , |fv(xl)|)

T is the
classification confidence of sample x in vth view. x1, . . . , xl

are the queried unlabeled samples, u is a unit vector, and
k � NS

C is the number of unlabeled samples in batch mode.
,e first part denotes the sample uncertainty in vth view, and
the sampling strategy tends to select the contention sample
near the classification hyperplane of vth view by minimizing
pT 􏽥fv. ,e second part denotes the sample redundancy in vth

view, and the similar samples are selected by minimizing
pTKu,up. ,e sampling probability p is calculated by a
convex quadratic programming, and finally, pv

1, pv
2, . . . , pv

l􏼈 􏼉,
which corresponds to x1, . . . , xl in vth view, is obtained. For
selective sampling in each cluster, the conservative sampling
strategy is utilized in a classic co-testing algorithm [23].

3. Results and Discussion

In our experiment, two classic image sets (OT image set from
MIT [9] and UIUC sports event image set from UIUC [24])
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are used for algorithm comparison. Average classification
precision (ACP) andmean of average classification precision
(MACP) are both used for evaluating the performance of
both CO-LDA models and multiview active learning
algorithms.

3.1. Evaluation of 4eme Semantic. ,e first experiment is
designed for evaluating the performance of our proposed
theme semantic. In OT and UIUC Sports datasets, the pa-
rameter configuration of the CO-LDA model is as follows:
(1) kOT � 0.5, τOT � 256 and kUIUC � 0.8, τUIUC � 1024 in
formula (7). (2),e batch sizes of sampled images in MVAL
are SOT � SUIUC � 512.

We observe MACP variation of the CO-LDA model by
changing the numbers of both theme and visual word: T �

20, 30, 40, 50 and W � 200, 500, 800, 1200, 1500, and a total
of twenty groups of (T, W) are obtained. In Figure 6, we find
that (T, W) curves for both datasets show the similar trends
that MASP increase first and then decrease.,us, in our CO-
LDA model, we set TOT � 30, WOT � 500 and
TUIUC � 40, WUIUC � 1200.

Figures 7(a)-7(b) and 8(a)-8(b) show the probability
distributions of different themes by CO-LDA in OT and
UIUC Sports image datasets.

In the OT image set, we can see that there are significant
differences between four scene classes “Highway,” “Forest,”
“Mountain,” and “Tall building” in theme probability dis-
tributions, and multiview SVM classifier works well in scene
classification. In the UIUC Sports image set, the theme
probability distributions are very similar in four scene
classes “Bocce,” “Croquet,” “Polo,” and “Snowboarding,”
which significantly increases the difficulty of scene
classification.

Furthermore, we compare the CO-LDA model with
traditional LDA [9] and SP-pLSA [8] models, and the
performance comparison of three theme models is shown in

Table 1. N1∼N8 denote the following eight natural scene
classes: “Coast,” “Forest,” “Mountain,” “Open country,”
“Highway,” “Inside city,” “Tall building,” and “Street.”
S1∼ S8 denote the following eight event scene classes:
”Badminton,” “Bocce,” “Croquet,” “Polo,” “Rock Climbing,”
“Rowing,” “Sailing,” and “Snowboarding.”

In the LDA model, each image is divided into 11 × 11
blocks, and 5 pixels are overlapped between neighbored
blocks. For feature representation, gray-scale SIFT de-
scriptors are sparsely sampled, and means of three color
channels are calculated. ,e numbers of the theme and
visual word are TOT � 30, WOT � 200 and TOT � 50, WOT �

800 by cross validation. In the SP-pLSA model, the ways of
image division and feature representation are the same as the
LDA model. ,e numbers of the theme and visual word are
TOT � 25, WOT � 1200 and TOT � 50, WOT � 1500 by cross
validation.

In the OT image set, CO-LDA achieves both higher ACP
and MACP than SP-pLSA in six scene classes except
“Mountain” and “Inside city.” LDA performs the worst in all
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Figure 5: ,e framework of sampling strategy in our MAVL [21].
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of scene classes except “Street.” It is easy to conclude that
CO-LDA can achieve more accurate scene semantics than
other two classic methods. In the UIUC Sports image set,
CO-LDA achieves the highest ACP in the following three
event classes: “Croquet,” “Polo,” and “Rowing,” and SP-
pLSA achieves the highest ACP in the following three event
classes: “Bocce,” “Rock Climbing,” and “Snowboarding.” But
in the event classes “Badminton” and “Sailing,” in which
LDA has the highest ACP, CO-LDA still performs better
than SP-pSLA. ,us, we can conclude that our proposed

CO-LDA also have slightly better performance in theme
mining than the two classic image representation methods.

3.2. Evaluation of MVAL. In the second experiment, we
compare our algorithm with other single-view active
learning algorithm with both high-level semantics and low-
level features for scene classification. In our initial labeled
training set, label size� 150, batch size� 20, and
iteration� 10.
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Figure 7: ,e theme probability distribution in different scene classes (OT image dataset).
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Our proposed algorithm MVALHS (MVAL and HS
denote MVAL [21] and two proposed high-level semantics,
respectively) is compared with the following four algo-
rithms: (1)MVALLS (LS denotes low-level image features): in
MVAL, both means of three color channels and densely
sampled color-SIFTdescriptors are concatenated as a feature
vector for image representation. (2) ALQP [22]: a single-view
SVM active learning by QP-based selective sampling, which
relies on the sample uncertainty and redundancy. (3) DiffWS

[25–30]: a disagreement-based active learning from weak

and strong labelers. (4) GraphGP [23]: a graphical model-
based active learning with robust Gaussian process. ,e
feature representations of ALQP, DiffWS, and GraphGP are
the same as MVALLS. ,e performance comparison of the
five active learning algorithms is shown in Table 2.

From Table 2, it is easily found that our algorithm
MVALHS has the highest MACP in almost all scene classes
than the other four algorithms in both image sets, which
demonstrates that high-level semantics can achieve more
significant improvement in holistic scene understanding than
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Figure 8: ,e theme probability distribution in different scene classes (UIUC image dataset).
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traditional low-level image features. Furthermore, we can see
that MVALLS performs better in most cases than other three
single-view algorithms, which also means that multiple view
setting can successfully result in larger decrease in the size of
the version space than traditional single-view active learnings
due to its independent and diverse views.

4. Conclusion

,is paper proposed a MVAL-based scene classification
algorithm, which applies two different high-level image
semantics to generate the corresponding hypotheses. Dif-
ferent object detectors are first trained to achieve the re-
sponses of different object classes as object semantic.
Furthermore, a CO-LDA model is proposed for achieving
more accurate theme semantic by integrating the spatial
correlation of objects in different image resolutions, which
improves the holistic scene understanding. With the help of
both two independent views, our MVAL algorithm has
potential to not only handle large-scale data training but also
improve the performance of scene classification.
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