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To solve the problems of current short-term forecastingmethods for metro passenger flow, such as unclear influencing factors, low
accuracy, and high time-space complexity, a method for metro passenger flow based on ST-LightGBM after considering transfer
passenger flow is proposed. Firstly, using historical data as the training set to transform the problem into a data-drivenmulti-input
single-output regression prediction problem, the problem of the short-term prediction of metro passenger flow is formalized and
the difficulties of the problem are identified. Secondly, we extract the candidate temporal and spatial features that may affect
passenger flow at a metro station from passenger travel data based on the spatial transfer and spatial similarity of passenger flow.
*irdly, we use a maximal information coefficient (MIC) feature selection algorithm to select the significant impact features as the
input. Finally, a short-term forecasting model for metro passenger flow based on the light gradient boosting machine (LightGBM)
model is established. Taking transfer passenger flow into account, this method has a low space-time cost and high accuracy. *e
experimental results on the dataset of Lianban metro station in Xiamen city show that the proposed method obtains higher
prediction accuracy than SARIMA, SVR, and BP network.

1. Introduction

In recent years, China’s economy has developed rapidly,
and the process of urbanization has gradually accelerated.
*e country has continuously increased its efforts to build
public transportation. Among them, urban rail transit is
particularly noticeable as a new direction in the field of
public transportation. Urban rail transit has the advantages
of strong carrying capacity, a high punctuality rate, energy
conservation, and environmental protection [1]. *e de-
velopment of urban rail transit is considered an effective
way to alleviate the urban traffic congestion. Hence, it is the
future trend of China’s urban transportation development
to establish a comprehensive transportation system with
urban rail transit as the backbone, public transport as the

main body, and various modes of transportation inter-
connected. By the end of 2019, rail transit has been built in
40 cities in China, and the total mileage of metro con-
struction has reached 6736.2 km [2]. Passenger flow pre-
diction not only plays a guiding role in the planning and
design of rail transit but also plays an irreplaceable role in
the operation of rail transit. *e most commonly used
passenger flow prediction method is the four-stage method
[3, 4], which consists of four parts: travel generation, travel
distribution, travel mode split, and travel assignment. It is a
macrolevel prediction method.*e first city, which actually
used this method for traffic prediction in 1962, was Chi-
cago. It is very suitable for the long-term prediction of
passenger flow and is of great significance for the planning
of rail transit networks, the construction of engineering
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projects, and the selection of station equipment. However,
long-term passenger flow forecasting cannot solve the
problems arising from the daily operation of the rail transit.
With the development of rail transit, most people choose
rail transit as their main travel mode, which has directly led
to the rapid growth of rail transit passenger flow. *is has
led to problems such as passenger congestion, low oper-
ating efficiency, unbalanced capacity and demand, and
poor driving safety [5, 6]. *erefore, we must adopt more
accurate short-term passenger flow forecasting method to
scientifically forecast short-term passenger flow. *rough
short-term passenger flow forecasting, we can obtain
passenger travel data for a short period of time in the future
so as to grasp the accurate passenger flow change trend and
provide the basis for the organization and management of
the operation department (e.g., it can help the operation
department to realize the dynamic adjustment of the rail
transit capacity in the peak hours, the reasonable sched-
uling of service personnel, and the timely treatment of
emergencies). In addition, short-term passenger flow
forecasting can improve the operation efficiency of rail
transit, reduce the time cost of passengers, and improve
passengers’ satisfaction, thus improving the level of public
service of rail transit and increasing its competitiveness.
However, the influencing factors of short-term passenger
flow at metro station are intricate. And short-term pas-
senger flow has the characteristics of nonlinearity, non-
stationarity, randomness, and suddenness, which makes
the prediction more difficult. Using the data-driven method
to solve short-term forecasting problems is proven to be to
be an effective way [7, 8]. LightGBM is a new boosting
framework model that was proposed by Microsoft in 2015
[9]. It has a fast training speed, low memory consumption,
can process massive data quickly, and has better model
accuracy, which are suitable for solving the short-term
passenger flow forecast problem of rail transit.

*e research purpose of this study is to forecast short-
term passenger flow of a metro station. *e main contri-
butions and novelty of this paper are as follows:

(1) In order to supplement the lack of scientific analysis
of short-term metro passenger flow prediction
problem, we formally describe the problem based on
the data-driven model and analyze the difficulties of
the problem to better describe the complexity of
short-term metro passenger flow prediction.

(2) In order to overcome the problems of feature in-
completeness and high cost of feature acquisition in
traditional methods, we use temporal features,
spatial similarity features, and spatial transfer fea-
tures extracted from IC card data as the candidate
influence features, which are more comprehensive
and easy to obtain.

(3) In order to solve the problem of heavy computational
burden caused by excessive input features, the
candidate features are further selected by using a
maximal information coefficient (MIC) feature

selection algorithm to extract the significant features,
which reduces the dimension of the features and
reduces the computational cost.

(4) In order to solve the problems that the existing
methods cannot reflect the uncertainty of short-
term passenger flow and the prediction accuracy is
not high enough, we use the integrated learning
algorithm LightGBM as a prediction model to de-
scribe the nonlinear characteristics of short-term
passenger flow and improve the prediction
accuracy.

(5) *e experimental results on the dataset of Lianban
metro station in Xiamen city show that the proposed
method obtains a higher prediction accuracy than
SARIMA, SVR, and BP network.

2. Related Work

At present, many scholars have conducted a great deal of
research on the prediction of short-term passenger flow.*e
historical average model was the first method applied to
traffic flow prediction [10]. However, it is difficult for the
historical average regression model to reflect the random-
ness of passenger flow. It requires strong stability and pe-
riodicity of data, which leads to its harsh application
conditions. *us, the performance of the historical average
model in the research of El Esawey [11] and Yang et al. [12]
was not good. *e Kalman filtering [13] model is also one of
the commonly used passenger flow prediction methods. Jiao
et al. [14] proposed three improved Kalman filter models for
the short-term prediction of rail transit passenger flow and
achieved good prediction results. *e time series model is a
classic model for passenger flow prediction [15]. Milenković
et al. [16] predicted railway passenger flow using the
autoregressive integrated moving average model (ARIMA),
which achieved good prediction results. Anvari et al. [17]
constructed a time series prediction framework for a public
transport system based on the Box–Jenkins method which
included the ARIMA model. Li et al. [18] proposed a hybrid
model that combined a symbolic regression model and
ARIMAmodel to predict the passenger flow of Xian rail line
1. *e prediction results showed that the hybrid model has
better prediction accuracy than the simple ARIMA model.
With the rise of machine learning, a nonparametric re-
gression model based on data was applied to the study of
short-term passenger flow prediction. Regarding the support
vector machine (SVM) model [19, 20], Sun et al. [21]
forecasted transfer passenger flow for Beijing rail transit by
setting a wavelet SVM model. For the K-nearest neighbor
(K-NN) regressionmodel [22], Habtemichael and Cetin [23]
proposed a nonparametric and data-driven methodology for
short-term traffic forecasting based on identifying similar
traffic patterns using an enhanced K-NN algorithm. Re-
garding the Bayesian network model, Roos et al. [24] pro-
posed a method based on a dynamic Bayesian network to
predict the short-term passenger flow of the Paris Metro,
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which can work normally even when the data are in-
complete. For the neural network model [25, 26], Zhu et al.
[27] constructed a three-layer neural network to predict the
outbound and inbound passenger flow of a metro station by
analyzing the main dynamic factors that affect passenger
flow in a rail transit station. *e prediction accuracy was
higher than the traditional linear regression method. Liu
and Chen [28] used SAE to extract the nonlinear charac-
teristics of the input and constructed a hybrid model
(stacked autoencoder-deep neural network, SAE-DNN) to
predict passenger flow in BRT stations. Chen et al. [29]
constructed a long short-term memory network prediction
model for rail transit passenger flow based on empirical
mode decomposition. Liu et al. [30] used deep learning
architecture to predict the outbound passenger flow of the
research station according to the arrival schedule of the rail
train and the inbound passenger flow of other stations. Han
et al. [31] used the graph convolution to mine the temporal
and spatial dependence of each station and proposed a
short-term passenger flow prediction model for rail transit
based on spatial-temporal graph convolutional neural
networks. Both methods only take into account the spatial
correlation of stations within the rail transit system and
ignore the impact of transfer effects between other public
transport modes (i.e., conventional bus transit and bus
rapid transit (BRT)) and rail transit [32]. *e historical
average model cannot reflect the uncertainty caused by the
change of passenger flow very well, so the prediction result
error is relatively large.*e Kalman filtering model requires
many parameter vector calculations, which makes its op-
eration complicated. When passenger flow fluctuates
greatly, the time series model ARIMA cannot effectively
capture the trend of passenger flow. *e SVM and K-NN
models have a high time complexity and cannot adapt to
large-scale training data. *e network construction process
of the Bayesian network model is complex. *e neural
network model convergence speed is slow, it falls easily into
the local solution, and it has a high demand for training
data.

Recently, an integrated learning algorithm was also
applied to the prediction of rail transit passenger flow and
achieved a good effect [33]. LightGBM is an open-source,
fast, and efficient boosting framework based on a decision
tree algorithm, which is based on the idea of gradient
boosting. LightGBM supports efficient parallel training and
achieves good results in regression and classification
problems [34–37], which is very suitable for this field. In this
study, a spatial-temporal feature extraction method that
considers transfer passenger flow is proposed, and a metro
station passenger flow prediction model based on LightGBM
is constructed. *e remainder of this article is structured as
follows. In Section 3, a formal description of the problem of
metro passenger flow prediction is presented. In Section 4, a
spatial-temporal feature extraction method and passenger
flow prediction model are introduced. In Section 5, ex-
perimental research based on Xiamen (a city at the southeast
end of Fujian Province, China) public transport data is
introduced, and the experimental results and model per-
formance are evaluated.

3. Formal Description of the Metro Station
Passenger Flow Prediction ProblemBased on
the Data-Driven and Multiple
Regression Model

3.1. Related Definitions

(1) Rail Transit. *e general term of fast and large
volume public transportation with electric energy as
power and wheel-rail as transportation system (this
study refers to the metro).

(2) Metro Station. A place to provide a stop for metro
trains to carry goods or passengers.
(3)Yitong Card. A kind of intelligent card which can
be used in public transportation payment system.

(4) BRTQR Code. A kind of QR code which can be used
in BRT payment system.

(5) Metro QR Code. A kind of QR code which can be
used in metro payment system.

(6) BRT One-Way Ticket. A kind of anonymous BRT
ticket sold by automatic ticket vending machine,
which is swiped once before entering the station and
needs to be put into the recycling hole before
leaving the station.

(7) Metro One-Way Ticket. A kind of anonymousmetro
ticket sold by automatic ticket vending machine,
which is swiped once before entering the station and
needs to be put into the recycling hole before
leaving the station.

(8) Data-Driven Model. Without prior knowledge, the
model is trained based on massive historical data.

(9) Short-Term Inbound Passenger Flow Forecast of a
Metro Station. Forecast of the total number of
passengers entering the station for a short period of
time (several hours or less).

(10) Transfer Passenger Flow. *e total number of pas-
sengers transferring between different modes of
transportation in a unit of time.

3.2. Introduction to the Composition of the Data Dictionary.
Having sufficient data is the basis for forecasting. With the
rapid development of passenger data acquisition technology,
sufficient data can be obtained for the short-term prediction
of passenger flow. *e Xiamen public transport system is
considered as an example. During the study period, there
were six main types of passenger payment in Xiamen:
“Yitong card,” “Coin payment,” “BRT QR code,” “BRTone-
way ticket,” “Metro QR code,” and “Metro one-way ticket.”
Conventional bus transit supports the two payment methods
of “Yitong card” and “Coin payment.” BRT supports the
three payment methods of “Yitong card,” “BRT QR code,”
and “BRT one-way ticket.” Rail transit supports the three
payment methods of “Yitong card,” “Metro QR code,” and
“Metro one-way ticket.” Hence, we counted the rail transit
passenger flow using the data of the “Yitong card,” “Metro
QR code,” and “Metro one-way ticket.” From the above
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description, “Coin payment” can only be used for con-
ventional bus transit; “BRT QR code” and “BRT QR code”
can only be used for BRT; “Metro QR code” and “Metro one-
way ticket” can only be used for the metro; and the “Yitong
card” is the only universal payment method for the three
modes of transportation (i.e., conventional bus transit, BRT,
and rail transit). Additionally, the “Yitong card” has the
property of a unique physical card number that corresponds
to a unique passenger. *erefore, we can only use the
“Yitong card” to identify transfer passenger flow. Addi-
tionally, we regard transfer passenger flow as one of the
influencing factors in the subsequent section.

Table 1 is an introduction to the travel data records:
ID, otime, ostation, dtime, dstation, date, type, andpublic

transport are the attributes that denote the card identification,
origin time, origin station, destination time, destination station,
date, payment type, and travel mode (rail transit, BRT, or
conventional bus transit), respectively.

3.3. Formal Description of the Passenger Flow Prediction
Problem in a Metro Station Based on the Data-Driven and
Multiple RegressionModel. Let j be the target metro station,
Δt be the prediction time interval (e.g., 10, 20, or 30 min-
utes), and x inj,t be the inbound passenger flow of station j

in target time period t. First, the feature set of the spatial-
temporal influencing factors is determined and expressed as
Te � te1, te2, . . .􏼈 tei, . . . , ten}, where tei represents the ith

spatial-temporal influencing feature. It is used as the input to
themodel and x inj,t is the output of themodel. Historical data
are used as training data for the multi-input single-output
regression model. *e regression prediction model of metro
station passenger flow is trained, with Teh �

teh
1, teh

2, . . . , teh
i, . . . , teh

n􏼈 􏼉 as input and x inh
j,t as output.

*e trained model is used to obtain a prediction under the
working condition. h is the training sample serial number,
h � 1, 2, . . . , H. H is the number of training samples. Under
the working condition, with Tew � tew

1, tew
2,􏼈 . . . ,

tew
i, . . . , tew

n} as input, the output x inw
j,t

∧
of the model can be

used as the forecast value of real passenger flow x in w
j,t.w is the

testing sample serial number, w � 1, 2, . . . , W. W is the
number of testing samples. *e accuracy of the model is
evaluated by comparing x inw

j,t

∧
with x in w

j,t. *e problem
model is shown in Figure 1.

3.4. Difficulties of the Problem

(1) *ere are many factors that influence the short-term
passenger flow of a metro station. Under the back-
ground of the integration of public transport, all
types of public transport modes are bound together.
Passenger flow in a metro is not only affected by its
own system but also by other public transport
modes. How to use existing data to extract and select
the significant influencing factors from the space-
time dimension is an important issue.

(2) *e relationship between the influencing factors and
short-term passenger flow is complex and nonlinear.

To improve the prediction accuracy, it is also nec-
essary to select a suitable model to express the
nonlinear relationship between the influencing fac-
tors and passenger flow.

4. Short-Term Passenger Flow Forecast of Rail
Transit Station Based on MIC Feature
Selection and ST-LightGBM considering
Transfer Passenger Flow

Metro station passenger flow forecasting is a complex
problem in time and space. *us, this section is divided into
four parts: the first part is the extraction of the candidate
temporal and spatial features that affect the inbound pas-
senger flow of the metro station, the second part is the
selection of candidate spatial-temporal features using the
MIC algorithm, the third part is the introduction of the
prediction model based on LightGBM, and the final part is
the theoretical analysis and comparison of the proposed
method and other methods.

4.1. Spatial-Temporal Feature Extraction

4.1.1. Temporal Feature Extraction. Let j be the target metro
station, Δt be the prediction time interval (e.g., 10, 20, or 30
minutes), x inj,t be the inbound passenger flow of station j in
target time period t, dayt be the “weekly information” (i.e.,
Monday, Tuesday, . . ., Sunday) in target period t, and hourt

be the hour of the day that corresponds to target period t.
Because passenger flow changes in a metro station during a
week are different (e.g., working days and nonworking days)
and passenger flow changes in a day are also different (e.g.,
peak hours and off-peak hours), x inj,t also changes with the
changes of dayt and hourt. Additionally, passenger flow has
the property of time delay.*us, historical inbound passenger
flow is correlated with that of the current period. *erefore,
the historical passenger flow set Hisj,t � x inj,t−k,􏽮

x inj,t−k+1, . . . , x inj,t−1} is another time feature that affects
x inj,t. Finally, three temporal features are extracted: dayt,
hourt, and Hisj,t � x inj,t−k, x inj,t−k+1,􏽮 . . . , x inj,t−1}.

4.1.2. Spatial Feature Extraction

(1) Spatial Similarity Feature Extraction. Because the land
function of the space in which adjacent stations are located is
similar, the travel habits (i.e., departure time) of passengers
in these adjacent stations are similar. Hence, there is spatial
similarity between the passenger flow of a metro station and
adjacent stations (i.e., adjacent conventional bus stations,
BRT stations, and metro stations). *erefore, the current
inbound passenger flow of a metro station is also related to
the historical inbound passenger flow of adjacent stations.
Suppose that the target metro station j has n adjacent metro
stations and m adjacent bus stations (i.e., BRT and con-
ventional bus stations). *en, the spatial similarity features
of the passenger flow at the metro station can be represented
by the adjacent station history inbound passenger flow
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matrix (ASHIM). Select the historical inbound passenger
flow in the past k periods. *en, the size of the ASHIM is
k × (n + m), and it can be denoted by

ASHIMj,t �

x injr(1),t−1, x injr(2),t−1, . . . , x injr(n),t−1, x injb(1),t−1, x injb(2),t−1, . . . , x injb(m),t−1
x injr(1),t−2, x injr(2),t−2, . . . , x injr(n),t−2, x injb(1),t−2, x injb(2),t−2, . . . , x injb(m),t−2

. . .

x injr(1),t−k, x injr(2),t−k, . . . , x injr(n),t−k, x injb(1),t−k, x injb(2),t−k, . . . , x injb(m),t−k

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (1)

where x injr(n),t−k is the inbound passenger flow of the nth
adjacent metro station of target metro station j at time
period t − k and x injb(m),t−k is the inbound passenger flow
of themth adjacent bus station of the target metro station j at
time period t − k.

(2) Spatial Transfer Feature Extraction. Passengers have
transfer behavior in travel activities. *us, some passengers
may transfer to the rail system by other travel modes (BRT
and conventional bus transit). Specifically, some passengers
will transfer to an adjacent metro station after leaving the
bus or BRT station and continue to travel by rail transit.
*erefore, for metro station j, a proportion of passengers in

the outbound passenger flow of the adjacent conven-
tional bus and BRT stations in the several previous pe-
riods will transfer to metro station j at time period t and
then continue to complete the travel activities by rail
transit. Hence, the metro station’s inbound passenger
flow at the current period is also related to the transfer
passenger flow from the historical outbound passenger
flow of the adjacent BRT and conventional bus stations.
According to the outbound historical passenger flow of
m adjacent bus stations (i.e., BRT and conventional bus
stations) in the past k periods, we can obtain the out-
bound passenger flow matrix of the adjacent bus stations,
i.e., adjacent bus station history outbound passenger flow

Table 1: Travel data records.

ID otime ostation dtime dstation Date Type Public transport
178∗∗∗521 08:05:26 Lianban 08:10:38 Wenzao 2018.11.01 Metro one-way ticket Rail transit
261∗∗∗345 09:15:23 Zhenhailu 09:25:46 Lianban 2018.11.05 Yitong card Rail transit
174∗∗∗020 10:41:00 Lianban 11:01:22 Zhenhailu 2018.11.14 Metro QR code Rail transit
356∗∗∗742 11:18:36 Jiageng 11:55:47 Lianban 2018.11.07 BRT QR code BRT
194∗∗∗942 16:30:38 Kaihelukou 16:42:39 Lianban 2018.11.03 Yitong card BRT
285∗∗∗865 13:44:29 Lianban 13:55:24 Ershi 2018.11.09 BRT one-way ticket BRT
454∗∗∗261 18:25:48 Huming 18:38:26 Lianjingerli 2018.11.02 Yitong card Conventional bus

Forecast model of inbound
passenger flow at rail station

Forecast model of inbound
passenger flow at rail station

Training model with historical data Application of the model under the 
working condition data

[te1
w, te2

w, ..., tei
w, ..., ten

w][te1
h, te2

h, ..., tei
h, ..., ten

h]

x_inh
j,t x_i⌃nh

j,t

Figure 1: Data-driven model of metro station passenger flow prediction.
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(ABHOM).*e size of the ABHOM is k × m, and it can be
expressed as

ABHOMj,t �

x outjb(1),t−1, x outjb(2),t−1, . . . , x outjb(m),t−1

x outjb(1),t−2, x outjb(2),t−2, . . . , x outjb(m),t−2

. . .

x outjb(1),t−k, x outjb(2),t−k, . . . , x outjb(m),t−k

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (2)

where x outjb(m),t−k is the outbound passenger flow of the
mth adjacent bus station of target metro station j at time
period t − k. In the analysis, we obtain the outbound pas-
senger flow of each adjacent bus station in the previous
period. However, as time period t has not yet occurred, for

x outjb(m),t−k, we do not know what proportion of the
passenger flow will transfer to metro station j at time period
t. To solve this problem, we set up the transfer ratio matrix
(TRM) according to the historical average transfer ratio. *e
size of the TRM is k × m, and it can be expressed as

TRMj,t �

Pjb(1),t−1, Pjb(2),t−1, . . . , Pjb(m),t−1

Pjb(1),t−2, Pjb(2),t−2, . . . , Pjb(m),t−2

. . .

Pjb(1),t−k, Pjb(2),t−k, . . . , Pjb(m),t−k

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

pjb(m),t−k �
transferjb(m),t−k

x outjb(m),t−k

􏼠 􏼡, t ∈ T
∗
,

T
∗

� t + qw􏼈 􏼉, q � 0, 1, 2, 3, . . . , l,

(3)

where transferjb(m),t−k represents the passenger flow of
x outjb(m),t−k, which transfers to metro station j in time
period t; pjb(m),t−k represents the historical average pro-
portion of transferjb(m),t−k to x outjb(m),t−k; and T∗ is the

historical time series, which consists of time period t and the
same period in several weeks earlier. *erefore, we obtain
the transfer passenger flow matrix (TPM). *e size of the
TPM is k × m, and it can be expressed as

TPMj,t �

transferjb(1),t−1, transferjb(2),t−1, . . . , transferjb(m),t−1

transferjb(1),t−2, transferjb(2),t−2, . . . , transferjb(m),t−2

. . .

transferjb(1),t−k, transferjb(2),t−k, . . . , transferjb(m),t−k

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

transferjb(m),t−k � pjb(m),t−k × x outjb(m),t−k.

(4)

By adding all the elements of TPM, we can obtain the
total number of transfer passengers All_transferj,t that is
transferred from all the adjacent bus stations to metro
station j in time period t. We obtain the spatial transfer
feature All_transferj,t.

Finally, we extract the candidate temporal and spatial
features that are composed of the candidate feature set Te:
dayt, hourt, Hisj,t � x inj,t−k, x inj,t−k+1, . . . , x inj,t−1􏽮 􏽯,
ASHIMj,t, and All_transferj,t.

4.2. Feature Selection Based on the Maximal Information
Coefficient (MIC). In the previous section, we constructed
the candidate spatial-temporal features of passenger flow
prediction and obtained a comprehensive setTe of candidate
features. Feature selection can solve the problem of heavy
computational burden caused by excessive input features
[38]. To make passenger flow prediction more effective, we
need to select more important features from set Te and
obtain a simplified feature input so that the subsequent
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learning process only needs to establish a model based on the
important features. *e performance of an embedded and
wrapped feature selection algorithm is closely related to the
learner. *e algorithm is easy to overfit and has high time
complexity and poor interpretability. *us, we choose the
filter feature selection algorithm MIC [39]. Compared with
other filter feature selectionmethods, theMIC algorithm can
widely measure dependence between variables, such as
linear and nonlinear relations, even for nonfunctional de-
pendence, which cannot be represented by a single function
(e.g., dependence composed of multiple functions). Addi-
tionally, as a filtering feature selection algorithm, the exe-
cution efficiency is high, so we choose MIC as the feature
selection method.

*e MIC is mainly calculated using mutual information
and grid division. Mutual information is an indicator that
measures the correlation between variables. Given variables
A � ai, i � 1, 2, . . . , n􏼈 􏼉 and B � bi, i � 1, 2, . . . , n􏼈 􏼉, n is the
number of samples. Mutual information is defined as
follows:

MI(A, B) � 􏽘
a∈A

􏽘
b∈B

pro(a, b)log
pro(a, b)

pro(a)pro(b)
, (5)

where pro(a, b) is the joint probability density of A and B

and pro(a) and pro(b) are the edge probability densities of
A and B, respectively. Histogram estimation is used to es-
timate the above probability density. Suppose
D � (ai, bi), i � 1, 2, . . . , n􏼈 􏼉 is a finite set of ordered pairs.
Define division G to divide the range of variable A into x

segments and divide the range of B into y segments. *us, G

is an x × y grid. Calculate the mutual information MI(A, B)

in each grid division. *ere are many ways to divide the grid
into x × y, and the maximum value of MI(A, B) in each way
is taken as the mutual information value of G. Define the
maximum mutual information formula of D under division
G as follows:

MI
∗
(D, x, y) � maxMI(D | G), (6)

where D|G indicates that data D is divided by G. Use the
maximum normalized MI values obtained under different
divisions to form the feature matrix, which is defined as

M(D)x,y �
MI∗(D, x, y)

log min x, y􏼈 􏼉
. (7)

*en, the MIC is defined as

MIC(D) � max
xy<B(n)

M(D)x,y􏽮 􏽯, (8)

where B(n) is the upper limit value of grid division x × y.
Generally, Reshef et al. [39] suggested that B(n) � n0.6 is
best.

We use the MIC to define the correlation between the
features and target value. *e candidate feature set is
Te � te1, te2, . . . , tei, . . . , ten􏼈 􏼉. *e correlation between any
feature tei and target value is defined as
MIC(tei, target value). *e value range is [0, 1]. *e larger
the MIC(tei, target value) value, the stronger the correla-
tion between tei and target value, and tei is a strong

correlation feature. *e smaller the MIC(tei, target value)

value, the weaker the correlation between tei and
target value, and tei is a weak correlation feature.

A flowchart for feature selection is shown in Figure 2.
*rough the MIC feature selection algorithm, we obtain the
significant feature set Te′.

4.3. ST-LightGBM Passenger Flow Prediction Model.
LightGBM is an open-source, fast, and efficient lifting
framework based on a decision tree algorithm, which
supports efficient parallel training and can greatly shorten
the training time. *e idea of gradient boosting is to iterate
variables once, increase the submodels individually in the
process of iteration, and ensure that the loss function is
constantly reduced. Let fi(X) be the submodel, Fn(x) �

z0f0(x) + z1f1(x) + · · · + znfn(x) be the composite model,
and Loss[Fn(x), Y] be the loss function. Every time a new
submodel is added, the loss function decreases toward the
gradient of the variable with the next highest information
content Loss[Fn(x), Y]< [Fn−1(x), Y]. *e gradient boost-
ing decision tree (GBDT) is a classical model. GBDT has the
functional characteristics of gradient boosting and decision
tree and has the advantages of achieving good prediction
results and is not easy to overfit. However, when calculating
the information gain, it needs to scan all samples to de-
termine the best partition point, which consumes a great
deal of computing time. LightGBM is a type of GBDT that is
used to solve the problems encountered by GBDT inmassive
data processing. It consists of two algorithms: gradient-
based one-side sampling (GOSS) and exclusive feature
bundling (EFB) to optimize GBDT. GOSS [9] was proposed
to prove that the larger the gradient of samples, the more
important the role they play in calculating information gain
to obtain quite accurate information gain estimates from a
small number of samples. *e core idea of the GOSS al-
gorithm is to select some samples with a large gradient from
the total samples, select some samples randomly from the
remaining samples, and combine them into new samples to
learn a new classifier. *is method makes the distribution of
the new samples consistent with the total samples and trains
the data of small gradient samples. *erefore, under the
premise of not changing the distribution of samples, the
accuracy of classifier learning is not lost and the speed of
classifier learning is greatly reduced. EFB [9] is an algorithm
that can reduce the number of features of high-dimensional
data and minimize the loss. It binds nonzero features in
sparse feature space together to form a feature and then
establishes the same feature histogram as a single feature
from the feature binding. *us, the training of GBDTcan be
accelerated in the case of lossless accuracy.

Simultaneously, LightGBM adopts the method of leaf
splitting, which has a low calculation cost. By controlling the
depth of the tree and the minimum amount of data of each
leaf node, it avoids the overfitting phenomenon. LightGBM
chooses the decision tree algorithm based on a histogram,
which can reduce the storage cost and calculation cost.
Additionally, the processing of category features also im-
proves LightGBM performance for specific data.
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*e framework of the proposed method is shown in
Figure 3. As we can see from the plot, first, we extract
temporal features from multisource traffic data. Second,
according to the spatial location of the metro station, we
extract spatial similarity features and spatial transfer fea-
tures from the data. *ird, we use the MIC algorithm to
select the significant features. Finally, we establish an ST-
LightGBM passenger flow prediction model to predict the
inbound passenger flow of a metro station in a real-world
scenario.

4.4. Scalability and Limitations of the Proposed Method

4.4.1. Scalability of the Proposed Method

(1) *ismethod can be applied to the inbound passenger
flow prediction of any metro station.

(2) *is method can also be applied to the prediction of
inbound passenger flow of conventional bus stations
and BRT stations.

(3) *is method is not limited by the region and can also
be applied to other cities.

(4) *is method cannot be applied to the prediction of
passenger flow at rail stations under the impact of
emergencies, such as sudden bad weather (e.g.,
rainstorm, flood or typhoon, etc.), terrorist attacks,
traffic accidents, and metro accidents.

(5) *e application of this method is limited to station-
level prediction, not applicable to line-level or city-
level prediction.

(6) *is method is only suitable for short-term pre-
diction, not when the metro station surrounding
environment changes.

4.4.2. Limitations of the Proposed Method

(1) *e candidate features need to directly or indirectly
reflect the factors that affect the passenger flow at rail
stations. If there are important factors missing, such
as transfer passenger flow, the accuracy of model
prediction will be reduced.

(2) It is necessary to collect enough historical data as the
training dataset to train the short-term prediction
model. If the historical data are insufficient, inac-
curate, or noisy, the accuracy of the prediction model
will be reduced.

Select a feature from candidate feature Te 

Using MIC algorithm to calculate the 
MIC value of the feature and target value

Delete this feature from candidate 
feature set Te

Judge whether candidate feature set
Te is empty

Sort all candidate features by their 
MIC values

The candidate features whose MIC value is greater 
than the specified threshold are selected as the final 

significant features

No

Yes

Candidate feature set Te = {te1, te2, ..., tei, ..., ten}

Figure 2: Flowchart for feature selection.

Extract temporal features

Extract spatial similarity features

Extract spatial transfer features

Get the final input features

Passenger flow prediction model 
based on LightGBM

Verify model accuracy and evaluate 
the model

Determination of 
temporal and spatial
features affecting rail 

station passenger 
flow

Inbound 
passenger flow 
prediction of 

rail station

Significant spatial-temporal feature 
selection based on MIC algorithm

Figure 3: Framework of the proposed ST-LightGBM passenger
flow prediction method.
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(3) *e threshold of MIC algorithm and ST-LightGBM
model superparameters will affect the accuracy of
experimental results. It is necessary to adjust pa-
rameters in advance according to different objects.
Improper selection of parameters will lead to a low
accuracy.

(4) *e process of feature extraction is complex, espe-
cially the feature extraction of spatial transfer
features.

(5) When predicting passenger flow at rail stations, it is
necessary to use the MIC algorithm to further select
candidate features to determine the input of the
model. *is process is complicated.

4.5. Ceoretical Analysis and Comparison of Methods. A
comparison of various rail passenger flow prediction
methods is shown in Table 2. Compared with other
methods, the features extracted by the proposed method
are more comprehensive. Particularly, it considers
the impact of transfer passenger flow, which plays an
important role in the prediction of metro station pas-
senger flow. Furthermore, the proposed method has
higher prediction accuracy and efficiency than other
methods.

5. Experiment

5.1. Experimental Object and Dataset Description.
Lianban metro station (as shown in Figure 4) is an im-
portant passenger flow point of Xiamen rail line 1, with a
large and stable passenger flow. *erefore, we chose
Lianban metro station as the research object. Taking 1,000
meters as the boundary condition, we selected 14 adjacent
stations with a stable passenger flow. *e adjacent metro
stations of Lianban metro station are Hubin East Road
metro station and Lianhualukou metro station; the ad-
jacent BRT stations are BRT Lianban station and BRT
Huoche station; and the adjacent conventional bus sta-
tions are Lianban Book City station, Lianjingerli station,
Siming Court station, Lianbanguomao station,
Lvjiayuanxiaoqu station, Lianbanbei station, Fengyulu
station, Huoche station, Huming station, and Humin-
glijing station.

We considered Xiamen residents’ travel data from
November 1, 2018, to November 25, 2018, as the

experimental data. *e prediction time interval was
Δt � 10minutes. *ere are 144 pieces of data in one day.
Hence, there are 3600 sample data.

5.2. Evaluation Methods and Indicators. To analyze and
compare the prediction effect of each experiment, we use 5-
fold cross-validation to get the average error. *e number of
training samples H is 2880, and the number of test samples
W is 720.

We used two well-known error evaluation indices: mean
absolute error (MAE) and mean square error (MSE). *e
calculation formulas are

MAE �
1

W
􏽘

W

w�1
x in

w
j,t

∧
− x in

w
j,t

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, (9)

MSE �
1

W
􏽘

W

w�1
x in

w
j,t

∧
− x in

w
j,t􏼠 􏼡

2

. (10)

*e lower the values of MAE and MSE, the higher the
prediction accuracy of the model.

5.3. Parameter Settings. *ere are 48 candidate spatial-
temporal features in total. All candidate spatial-temporal
features and their corresponding MIC values are shown
in Table 3. According to Figure 5, the MIC threshold is
0.7. We selected the candidate spatial-temporal features

Table 2: *eoretical analysis and comparison of methods.

Studies Temporal
feature

Spatial
feature

Transfer
feature Model

Applicable
data

size of model

Time
complexity

Modeling
difficulty

Parameter
complexity Accuracy

Feng and Cai [40] Yes No No ARIMA Small-medium Low Low Low Low

Sun et al. [21] Yes No No Wavelet
SVM Small Medium Medium Medium Medium

Jin et al. [41] Yes No No BP network Big High Medium High High
Tang et al. [32] Yes Yes No ST-LSTM Big High High High High
Zhang et al. [42] Yes Yes No Multi-LSTM Big High High High High

*e proposed method Yes Yes Yes ST-
LightGBM Big Low Medium Low High

Figure 4: Spatial location of Lianban metro station.

Scientific Programming 9



with an MIC value greater than 0.7 as the significant
features, with a total of 23 significant spatial-temporal
features.

Based on the Xiamen transit data, four models were used
in the experiment: Seasonal ARIMA (SARIMA), SVRmodel,
backpropagation neural network (BP network), and
LightGBM.*e target of the forecast was inbound passenger
flow with a frequency of 10 minutes. *e details of each
model are as follows:

(1) SARMIA: the seasonal period “S” is 144 because
there are 1440 minutes in a day (144×10min).
ARIMA (2, 1, 0)× (0, 1, 1)144 is finally used.

(2) SVR: the time period is 144 (144×10min per day).
(3) BP network: the network structure is composed of

three layers and the number of units in each layer is 10.
(4) LightGBM (without temporal and spatial features,

only using historical passenger flow): Max_depth is

Table 3: MIC value of the candidate features.

Candidate spatial-temporal feature MIC value
Inbound passenger flow of BRT Huoche station at time period t − 1 0.880
Inbound passenger flow of Lianban metro station at time period t − 1 0.849
Inbound passenger flow of Lianbanguomao station at time period t − 1 0.833
Inbound passenger flow of Hubin East Road metro station at time period t − 2 0.803
Inbound passenger flow of Siming Court station at time period t − 1 0.771
Inbound passenger flow of Lvjiayuanxiaoqu station at time period t − 1 0.738
Inbound passenger flow of Lianbanbei station at time period t − 2 0.691
Inbound passenger flow of Fengyulu station at time period t − 3 0.613
Inbound passenger flow of Lianban Book City station at time period t − 2 0.454
Inbound passenger flow of Huminglijing station at time period t − 1 0.337
hourt 0.879
Inbound passenger flow of Lianhualukou metro station at time period t − 1 0.840
Inbound passenger flow of BRT Lianban station at time period t − 3 0.826
Inbound passenger flow of Lianbanguomao station at time period t − 2 0.803
Inbound passenger flow of Lianbanguomao station at time period t − 3 0.771
Inbound passenger flow of Siming Court station at time period t − 2 0.723
Inbound passenger flow of Fengyulu station at time period t − 1 0.658
Inbound passenger flow of Huming station at time period t − 1 0.522
Inbound passenger flow of Lianban Book City station at time period t − 3 0.448
Inbound passenger flow of Huminglijing station at time period t − 2 0.323
Inbound passenger flow of BRT Lianban station at time period t − 1 0.861
Inbound passenger flow of Hubin East Road metro station at time period t − 1 0.838
Inbound passenger flow of BRT Huoche station at time period t − 3 0.821
Inbound passenger flow of Huoche station at time period t − 1 0.783
Inbound passenger flow of Lianhualukou metro station at time period t − 3 0.770
Inbound passenger flow of Huoche station at time period t − 3 0.706
Inbound passenger flow of Lvjiayuanxiaoqu station at time period t − 3 0.648
Inbound passenger flow of Huming station at time period t − 2 0.499
Inbound passenger flow of Lianjingerli station at time period t − 1 0.430
Inbound passenger flow of Huminglijing station at time period t − 3 0.313
Inbound passenger flow of BRT Lianban station at time period t − 2 0.858
dayt 0.836
Inbound passenger flow of Lianban metro station at time period t − 2 0.810
Inbound passenger flow of Lianban metro station at time period t − 3 0.781
Inbound passenger flow of Huoche station at time period t − 2 0.750
Inbound passenger flow of Lvjiayuanxiaoqu station at time period t − 2 0.696
Inbound passenger flow of Fengyulu station at time period t − 2 0.640
Inbound passenger flow of Huming station at time period t − 3 0.487
Inbound passenger flow of Lianjingerli station at time period t − 2 0.417
Inbound passenger flow of BRT Huoche station at time period t − 2 0.857
All_transfert 0.835
Inbound passenger flow of Lianhualukou metro station at time period t − 2 0.807
Inbound passenger flow of Hubin East Road metro station at time period t − 3 0.773
Inbound passenger flow of Lianbanbei station at time period t − 1 0.744
Inbound passenger flow of Siming Court station at time period t − 3 0.695
Inbound passenger flow of Lianbanbei station at time period t − 3 0.631
Inbound passenger flow of Lianban Book City station at time period t − 1 0.455
Inbound passenger flow of Lianjingerli station at time period t − 3 0.395
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11 and Num_leaves is 512. To control overfitting,
Min_data is 30.

(5) ST-LightGBM (with temporal and spatial features):
Max_depth is 11 and Num_leaves is 1024. To control
overfitting, Min_data is 12.

5.4. Experimental Results

Prediction Effect of the SARIMA Model. *e prediction
results of the model are shown in Figure 6, with the
MAE value of 8.28 andMSE value of 164.06 (prediction
results of a random fold).
Prediction Effect of the SVR Model. *e prediction
results of the model are shown in Figure 7. Without
feature selection, as shown in Figure 7(a), the MAE
value is 9.50 and MSE value is 170.67. With feature
selection, as shown in Figure 7(b), the MAE value is
8.57 and MSE value is 155.94 (prediction results of a
random fold).
Prediction Effect of the BP Network. *e prediction
results of the model are shown in Figure 8. Without
feature selection, as shown in Figure 8(a), the MAE
value is 9.40 and MSE value is 180.95. With feature

selection, as shown in Figure 8(b), the MAE value is
8.34 and MSE value is 151.31 (prediction results of a
random fold).
Ce Prediction Effect of ST-LightGBM (with Temporal
and Spatial Features). *e prediction results of the
model are shown in Figure 9. Without feature selection,
as shown in Figure 9(a), theMAE value is 6.95 andMSE
value is 118.36. With feature selection, as shown in
Figure 9(b), the MAE value is 5.77 and MSE value is
86.10 (prediction results of a random fold).

5.5. Analysis of the Experimental Results. *e experiment
results of the algorithms are shown in Table 4. *e proposed
ST-LightGBM achieved better performance than SARIMA,
SVR, and BP network. Moreover, with feature selection, the
proposed model achieved higher accuracy than the other
models.

(1) As shown in Figure 10, we can see that the training
time of ST-LightGBM is less than that of BP and SVR
models, but longer than that of the SARIMA model,
and so is the prediction time. *is shows that the
method has high computational efficiency and can be
used in practical applications.
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Figure 6: Prediction effect of SARIMA.
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(2) As shown in the second, third, and last rows of
Table 4, with feature selection, the prediction ac-
curacy of the models improved.

(3) From the viewpoint of MAE, the ST-LightGBM
network was more accurate than the other
models. *e MAE error of the ST-LightGBM
model was 30.41% less than that of the SARIMA
model, 32.86% less than that of the SVR model,
and 31.57% less than that of the BP network
model.

(4) Moreover, in terms of MSE, the MSE error of ST-
LightGBM model was 46.78% less than that of the
SARIMA model, 43.77% less than that of the SVR
model, and 44.39% less than that of the BP network
model.

(5) According to the standard deviation, we can see that
the ST-LightGBM method had better stability than
the other models. *erefore, the proposed ST-
LightGBM method is more suitable for short-term
passenger flow forecasting for rail transit.
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Figure 7: Prediction effect of SVR: (a) prediction results without feature selection and (b) prediction results with feature selection.
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Figure 8: Prediction effect of the BP network: (a) prediction results without feature selection and (b) prediction results with feature
selection.
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6. Conclusion and Future Work

We proposed a spatial-temporal LightGBM metro station
passenger flow prediction model considering transfer pas-
senger flow. Compared with previous research methods, this
method considers the temporal and spatial features that
affect inbound passenger flow in a metro station. Particu-
larly, in terms of spatial features, we introduced the concept
of spatial similarity and spatial transfer and established the

ASHIM feature matrix and TPM feature matrix. *us, the
spatial influence factors were considered more compre-
hensively. Additionally, we used an MIC feature selection
algorithm to obtain the important features; hence, the model
input was simplified. Moreover, compared with other
methods, the prediction accuracy of this method was also
higher, so the proposed method has better applicability for
the short-term prediction of metro station inbound pas-
senger flow.

Table 4: *e MAE (x ± σ) and MSE (x ± σ) results of four experiments (listed mean x and standard deviation σ are averaged over 5 folds).

Experiment Method MAE MSE
1 SARIMA 8.22± 0.51 161.16± 8.69

2 SVR (without feature selection) 9.65± 0.68 173.36± 9.62
SVR (with feature selection) 8.52± 0.54 152.54± 7.92

3 BP network (without feature selection) 9.42± 0.49 181.35± 8.46
BP network (with feature selection) 8.36± 0.42 154.22± 6.51

4 ST-LightGBM (without feature selection) 6.93± 0.13 118.27± 3.42
ST-LightGBM (with feature selection) 5.72± 0.11 85.76± 2.42
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Figure 9: Prediction effect of ST-LightGBM: (a) prediction results without feature selection and (b) prediction results with feature selection.
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In future work, we will use scientific feature extraction
methods [43] to further extract effective features from
massive data. At present, it is difficult to further improve the
prediction accuracy of the existing single model. In future
work, we can further consider combining fast clustering
algorithms [44–46] and other machine learning or deep
learning models to establish a combined prediction model to
further improve prediction accuracy. Moreover, we can
combine distributed algorithms [47, 48] to improve the
prediction efficiency of the model.
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