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A multimode resource-constrained project scheduling problem (MRCPSP) may have multifeasible solutions, due to its nature of
targeting multiobjectives. Given the NP-hard MRCPSP and intricate multiobjective algorithms, finding the optimized result
among those solutions seems impossible. This paper adopts data envelopment analysis (DEA) to evaluate a series of solutions of an
MRCPSP and to find an appropriate choice in an objective way. Our approach is applied to a typical MRCPSP in practice, and the

results validate that DEA is an effective and objective method for MRCPSP solution selection.

1. Introduction

Resource-constrained project scheduling problem (RCPSP)
has been intensively studied since the 1960s and a standard
model for RCPSP has been widely accepted to fulfill
scheduling tasks. Despite its preeminence, standard RCPSP
can hardly cover all practical situations and many effective
extensions have been proposed. Multimode RCPSP
(MRCPSP) is one of them. It was first developed by
Elmaghraby [1], and it allows multialternative modes that an
activity can choose, providing different combinations of
resources and durations.

Most of the previous studies focused on solutions to
MRCPSP. As Brucker [2] summarized, those algorithms fell
into three categories: exact algorithms, heuristics algorithms,
and metaheuristic algorithms. Kolisch and Drexl [3],
however, proved that whether MRCPSP has a feasible so-
lution is an NP-hard problem when two or more renewable
resources and infinite unrenewable ones coexist.

Schnell and Hartl [4] proposed new exact approaches to
the MRCPSP with generalized precedence relations. They
implemented the optimization framework SCIP which
contained two constraint handlers “cumulativemm” and
“gprecedencemm” and formulated SCIP models for the
MRCPSP. Their solution obtained the outperform results

especially on 50 activities when imposing time limits of 27s.
Some new metaheuristics have also emerged recently in-
cluding hybridization of genetic algorithm and fully in-
formed particle swarm [5]; a column generation based
distributed scheduling algorithm [6]; a hybrid optimization
method which consists of a novel heuristic and unique
genetic optimization algorithm for large-scale projects [7];
and an effective mirror-based genetic algorithm [8]. In terms
of MRCPSP model extension, some scholars have consid-
ered renewable resource vacation and activity splitting [9].
Nemati-Lafmejani et al. [10] proposed an integrated bio-
bjective optimization model to deal with MRCPSP and
contractor selection (CS) problem, simultaneously. Hill et al.
[11] proposed a reformulation of the waterway ship
scheduling problem as a variant of the MRCPSP, which
incorporates time-dependent resource capacities besides the
earliest and latest start times for the tasks. This problem was
solved through integer programming, using a compact
mathematical formulation.

Typically, project scheduling achieves ultimate goals in
three perspectives: duration, cost, and quality. These mul-
tiobjectives make the already complex MRCPSP even harder
[12]. Researchers have sought different ways to solve it. Some
scholars considered two targets: cost and duration [13]; some
tried to maximize net present value and minimize duration
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[14]; others took all the three (duration, cost, and quality) as
objectives to optimize [15].

In practice, duration is usually the most predominant
goal of a project, and the priorities of resource, cost, and
quality vary with different project executors. Multisolutions
to an MRCPSP with different optimized goals may be
available and how to evaluate each of them in a subjective
way becomes a problem.

Here is a typical scenario. A project manager proposed a
number of solutions to a project scheduling, and all their
durations met the company’s strategic requirements. Other
managers, however, imposed their respective emphases and
filed different proposals. For example, CFO focused on
capital investment, CHO considered resources, and CMO
predicted the quality that would impact the company’s
profile. Since all of the solutions were reasonable and fea-
sible, the dilemma that CEO faced then was to evaluate them
in an objective and convincible way and make decisions
thereafter.

As a matter of fact, the project selection is critical and
intricate due to availability of numerous projects, as well as
existence of various qualitative and quantitative criteria. The
decision-making can involve the enterprise in a long-term
commitment. While various methods of project selection
have been proposed in the literature, Naldi et al. [16] focus
on the profit-fairness trade-off, they adopt a knapsack-type
integer linear programming formulation to optimize both
quality indicators of budget allocation, employing a fairly
wide selection of fairness measures. Liu et al. [17] proposed a
novel multiattribute decision-making method based on
spherical fuzzy sets for selecting Yunnan Baiyao’s R&D
project of toothpastes. However, although the methods
mentioned above are effective, they are all targeted at specific
types of project selection, which are also complicated and
require a lot of information processing in advance.

Furthermore, the most notable among these methods is
data envelopment analysis (DEA). DEA is a nonparametric
method to measure productive efficiency of decision-making
units (DMUs) that involve multi-inputs and multioutputs.
This method was first proposed by Charnes et al. [18] in 1978
but rooted in the studies by Debreu [19], Koopmans [20],
and Farrell [21] on the measurement of productive effi-
ciency. Thanks to its expertise at performance evaluation,
this method has taken great leaps both in theory and in
practice. Researchers have applied DEA models to address
transportation systems, health care, resource allocation,
energy and environmental economics, and regional and
national sustainability issues as well as those related to
supply chain. Recent overviews of DEA can be found in
Mahmoudi et al. [22], Kohl et al. [23], Yang et al. [24],
Mardani et al. [25], Zhou et al. [26], Soheilirad et al. [27],
Cook and Seiford [28], and Liu et al. [29].

Hitherto, DEA has been applied to solution selections for
construction projects [30], and Research and Development
(R&D) proposals [31], information project [32, 33], and Six
Sigma project [34]. Although, it objectively selected the most
efficient projects even under the influences of the executor’s
subjective instincts and opinions, there has been little dis-
cussion on how to evaluate and select solutions from
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MRCPSP. There are two major differences. Firstly, the
project selection problem deals with opting a set of best
feasible proposals from a large pool of projects with making
the best use of available resources, while the MRCPSP so-
lution selection is to evaluate different solutions from the
same project. Secondly, each project uses different resources
and produces various outputs while the latter utilizes the
same set of available but limited resources and focuses on the
time, cost, quality involved in project management. Our
attempt of applying DEA to MRCPSP is to evaluate ad-
vantages and disadvantages between multifeasible solutions,
providing a solid reference to the decision-maker.

This paper is to investigate the selection of MRCPSP
solutions. We adopt data envelopment analysis (DEA) to
evaluate available solutions. The contribution of this paper is
mainly reflected in two aspects. One is to deepen the ap-
plication research of MRCPSP and discuss the solution
selection from the perspective of relative efficiency. Second,
it extends the application field of DEA and the proposed
DEA approach could be applied to MRCPSP. Moreover, it
provides a new perspective and useful tool for project
managers to objectively evaluate a set of similar solutions in
an MRCPSP.

The remainder of the paper is organized as follows.
Section 2 presents a description of MRCPSP using a virtual
case and the solutions of MRCPSP are presented. Section 3
introduces the solution methodology, DEA, designed to
solve the problem and computational results are presented
and discussed. Finally, conclusions are shown in Section 4.

2. Problem Description and Its Solutions

Suppose there is a project composed of 20 activities, in-
cluding two dummy ones: the “beginning” and the “ter-
mination.” Its activity-on-node (AON) network is depicted
in Figure 1. Each activity could run in one of the two modes,
the normal and the speedy; the two modes cost differently
and lead to different qualities. All the activities could allocate
three renewable resources, and their respective totals are 12,
13, and 12. The parameters of the project are listed in Table 1.

This is a typical MRCPSP. A project consists of ] ac-
tivities. And two dummy activities are added: the beginning
activity 0 and the termination activity J+ 1, both of which
need zero recourse and zero processing time. Thus, the
activities can be defined as a set J* ={0,...,]J + 1}. Each
activity holds M alternative modes. The renewable resources
are encapsulated into a set K”, and the number of resources
of type k that can be used in each period is described by RY;
similarly, there is a set K" of consumable resources and it
contains R resources of type k. Pj , j=1,2,...,], s the
set of direct predecessors of activity j, which means activity j
cannot begin until every activity i € P; is completed. If an
activity j processes in mode m, m € {1, ce Mj}, d;,, defines
its processing time, ., the quantity of the renewable re-
source of type k, and n;,; the quantity of consumable re-
source of type I.

The ultimate goal is to minimize the total duration of the
project, called makespan. Thus, this problem can be de-
scribed as follows:
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FIGURE 1: An activity-on-node (AON) network of a project.
TaBLE 1: Parameters of a project.
Task Duration (d) Cost (yuan) Quality Resource
No. Speedy mode  Normal mode  Speedy mode  Normal mode  Speedy mode  Normal mode R1 R2 R3
0 0 0 0 0 0 0 12 13 12
1 69 100 110053 91462 0.65 0.95 4 0 0
2 56 89 119303 84874 0.76 0.91 10 0 0
3 64 97 189317 134779 0.48 0.91 0 0 3
4 54 59 13306 8952 0.86 0.91 3 0 0
5 29 44 9244 8492 0.49 0.92 0 6 0
6 69 84 119259 84422 0.55 0.91 0 0 7
7 68 88 189276 134307 0.5 0.89 0 8 0
8 49 59 13262 8500 0.47 1 6 0 0
9 74 94 139445 98523 0.62 0.89 0 0 1
10 66 85 189243 133988 0.76 0.86 0 5 0
11 34 69 88057 44087 0.54 0.91 0 7 0
12 39 59 94600 66178 0.66 0.92 0 0 3
13 24 56 20480 13130 0.66 0.89 0 8 0
14 39 59 90847 63287 0.85 0.89 3 0 0
15 14 33 20458 12904 0.64 0.88 0 0 5
16 39 59 90825 63061 0.55 0.89 0 0 8
17 15 26 20436 12678 0.66 0.88 0 0 7
18 54 74 78571 53749 0.73 0.89 0 1 0
19 9 19 7036 2895 0.6 0.88 0 10 0
20 0 0 0 0 0 0 0 0 0
LEjn 7 M; LF,
minimize teXjie (1) Mk Xjm <R, k€K, (5)
t=EF,, j=1m=1 t=EF;
subject to 1, if activity jin m mode completes in period t,
e . % =10, otherwise,
Xjm =1, jeT, (2) )
m=1 t:EFj

where equation (1) defines the objective function to obtain

M; LE; M, LE; . . the minimum processing time; the constraint in equation (2)

Z Z EX iy < (t d j)x me JETL je], defines that one activity only processes once in one mode;

m=1t=EF, m=11=EF, equation (3) qualifies the timing constraints between ac-

ieP, tivities; equation (4) keeps the number of usable renewable

3 resources in each period less than the total number of the

(3) renewable resources; and equation (5) ensures that all the

' used unrenewable resources cannot exceed the total non-

M min{t+d;,-LLF,} ) renewable resources. EF, LF. in these constraints represent

Z T jmk Z X b < R, ke K’ (4) the earliest and the latest time windows of an activity, re-

j=lm=1 b=max{t,EF, } spectively. Table 2lists all the parameters used in the model.
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TABLE 2: : Parameters used in the proposed model.

Parameter Meaning

j Activity number, j=1, 2, ..., ], where ] is the total number of activities

Jt The set of all the activities

M Activity execute modes

k Resource number, k=1, 2, ..., K, where K is the total number of types of recourses

K? The type of renewable resources

K’ The type of nonrenewable resources

R} The number of renewable resources of type k that can be used in each period

R; The number of nonrenewable resources of type k that can be used in each period

P, The set of activities immediately preceding activity j

dy Duration of activity j

" jmk The quantity of the renewable resources of type k that activity j requires

Ml The quantity of the nonrenewable resources of type k that activity j requires

EF, The earliest finish time of activity j

LF; The latest finish time of activity j

t Time number, t=1, 2, ..., T, where T is the deadline of the whole project.

Many scholars proposed novel solutions to MRCPSP,
like Van Peteghem and Vanhoucke [35], Wang and Fang
[36], Ballestin et al. [37], Liu et al. [38], and Gutjahr [13]. The
author of this paper adopted a genetic algorithm, developed
by Liu et al, to achieve the ultimate goals. The algorithm was
coded by JAVA and run in a PC with double CPUs (Pentium
2.7 GHZ) and a 2.0 GB RAM. And 32 options were selected
from the results that provided nondominated solutions
within 1000 days, as listed in Table 3.

Figure 2 demonstrates that the increase of the project
duration can elevate the quality, but the marginal utility of
the former is diminishing. Project cost, as exhibited in
Figure 3, is nonlinearly related to the duration: a speedy
working mode can dramatically increase the cost, but
prolonging duration can hardly reduce the cost reversely.
Figure 4 further explains the consequences of Figure 3: the
growing cost leads to a lower quality, instead of a higher one,
due to the shortened duration.

Those solutions put processing time first without any
preference suggestions and leave decision-makers struggling
to choose the most appropriate ones. Therefore, we adopted
data envelopment analysis (DEA) to further evaluate those
solutions.

3. Results of DEA Models and Discussions

3.1. Results. In our DEA model, processing time is a reverse
output. The smaller it is, the better. So for the sake of
simplicity, we regarded the processing time, together with
the cost, as the inputs, while the quality as the output. Given
the inability of traditional DEA models, like CCR and BCC,
to rank efficient units and thus to choose the best one, we
utilized superefliciency DEA models to complete those
works. Table 4 compares four efficiencies of the 32 options,
including CCR, BCC, CRS superefliciency, and VRS
superefficiency.

3.2. Discussions. Table 4 indicates that the CCR model
results in 13 efficient units; the highest of the 32 effi-
ciencies is 1 and the lowest is 0.8972. However, the BCC
model obtains 22 efficient units; the highest is 1 and the

lowest is 0.9908. These results imply that BCC holds a
weaker ability than CCR of determining efficiency, al-
though their minimum efficiencies are close. Among the
results of the superefliciency CRS model, the highest is
1.0015 in decision-making unit (DMU) 28, and the lowest
is similar to that of CCR, while for VRS model, the highest
is 1.0057 in DMU 7, and the lowest equals that of BCC.
CRS presents both lower maximum and lower minimum
than VRS.

Notably, the maximums and the minimums of the
four models are pretty close, which implies that finding
the best from the 32 options is a tough task. But through
comparing the four columns, one can notice that when a
result of a traditional model is inefficient, it equals that of
the corresponding superefficient model; otherwise, it is
less than that of the corresponding superefficient model.
This indicates that superefficient models can be used to
further rank efficient units and find the best one. In
addition, it should be noted that DMU 28 has no solution
in the VRS superefficiency model, which is because we
adopt an input-oriented super efficiency model, and the
output value of DMU 28 (i.e., engineering quality value)
is the largest among all DMU. Traditional models can
help decision-makers find the worst inefficient DMU but
tend to provide multiefficient DMUs with the same ef-
ficiency, due to the upper limit. Superefficiency models
remove this limit and present efficient DMUs with var-
ious values; thus the best one can be easily spotted. In our
study, CRS chose DMU 28 as the best while VRS chose
DMU 7.

Superefliciency models can find the best among solu-
tions to an MRCPSP in an effective and speedy way. Ap-
plying superefficiency DEA models to MRCPSP is validated
to be a convincible and better approach.

MRCPSP occurs in many real-world applications, such
as construction engineering, subway line selection, medical
diagnosis, supplier location, cargo transportation, and
software development. A very common difficulty of many
real MRCPSPs is how to evaluate each of the solutions in a
subjective way. The DEA approach proposed in this paper
should be a good choice.
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TaBLE 3: Results of the proposed project by a genetic algorithm.
No. Duration (d) Quality Cost No. Duration (d) Quality Cost
1 764.3256 0.8273 123.2532 17 739.9256 0.7696 125.6698
2 731.4268 0.8028 128.5642 18 764.723 0.7995 121.6883
3 764.3256 0.8273 123.2532 19 789.7572 0.8268 118.8704
4 731.4268 0.8028 128.5642 20 808.3605 0.8437 118.6849
5 764.3256 0.8273 123.2532 21 858.8132 0.848 113.3372
6 765.7595 0.8283 123.1657 22 713.965 0.7031 133.9032
7 716.4676 0.7845 130.8325 23 738.5133 0.7423 127.0581
8 736.8615 0.805 127.0508 24 780.8691 0.7696 120.6025
9 765.7595 0.8283 123.1657 25 798.7724 0.7971 117.7562
10 808.3605 0.8437 118.6849 26 823.8781 0.8236 115.4423
11 710.9173 0.7682 131.8811 27 855.7369 0.8473 113.5001
12 733.924 0.8003 126.9617 28 897.97 0.8542 112.2478
13 760.7047 0.822 123.3892 29 713.965 0.7031 133.9032
14 783.6034 0.8284 120.4722 30 734.3908 0.7266 128.9113
15 808.3605 0.8437 118.6849 31 766.0741 0.7589 123.6714
16 710.1831 0.7341 131.9792 32 791.3508 0.7735 119.4027

The genetic algorithm eliminated dominated solutions. The results distributions are depicted in Figures 2-4.
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4. Conclusions

As project scheduling usually targets multigoals, solutions to
multimode resource-constrained project scheduling prob-
lems can be multiple. How to select an appropriate one

TaBLE 4: Comparison of efficiencies between four DEA models.

Solutions CCR BCC CRS VRS
1 1.0000 1.0000 1.0000 1.0000
2 1.0000 1.0000 1.0000 1.0000
3 1.0000 1.0000 1.0000 1.0000
4 1.0000 1.0000 1.0000 1.0000
5 1.0000 1.0000 1.0000 1.0000
6 1.0000 1.0000 1.0000 1.0000
7 0.9976 1.0000 0.9976 1.0057
8 0.9985 1.0000 0.9985 1.0003
9 1.0000 1.0000 1.0000 1.0000
10 1.0000 1.0000 1.0000 1.0000
11 0.9845 1.0000 0.9845 1.0049
12 0.9961 1.0000 0.9961 1.0020
13 0.9974 1.0000 0.9974 1.0007
14 0.9950 0.9989 0.9950 0.9989
15 1.0000 1.0000 1.0000 1.0000
16 0.9418 1.0000 0.9418 1.0010
17 0.9530 1.0000 0.9530 1.0001
18 0.9707 1.0000 0.9707 1.0000
19 0.9935 1.0000 0.9935 1.0028
20 1.0000 1.0000 1.0000 1.0000
21 1.0000 1.0000 1.0003 1.0003
22 0.8972 0.9947 0.8972 0.9947
23 0.9190 0.9962 0.9190 0.9962
24 0.9260 0.9955 0.9260 0.9955
25 0.9546 0.9995 0.9546 0.9995
26 0.9816 0.9999 0.9816 0.9999
27 1.0000 1.0000 1.0002 1.0005
28 1.0000 1.0000 1.0015 inf

29 0.8972 0.9947 0.8972 0.9947
30 0.9016 0.9927 0.9016 0.9927
31 0.9151 0.9908 0.9151 0.9908
32 0.9267 0.9953 0.9267 0.9953

according to objective principles has become a problem in
practice. We adopt data envelopment analysis to a typical
MRCPSP and effectively propose a series of objective
benchmarks that can help to evaluate those solutions to the
MRCPSP and determine an appropriate one. Our approach
provides an innovative perspective and an effective approach



for decision-makers when selecting a proper solution to an
MRCPSP.
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