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Nearest neighbour search (NNS) is the core of large data retrieval. Learning to hash is an effective way to solve the problems by
representing high-dimensional data into a compact binary code. However, existing learning to hash methods needs long bit
encoding to ensure the accuracy of query, and long bit encoding brings large cost of storage, which severely restricts the long bit
encoding in the application of big data. An asymmetric learning to hash with variable bit encoding algorithm (AVBH) is proposed
to solve the problem.+e AVBH hash algorithm uses two types of hash mapping functions to encode the dataset and the query set
into different length bits. For datasets, the hash code frequencies of datasets after random Fourier feature encoding are statistically
analysed. +e hash code with high frequency is compressed into a longer coding representation, and the hash code with low
frequency is compressed into a shorter coding representation. +e query point is quantized to a long bit hash code and compared
with the same length cascade concatenated data point. Experiments on public datasets show that the proposed algorithm ef-
fectively reduces the cost of storage and improves the accuracy of query.

1. Introduction

Given a query object/point q and a dataset S, the nearest
neighbour search (NNS) [1–3] is to return the nearest
neighbours in S to q. Nowadays, the NNS is widely used in
many applications such as image retrieval, text classification,
and recommendation systems. However, with the expo-
nential growth of data scale and the disaster of the high data
dimensionality, the NNS problem is now much more dif-
ficult to solve than before. +erefore, new efficient index
structures and query algorithms for similarity searches have
increasingly become the focus of research for the problem.

+e hashing-based NNS methods [3–5] have attracted
much attention. Generally, the hashing methods can project
the original data with locality preserved to a low-dimen-
sional Hamming space, i.e., binary codes [4–6]. +e com-
plexity of those methods is always in sublinear time. In
addition, the hashing methods only need a simple bit op-
eration to compute the similarity from Hamming encoding,
which is very fast. As the high performance in large-scale
data retrieval, hashing techniques have gained increasing

interests in facilitating cross-view retrieval tasks [7, 8], on-
line retrieval tasks [9], and metric learning tasks [10].

For large-scale data retrievals, the time and space costs
are the two important issues. As we know, the accuracy of
existing hash methods is limited by the length of hash
encoding and usually requires a longer coding to get better
accuracy. However, a long coding will increase the space
cost, network communication overhead, and response time.

In order to solve this problem, a coding quantization
mechanism [11] based on asymmetric hashing algorithm
[12] was proposed. Different from the direct hash code
comparison, by cascade concatenating the coding of the data
point to the same encoding length of the query point, the
coding storage cost of the dataset is reduced effectively and
the accuracy of the result is ensured. However, this algo-
rithm uses a unified compression method for all data, ig-
noring the effect of data distribution. Actually, the
distribution of large-scale data is generally uneven. Hence,
for most hashing algorithms, the frequency of quantization
is also different. As we know, longer encoding can preserve
most of the original information; however, it will bring high

Hindawi
Scientific Programming
Volume 2020, Article ID 2424381, 11 pages
https://doi.org/10.1155/2020/2424381

mailto:qianjiangbo@nbu.edu.cn
https://orcid.org/0000-0003-4811-6486
https://orcid.org/0000-0003-4245-3246
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/2424381


cost and vice versa. A careful trade-off among accuracy,
computing overhead, and space-saving needs to be studied.
Intuitively, high-density data require longer length encoding
to ensure that the original information is preserved as much
as possible, while low-density data can use shorter length
encoding and still preserve most of the original information.
+at is the idea behind our algorithm.

In this paper, an asymmetric learning to hash with
variable bit encoding algorithm (AVBH) is proposed. +e
AVBH uses two types of hash mapping functions to quantify
the dataset and the query set separately to encode the hash
codes with different length bits. In particular, the frequency
of dataset is calculated by random Fourier encoding, and
then the random Fourier coding with high frequency is
compressed into a longer hash code representation, and the
random Fourier coding with low frequency is compressed
into a shorter hash code representation.

+e main contributions of this paper are as follows: (1) a
variable bit encoding mechanism (named AVBH) based on
hash code frequency compression is proposed, which makes
the encoding space effectively used, and (2) the experiment
shows that the AVBH can effectively reduce the storage cost
and improve the query accuracy.

2. Preliminaries and Description

In this section, we review some basic knowledge of LSH
(locality-sensitive hashing) [13–15], vector quantization
[16], and product quantization [17] that is essential to our
proposed technique.

2.1. Vector Quantization. Vector quantization (VQ) is a
classical data compression technique, which compresses the
original data into discrete vectors. For a vector x of n di-
mensions, formally, a VQ function f can specified as
f(x) ∈ C � ci, i � 1, 2, . . . , k􏼈 􏼉, where x (with n dimensions)
is an original data/vector, C is a pretrained code set, and ci is
a codeword in the codebook C. +e objective of a VQ
function is to quantify the original real number vector to the
nearest codeword with the lowest VQ loss. Here, the VQ loss
of vector x is given by

Evq(x) � min
c∈C

‖x − c‖2. (1)

2.2. Product Quantization. Product quantization (PQ) is an
optimization of vector quantization. Firstly, the feature
space is divided into m mutually exclusive subspaces, and
each subspace is then quantized separately using VQ.+at is,
the coding of each subspace forms a small codebook
C1,C2, . . . ,Cm, and small codebooks form a large codebook
C by the Cartesian product. In this method, a high-di-
mensional data can be decomposed into m low-dimensional
spaces and can be processed in parallel. Suppose an object x
is represented as a combination of m codewords
c1, c2, . . . , cm, the loss of the product quantization of vector x
is given by

Epq � min
c∈C

‖x − c‖2 � min
c∈C

x −

cT
1

cT
2

⋮

cT
m
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2.3. Random Fourier Feature. Traditional dimensionality
reduction methods, such as PCA, map the data to the
independent feature space and compute the main inde-
pendent features. +is method ignores the nonlinear in-
formation of the sample distribution and cannot apply to
the actual data well. Based on the feature mapping method
of random Fourier feature (RFF), data are mapped to the
characteristic space under the approximate kernel function,
and the inner product of any two points under the feature
space is approximated by their kernel function values.
Compared with the PCA method, RFF can maximize the
data distribution information and obtain the dimensional
characteristic by reducing the dimension or raising the
dimension. +is kind of characteristic is suitable for the
characteristic compression processing. SKLSH [18] is a
kind of classical hashing algorithm based on RFF, which
has a good experimental result under the long bit digit
coding.

+e length coding hash learning algorithm firstly maps
the sample points from the original n dimension real space to
the n dimension of the approximate kernel function feature
space by RFF. Because of the convergence of RFF consis-
tency, the kernel function similarity between any two sample
points can be maintained.

Specifically, for two points x, y, the translation invariant
kernel function [12] K(x, y) � E(Φw,b(x),Φw,b(y)) satisfies
the following equation:

K(x, y) � K(x + η, y + η) � K(x − y),

K(x, y)≤K(x − x) � K(0) � 1,
(3)

where Φw,b �
�
2

√
cos(wTx + b), b satisfies the uniform dis-

tribution between [0, 2π], w obeys the probability distri-
bution PK induced by the translation invariant kernel
function, and η is a constant parameter.

+us, the mapping from the n dimensional space to the
feature space of the d dimensional approximation kernel
function can be obtained by the following equation:

Φd
(·) �

1
��
d

√ Φw1b1
(·),Φw2b2

(·), . . . ,Φwdbd
(·)􏼐 􏼑, (4)

where w1,w2, . . . ,wd is for the same-sense sampling subject
to the probability distribution PK and b1, b2, . . . , bd obeys the
same-distribution sampling which is uniformly distributed
between the obedience [0, 2π]. When the translation in-
variant kernel function is a Gaussian kernel function,
K(x − y) � e− (y/2)‖x− y‖2 , PK is a Gaussian distribution, i.e.,
PK ∼ Normal(0, cIn×n).
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2.4. Orthogonal Procrustes Problem. An orthogonal Pro-
crustes problem is to solve an orthogonal transforming
matrix O, so that PO is as close to Q as possible, i.e.,

Γ(O) � min
O

‖PO − Q‖F, (5)

where OTO � I. +is formula is not easy to be solved di-
rectly, and it can be optimized by alternating optimization.
Namely, the matrix P is first to be fixed, and the matrix Q is
optimized to make the target function value reduced. +en
the matrix Q is fixed, and the orthogonal transforming
matrix O is optimized to make the target function value
reduced.

3. Asymmetric Learning to Hash with Variable
Bit Encoding

3.1. Algorithm Framework. For a general hash learning al-
gorithm, the length of the hash code by learning is always
fixed. AVBH uses the idea of asymmetric hashing algorithm,
that is, the hash code for the dataset is short and unfixed, and
the query point of the code is long and fixed.+e steps of the
AVBH hashing algorithm are shown in Figure 1, which

mainly includes the dataset encoding steps ①–③ and the
query point encoding step ④.

+e dataset encoding section consists of two phases:
random Fourier feature encoding (RFF encoding) and
variable bit encoding (AVBH encoding). First, step ① uses
the random Fourier feature (RFF) to map the dataset and get
RFF encoding. After RFF coding, considering the difference
of RFF coding frequency, the RFF coding frequency is sorted
in step②. According to the requirement, the original dataset
can be divided into the subset by the RFF code as the length
of k1, k2, . . . , kL shown in the figure. As shown in step③, the
AVBH subset encoding of the length of k1, k2, . . . , kL can be
reproduced by duplicating (n/k1), (n/k2), . . . , (n/kL) times
sequentially and then the Hamming code of n dimension is
formed.

In the query point encoding section, the query point
quantization is encoded into RFF encoding of length n by
step ④.

3.2. Objective Function. +e target of the AVBH method is
to get L groups of hash encoding with the length of
k1, k2, . . . , kL through the hash function G(x), namely,

B(l)
�

b11 b12 · · · b1Nl

b21 b22 · · · b2Nl

⋮ ⋮ ⋱ ⋮

bkl1 bkl2 · · · bklNl
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, bij ∈ +1, − 1{ }, i ∈ 1, 2, . . . , kl􏼂 􏼃, j ∈ 1, 2, . . . , Nl􏼂 􏼃, l ∈ [1, 2, . . . , L], (6)

where N � 􏽐
L
l�1Nl, n � 􏽐

L
l�1kl.

+is divides the dataset B(1),B(2), . . . ,B(L) into subset
according to the RFF encoding frequency. By cascading
(n/k1), (n/k2), . . . , (n/kL) times, respectively, we can get L

group n bit hash code. For example,

􏽥B(l)
� B(l)

􏼐 􏼑
T
, B(l)
􏼐 􏼑

T
, . . . , B(l)

􏼐 􏼑
T

􏼔 􏼕
T

, l ∈ [1, 2, . . . , L].

(7)

+en combine 􏽥B(1)
, 􏽥B(2)

, . . . , 􏽥B(L) to get a n bit long hash
code of the entire dataset B ∈ +1, − 1{ }n×N. +e AVBH
method calculates the similarity by calculating the Hamming
distance between the hash code of the query point and the
concatenated dataset during the query process. +erefore,
for the dataset, we need to construct the hash mapping
function, so that the L group hash code obtained with the
length of k1, k2, . . . , kL, respectively, can preserve the orig-
inal information as much as possible. +erefore, the AVBH
method obtains the hash mapping function by the recon-
struction error (8) between the minimum cascading
encoding B and n dimension sample vector Y:

Loss(B,R) � min‖RB − Y‖
2
F, (8)

where R is an orthogonal rotation n × n matrix, namely,
RTR � RRT � I.

Combining the properties of associative matrices and the
definition of F-norm of matrices, we can get the following
equation:

Loss(B,R) � min‖RB − Y‖
2
F

� min tr (RB − Y)
T

(RB − Y)􏽨 􏽩􏽮 􏽯

� min tr (RB)
TRB􏽨 􏽩 + tr YTY􏼐 􏼑 − 2tr RBYT

􏼐 􏼑􏽮 􏽯.

(9)

As the unknown variable B,R in formula (8) is the
product relation, the expanded formula (9) contains two
items of unknown variables, so it is difficult to solve. After
further simplification, we can get the following formula:

Loss(B,R) � min‖RB − Y‖
2
F

� min tr (RB)
TRB􏽨 􏽩 + tr YTY􏼐 􏼑 − 2tr RBYT

􏼐 􏼑􏽮 􏽯

� min tr BTRTRB􏼐 􏼑 + tr YTY􏼐 􏼑 − 2tr RBYT
􏼐 􏼑􏽨 􏽩

� min tr BTB􏼐 􏼑 + tr YTY􏼐 􏼑 − 2tr RBYT
􏼐 􏼑􏽨 􏽩.

(10)

As B ∈ +1, − 1{ }n×N, it is easy to get tr(BTB) � nN. As
RTR � I, we can get that Y is unrelated to B and R. As a
result, tr(YTY) � c, where c is unrelated to B. So formula
(10) is simplified as follows:

Scientific Programming 3



Loss(B,R) � min‖RB − Y‖
2
F

� min tr BTB􏼐 􏼑 + tr YTY􏼐 􏼑 − 2tr RBYT
􏼐 􏼑􏽨 􏽩

� min tr BTB􏼐 􏼑 + tr YTRRTY􏼐 􏼑 − 2tr RBYT
􏼐 􏼑􏽨 􏽩

� min nN + c − 2tr BTRTY􏼐 􏼑􏽨 􏽩

� min tr BTB􏼐 􏼑 + tr RTY􏼐 􏼑
T
RTY􏼔 􏼕 − 2tr BTRTY􏼐 􏼑􏼚 􏼛

� min tr B − RTY􏼐 􏼑
T
B − RTY􏼐 􏼑􏼔 􏼕􏼚 􏼛

� min B − RTY
����

����
2
F
.

(11)

+us, minimizing the reconfiguration error (8) equals
minimizing the quantization error (11).

+e objective function of AVBH to encode the dataset is to
minimize the reconstruction error of the concatenated
encoding of the n bit by finding the orthogonal rotation matrix
R. In extreme cases of the dataset which is uniformly dis-
tributed, there is no significant difference in the frequency of
the hash encoding of the dataset, and the AVBH method then
degenerates into the ACH algorithm [16]. Compared with the
ACH hashing algorithm, the AVBH hashing algorithm is more
adaptable to the real data because it can adapt to the data of
various distributions and the generalization ability is stronger.

3.3. Optimization Algorithm. +e objective function (11)
can be optimized by alternating optimization. Namely, the

rotation matrix R is first to be fixed, and the encoding
matrix B is optimized to make the target function value
reduced. +en the encoding matrix B is fixed and the
rotation matrix R is optimized to make the target function
value reduced. In this way, the value of the target function
decreases until it converges. +e following is a discussion
of how to tune and optimize the value of the target
function.

(1) Fix the rotation matrix R, and optimize the encoding
matrix B.
Given V � RTY, Vlm is a matrix consisted of (m −

1) × k + 1 row to m × k row, (l − 1) × k + 1 column
to l × k column of V. From formula (11), we can get
the following equation:

RFF

Dataset

Length1

Length2

Length3

Length4

AVBH
encoding Query

point
q

RFF
encoding

Frequency
count RFF

RFF
encoding
of query
point q

Cascade

Query

Encoding training stage Querying stage

ANNS
results

1 2 3 4

Figure 1: Algorithm framework of AVBH.
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Loss1(B) � min nN + c − 2tr BTRTY􏼐 􏼑􏽨 􏽩

� min nN + c − 2􏽘
L

l�1
tr 􏽥B(l)

􏼒 􏼓
T

Vl
􏼢 􏼣

⎧⎨

⎩

⎫⎬

⎭

� min nN + c − 2􏽘
L

l�1
tr B(l)

􏼐 􏼑
T
, B(l)
􏼐 􏼑

T
, . . . , B(l)

􏼐 􏼑
T

􏼔 􏼕

Vl1

Vl2

⋮

Vl n/kl( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

� min nN + c − 2􏽘
L

l�1
tr B(l)

􏼐 􏼑
T

􏽘

n/kl( )

m�1
Vlm⎛⎜⎝ ⎞⎟⎠⎡⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎦
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
.

(12)

As n, N, c are unrelated to B, for a fixed R, the problem
of minimizing (12) is equal to the problem of maxi-
mizing the following formula:

Loss1(B) � 2max􏽘

L

l�1
tr B(l)

􏼐 􏼑
T

􏽘

n/kl( )

m�1
Vlm⎛⎜⎝ ⎞⎟⎠⎡⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎦

� max􏽘
L

l�1
􏽘

n/kl( )

i�1
􏽘

nl

j�1
B(l)

ij 􏽘

n/kl( )

m�1
Vlm

ij
⎛⎜⎝ ⎞⎟⎠⎡⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎦,

(13)

As B(l)
ij ∈ +1, − 1{ }, optimal analytic solution of formula

(13) is given by

B(l)
ij � sign 􏽘

n/kl( )

m�1
Vlm

ij
⎛⎜⎝ ⎞⎟⎠, i ∈ 1, 2, . . . , kl􏼂 􏼃, j ∈ 1, 2, . . . , Nl􏼂 􏼃, l ∈ [1, L]. (14)

(2) Fix the encoding matrix B, and optimize the rotation
matrix R.

Under RTR � RRT � I, the problem of minimizing for-
mula (11) is equal to an Orthogonal Procrustes problem [9].
+e optimal solution of such problems with R is as follows:

Loss2(R) � min nN + c − 2tr BTRTY􏼐 􏼑􏽨 􏽩

� min nN + c − 2tr YBTRT
􏼐 􏼑􏽨 􏽩.

(15)

Hence, the problem of optmizing R to get the minimum
value of formula (15) is equal to the problem of maximizing
the following formula:

Loss2(R) � max tr YBTRT
􏼐 􏼑􏽨 􏽩. (16)

By calculating the SVD of YBT, we can get the following
formula:

YBT
� UΩCT

, (17)

where U is a matrix which consists of left singular value
vector, C is a matrix which consists of right singular value
vector, Ω is a diagonal matrix which consists of

corresponding singular value vectors, and the diagonal el-
ements of which is Ωii ≥ 0, i ∈ [1, n].

By combining formulas (16) and (17), we can get the
following equation:

Loss2(R) � max tr UΩCTRT
􏼐 􏼑􏽨 􏽩

� max tr UΩ(RC)
T

􏼐 􏼑􏽨 􏽩

� max tr (RC)
TUΩ􏼐 􏼑􏽨 􏽩.

(18)

Given A � (RC)TU, 􏽥R � RC, Aii is the diagonal element
ofA, and 􏽥Ri,Ui, respectively, represent the i − th row of 􏽥R,U.
By Cauchy–Schwarz inequalities [11], the following equation
is obtained:

Aii ≤ 􏽥Ri

����
���� Ui

����
���� � 1, when 􏽥Ri � Ui. (19)

So formula (18) can be written as formula (20):

Loss2(R) � max[tr(AΩ)] � max􏽘
n

i�1
AiiΩii. (20)

Combining formula (19), when 􏽥Ri � Ui, formula (20)
takes the maximum value. For 􏽥Ri � Ui, we can get the
following formula:
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Figure 2: Comparison of the precision-recall experiment of different bits encoding under Cifar10: (a) Cifar10, 16 bit; (b) Cifar10, 32 bit;
(c) Cifar10, 64 bit; (d) Cifar10, 128 bit.
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􏽥Ri � Ui

⟺􏽥R � U

⟺RC � U

⟺RCCT
� UCT

⟺R � UCT
,

(21)

when R � UCT, formula (16) takes the maximum value, and
formula (15) takes the minimum value. As a result, we can
get the optimal result by formula (21).

3.4. Encoding Functions

3.4.1. Dataset Encoding. When the objective function value
converges, we can get the mapping function G(y1) of AVBH
to the dataset according to formula (14), where y is the
random Fourier feature (RFF) obtained by the mapping
stage of the sample point x:

G(y) � g1(y), g2(y), . . . , gkL
(y)􏽨 􏽩

� sign 􏽘

n/kl( )

m�1
RT

􏼐 􏼑
lm
y⎛⎜⎝ ⎞⎟⎠, l ∈ [1, L].

(22)

3.4.2. Query Point Encoding. +e optimal rotation matrix R
can be obtained from the training process of dataset coding.
For the data q in the query set, the main goal of encoding is
to keep as much accurate information as possible, so the
query set encoding does not need to be compressed and
mapped to the hash code of the length bit. Combining
formula (14), we can get the mapping function of AVBH to
the query set:

F(q) � f1(q), f2(q), . . . , fn(q)􏼂 􏼃 � sign RTq􏼐 􏼑. (23)

3.5. Convergence Analysis of AVBH. According to the ob-
jective function (8), we can get the following formula:

Loss(B,R) � min B − RTY
����

����
2
F

� min B − D − RTY − D􏼐 􏼑
�����

�����
2

F

≤min ‖B − D‖
2
F + RTY − D

����
����
2
F

􏼒 􏼓

� min‖B − D‖
2
F + min D − RTY

����
����
2
F

� L1(B) + L2(R),

(24)

where D is a n × N constant matrix and satisfies the fol-
lowing two conditions: (1) signs of each element, i.e., positive
or negative, in D are the same as that in RTY, and (2) each
element in D is not greater than the corresponding position
element in RTY.

+erefore, the optimization goal for Loss(B,R) is
transformed into the two suboptimization problems, i.e.,
Loss1(B) and Loss2(R). Specifically, for the subproblem

Loss1(B), formula (14) gives the optimal solution.+erefore,
it can be guaranteed that the updated value of formula (14) is
less than or equal to the value obtained before. For the
subproblem Loss2(R), formula (21) gives the optimal so-
lution. +erefore, it also can be guaranteed that the updated
value of formula (21) is less than or equal to the value
obtained before.

Combining the two parts, the combination of (14) and
(21) can guarantee that the updated value is less than equal to
the value obtained before the update. We can conclude the
AVBH algorithm is convergence.

4. Experimental Results

+e experimental computer has the Intel Core i5-2410MCPU
and 8GB DDR3 memory. We compared the performance of
AVBH with that of several typical hashing methods: ACH
[12], ITQ [19], KMH [20], PCAH [21], and LSH [13].

4.1. Experimental Datasets

4.1.1. CIFAR-101. It is a set of 60,000-32× 32 colour images
in 10 categories with each category containing 6,000 images.
In this experiment, 320-D gist features were extracted for
each image in the dataset. We randomly selected 1,000
images as the test data and the remaining 59,000 as the
training data. In the training data, the closest 50 data points
(based on the Euclidean distance) from a test data point were
regarded as its nearest neighbours.

4.1.2. SIFT2. It is a local SIFT feature set containing
1,000,000 128-D images. 100,000 of these sample images
were randomly selected as the training data and 10,000 of
other sample images as the test data.

4.1.3. GIST3. It is a global GIST feature set containing
1,000,000 960-D images. 500,000 of these sample images
were randomly selected as the training data and 1,000
sample images as the test data.

4.2. Performance Evaluation. +e performance of AVBH
was evaluated mainly by the relationship between the ac-
curacy of the query (precision) and the recall rate (recall).
We define

precision �
true positive results

true positive results + false positive results
,

recall �
true positive results

true positive results + false negative results
.

(25)

For the sake of fairness, the average encoding length of
AVBH was set to be the encoding length of other methods
under a given dataset.

Figures 2–4 show precision-recall curves for Euclidean
neighbour retrieval for several methods on CIFAR-10,
SIFT, and GIST with Euclidean neighbour ground truth.
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Our method, AVBH, can get a better precision perfor-
mance on the four datasets. As the AVBH algorithm uses
the variable bit code, the total code length is less than

other algorithms. As a result, our method effectively re-
duces the cost of storage and improves the accuracy of
query.
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Figure 3: Comparison of the precision-recall experiment of different bits encoding under SIFT: (a) SIFT, 16 bit; (b) SIFT, 32 bit; (c) SIFT, 64
bit; (d) SIFT, 128 bit.
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Figure 4: Comparison of the precision-recall experiment of different bits encoding under GIST: (a) GIST, 16 bit; (b) GIST, 32 bit; (c) GIST,
64 bit; (d) GIST, 128 bit.
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5. Conclusion

In this paper, an asymmetric learning to hash with variable
bit encoding algorithm was proposed. By the frequency
statistics of the random Fourier feature encoding for the
dataset, we compress high-frequency hash codes into longer
encoding representations and low-frequency hash codes into
shorter encoding representations. For a query data, we
quantize to a long bit hash code and compare with the same
length cascade concatenated data point to retrieve the
nearest neighbours. +is ensures that the original data in-
formation can be preserved as much as possible while the
data are compressed, which maximizes the balance between
coding compression and query performance. Experiments
on open datasets show that the proposed algorithm effec-
tively reduces the cost of storage and improves the accuracy
of the query. As we use a two-stage algorithm framework for
the hash codes generating, the training stage costs a lot of
time. In future work, we will work on simplifying the
training process.

Data Availability

+e datasets for the experiment of this paper are as follows.
(1) CIFAR-10 (available at http://www.cs.toronto.edu/∼kriz/
cifar.html): it is a set of 60,000-32× 32 colour images in 10
categories with each category containing 6,000 images. In
this experiment, 320-D gist features were extracted for each
image in the dataset. We randomly selected 1,000 images as
the test data and the remaining 59,000 as the training data. In
the training data, the closest 50 data points (based on the
Euclidean distance) from a test data point were regarded as
its nearest neighbours. (2) SIFT (available at http://corpus-
texmex.irisa.fr): it is a local SIFT feature set containing
1,000,000 128-D images. 100,000 of these sample images
were randomly selected as the training data and 10,000 of
other sample images as the test data. (3) GIST (available at
http://corpus-texmex.irisa.fr): it is a global GIST feature set
containing 1,000,000 960-D images. 500,000 of these sample
images were randomly selected as the training data and 1,000
sample images as the test data.
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