
Research Article
Using Natural Language Preprocessing Architecture (NLPA) for
Big Data Text Sources

Marı́a Novo-Lourés,1,2 Reyes Pavón,1,2,3 Rosalı́a Laza,1,2,3 David Ruano-Ordas,1,2,3

and Jose R. Méndez 1,2,3

1Department of Computer Science, University of Vigo, ESEI-Escuela Superior de Ingenieŕıa Informática, Edificio Politécnico,
Campus Universitario As Lagoas s/n, Ourense 32004, Spain
2CINBIO-Biomedical Research Centre, University of Vigo, Campus Universitario Lagoas-Marcosende, Vigo 36310, Spain
3SING Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo 36312, Spain

Correspondence should be addressed to Jose R. Méndez; moncho.mendez@uvigo.es

Received 25 October 2019; Accepted 30 June 2020; Published 1 August 2020

Academic Editor: Autilia Vitiello

Copyright © 2020 Maŕıa Novo-Lourés et al. -is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

During the last years, big data analysis has become a popular means of taking advantage of multiple (initially valueless) sources to
find relevant knowledge about real domains. However, a large number of big data sources provide textual unstructured data. A
proper analysis requires tools able to adequately combine big data and text-analysing techniques. Keeping this in mind, we
combined a pipelining framework (BDP4J (Big Data Pipelining For Java)) with the implementation of a set of text preprocessing
techniques in order to create NLPA (Natural Language Preprocessing Architecture), an extendable open-source plugin
implementing preprocessing steps that can be easily combined to create a pipeline. Additionally, NLPA incorporates the
possibility of generating datasets using either a classical token-based representation of data or newer synset-based datasets that
would be further processed using semantic information (i.e., using ontologies).-is work presents a case study of NLPA operation
covering the transformation of raw heterogeneous big data into different dataset representations (synsets and tokens) and using
the Weka application programming interface (API) to launch two well-known classifiers.

1. Introduction and Motivation

-e technological advances reached during the last decade
have prompted important improvements in the information
technology industry, such as the emergence of social net-
working, the Internet of -ings, or cloud computing. -ese
new technologies, together with the enhancement of data
storage and computation capabilities, have stimulated the
continuous generation of large volumes of heterogeneous
data (structured and unstructured) at an unprecedented
speed. A clear example of this situation is shown in the latest
Statista report [1] estimating an exponential data growth
trend in the world that will reach 175 ZB during 2025
(representing an increase of 530% with respect to 2018).
However, the deluge of raw data is neither meaningful nor
useful in any aspect of life (people, enterprises, research

results, etc.). Big data has emerged as a new paradigm to
analyse and extract valuable information from the raw data
in real time by applying data mining tasks through the use of
parallel programming schemes over large computer clusters
[2]. -is scenario makes big data a fundamental paradigm to
increase competitiveness in all areas of knowledge (business,
science, government, healthcare, and so on).

Mining large volumes of raw data has allowed great
improvements in different fields [3, 4]. Advantages reached
in all these areas have boosted the use of big data and big data
analytics that will lead to an economic benefit that the latest
reports predict will be US$103B by 2027 [5]. However,
despite this positive scenario, only 30% to 40% of existing
raw data on average have been analysed [6].

-e competitive advantages of the big data paradigm
have bolstered the continuous creation of multiple tools and

Hindawi
Scientific Programming
Volume 2020, Article ID 2390941, 13 pages
https://doi.org/10.1155/2020/2390941

mailto:moncho.mendez@uvigo.es
https://orcid.org/0000-0002-1935-4760
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/2390941

cloud-based services able to handle, manage, and interpret
data to offer meaningful information. Additionally, the
exponential growth in recent years of social media users and
interconnected devices to continuously share information in
real-time has prompted the need to perform big data ana-
lytics and decision-making processes in the shortest period
of time [7]. Consequently, initial batch-mode processing
technologies used for processing big data are becoming
obsolete and inefficient mainly due to their inability to lead
with real-time streaming sources.

During the last few years, new improved solutions based
on the pipeline concept have emerged with the specific aim
of solving this situation [8, 9].-e concept of data pipelining
is based on segmenting a complex task into several simpler
and interconnected subtasks (also named pipes) where the
output of one subtask becomes the input of the next one [10].
Ever since this divide-and-conquer paradigm emerged in the
big data domain, multiple cloud-based pipelining frame-
works have been developed by important companies to
perform data analysis and processing services [11].

However, the need to execute and store data in external
services and infrastructures (managed by third-party en-
terprises) makes several businesses uneasy with the possi-
bility of private data commingling with other organizations
[12, 13]. Additionally, since the cloud infrastructure is en-
tirely owned, managed, and monitored by the service pro-
vider, it makes it difficult for customers to have the level of
control that they would want over their back-end infra-
structure [13, 14]. -ese drawbacks motivated large and
medium enterprises to progressively migrate the cloud-
based services to a proprietary solution by designing and
implementing their own objective-specific pipelining tools.
Meanwhile, in order to bring free alternatives to the com-
munity, multiple offline domain-specific Big Data Pipeline
tools emerged from both the research and academic envi-
ronment [15]. -is scenario has allowed the widespread
creation, development, and use of many big data-oriented
technologies focused on extracting relevant information
from large volumes of (mainly nonstructured) information.

-is context has prompted the appearance of Text
Analytics models.-is concept is the result of combining big
data-oriented technologies over a large amount of non-
structured data sources (such as tweets, blogs, and wikis) and
Artificial Intelligence (AI) methods to analyse and extract
previously unknown information [16]. In order to suc-
cessfully apply AI methods to extract valuable information,
the raw text should be transformed by applying textual
preprocessing techniques into features (usually represented
as columns) and instances (represented as rows). Pre-
processing methods involve the selection, combination, and
execution of different preprocessing tasks able to transform
raw input data collected from multiple heterogeneous
sources of text into full-featured datasets.

Text Analytics has been widely used by industries and
researchers [17, 18] since it can help decision-makers to
understand the behaviour of nonstable domains (where
sudden changes occur). Despite the promising results
achieved by the published works using Text Analytics
models, we found an important limitation regarding the

extended use of token-based preprocessing techniques. Text
Analytics models are based on using statistical methods and
regular expressions to extract and detect the most important
features from text contents. -ese (token-based) methods
and expressions may have served as an adequate compro-
mise between computational resource consumption and
performance during the 1990s, when computational capa-
bilities and technologies were considerably limited. How-
ever, technological advances achieved during the last decade
in the field of information sciences have allowed the de-
velopment and deployment of new approaches focused on
detecting and extracting concepts according to their se-
mantic relationships (synset-based representation). Despite
the fact that these new methods achieve better performance
results than token-based methods [19–22], their application
in the big data domain is not common. Additionally, the
domain-dependant nature of the stages involved in the Text
Analytics process (information extraction and text mining)
[16] complicates the development of general-purpose Text
Analytics frameworks. In order to palliate these issues, we
developed NLPA, a Java pipeline-based tool able to extract
features from multiple sources by using a flexible combi-
nation of tasks. By default, NLPA enables the extraction of
both tokens (using token-based methods) and synsets (using
semantic-based methods). However, in order to adapt to
user needs, it also allows an easy design, development, and
deployment of new functionalities (tasks). NLPA has been
developed over BDP4J (a Java pipelining framework for
processing big data) due to its performance, flexibility, and
highly customizable capabilities [23].

-e rest of our work is structured as follows. Section 2
presents several well-known NLP Java frameworks used in
big data projects and their limitations. Section 3 introduces
NLPA, including a brief description regarding its support of
text mining tasks and its interaction with the BDP4J
framework. Section 4 includes a case study showing the use
of NLPA. Section 5 outlines the lessons achieved during the
development of NLPA. Finally, Section 6 summarizes the
main conclusions and highlights future work.

2. State of the Art

While Text Analytics was being successfully applied to ex-
plore texts from different domains, a wide variety of tools
(most of them distributed as open-source) emerged and
became popular. -ese tools have been developed in a wide
variety of programming languages (including Java, Python,
and R). Although the usage of new programming languages
(such as Python, Golang, or R) is increasing worldwide, the
number of Java developments and developers is clearly
greater than other languages [24]. For this reason, this study
compiles the following tools implemented in Java: (i)
MALLET [25], (ii) GATE [26], (iii) Stanford CoreNLP [27],
(iv) OpenNLP [28], (v) UIMA [29], and (vi) DKPro-Core
[30] and a study executed by IXA NLP Group using Apache
Storm framework for text analysis purposes [31].

MALLET (MAchine Learning for LanguagE Toolkit) is
used to performmachine learning over text data. Concretely,
it is an integrated collection of Java code to perform

2 Scientific Programming

statistical natural language processing, document classifi-
cation, information extraction, clustering, or topic model-
ling. MALLET implements a flexible system of pipes, which
handle distinct tasks such as tokenizing strings, removing
stopwords, and converting sequences into count vectors.

GATE (General Architecture for Text Engineering) is
an open-source software toolkit for text analysis and
processing. It allows text processing to become a com-
prehensive task, bringing together software developers,
language engineers, and research staff from diverse fields.
GATE components are one of three types: (i) Langua-
geResources (lexicons, corpora, ontologies, etc.), (ii)
ProcessingResources (parsers, generators, ngram mod-
ellers, tokenizer, POS tagger, sentence splitter, gazetteer,
orthomatcher, coreference, etc.), and (iii) Visual-
Resources (visualisation and editing components that
participate in GUIs). It supports a wide variety of formats
(such as plain text, HTML, SGML, XML, RTF, e-mail, and
PDF), provides easy-to-use and extendable facilities for
text annotation (ontology), facilitates persistent storage of
language resources, and implements multilingual data
processing and NLP methods.

Stanford CoreNLP provides a set of human-language
technology tools. It integrates many of Stanford’s NLP tools,
including the POS tagger, the named entity recognizer
(NER), the parser, the coreference resolution system, sen-
timent analysis, bootstrapped pattern learning, and the open
information extraction tools. Moreover, Stanford CoreNLP
provides a robust annotator for arbitrary texts support for a
wide range of (human) languages, and it can be used from
the command-line via its original Java programmatic API,
the object-oriented simple API, third-party APIs for most
major modern programming languages, or a web service. It
supports Linux, macOS, and Windows operating system
platforms.

-e Apache OpenNLP library implements machine
learning methods for processing natural language. It sup-
ports the most common NLP tasks, such as tokenization,
sentence segmentation, POS tagging, named entity extrac-
tion, chunking, parsing, language detection, and coreference
resolution.-ese functionalities are structured in such a way
that executing one of them could make the other available
for further processing. Additionally, it supports train-test
evaluations to benchmark different configurations. -ese
facilities are accessible via API or by using the command-line
interface provided for programmatically defined experi-
mental protocols.

UIMA (Unstructured Information Management Ap-
plications) are software applications designed to analyse
large volumes of unstructured information (e.g., text, audio,
and video) to discover relevant knowledge. UIMA enables
applications to be decomposed into components and pro-
vides a large list of components for analysing unstructured
information such as whitespace tokenizer, snowball, regular
expression, dictionary, and configurable feature extractor.
Each UIMA component has been developed by imple-
menting interfaces defined by the framework and provides
self-describing metadata via XML descriptor files. -e
framework implements the mechanisms to exchange

information between them (i.e., data flow) and their
management.

DKPro-Core (Darmstadt Knowledge Processing Core) is
a software component library implementing natural lan-
guage processing (NLP) tasks. It is based on the Apache
UIMA framework and integrates many state-of-the-art NLP
tools (i.e., uimaFITcomponents) allowing their combination
to build an experiment pipeline. DKPro-Core is primarily
focused on the execution of linguistic preprocessing tasks
(e.g., part-of-speech taggers, parsers, etc.).

Following the usage of big data approaches for Text
Analytics, Agerri et al. [31] designed and test a big data
streaming approach for text processing. -ey take ad-
vantage of Apache Storm framework designing Storm
bolts to execute NLPA operations in a distributed archi-
tecture. -ey developed five text processing operations
(tokenizing, POS tagging, NER, constituency parsing, and
coreference resolution) and made some experimental
analysis mainly focused on the evaluation of the
throughput.

Based on the general operation of these frameworks, we
find adequate usage of big data approaches to deal with the
analysis of the text (unstructured data). Moreover, we find
that these frameworks do not provide some interesting
functionalities (such as the creation of semantic repre-
sentations of the texts or the handling of multiple infor-
mation data sources). Taking into consideration the
contributions of these previous works together with our
ideas, we developed NLPA, which provides the following
additional functionalities: (i) use new semantic-based
(synset) representation; (ii) handle different sources of
information (tweets, e-mail, messages websites, etc.); and
(iii) properly configure and execute many low-level text
preprocessing steps to fulfil the requirements of each
concrete user, such as the elimination of URLs or abbre-
viation handling. -e next section introduces NLPA and
details the operations that can be combined to preprocess
text corpora.

3. Introducing NLPA

As previously stated, in order to execute Text Analytics, big
data should be transformed into full-featured datasets ready
to be processed using AI techniques. Customizing and ex-
ecuting this transformation is the main functionality pro-
vided by NLPA. For this purpose, NLPA contains a list of
preprocessing task implementations written in Java that can
be used as a plugin for the BDP4J framework. -ese task
definitions use synsets and/or tokens to implement efficient
processing of the information exchanged through the dif-
ferent protocols and Internet services. NLPA provides more
than 30 preprocessing tasks applicable over corpora con-
taining e-mails (RFC 5322 [32]), websites (Web Archive,
WARC), tweets, YouTube comments, SMS (Short Message
Service), or plain text. -e identification of these file types is
made by using file extensions (.eml, .warc, .twtid, .ytbid,
.tsms, and .txt, respectively). Given the architecture of the
BDP4J framework, these preprocessing tasks are applied to
org.bdp4j.types.Instance objects (see Figure 1).

Scientific Programming 3

As shown in Figure 1, Instance class brings together
four attributes: (i) source, (ii) name, (iii) data, (iv) target,
and (v) props. In detail, the source attribute stores the
information required to access the source of the infor-
mation compiled (usually a java.io.File is enough). -e
name attribute represents any form of unique identifi-
cation of an instance. -e processing of the instance
implies a sequence of modifications of the data attribute
(originally with the same value as the source attribute)
while preprocessing tasks are applied. Logically, modifi-
cations of the data attribute could imply the loss of in-
formation from the original data and the impossibility of
returning to the original state of the data (which could be
achieved from source attribute). Moreover, the target
attribute is useful for addressing classification and pre-
diction problems to include in the instance information
about the real prediction/classification. Finally, the props
attribute contains several properties that are computed
through preprocessing tasks (such as language and text
length).

NLPA preprocessing tasks comprise five input types for
data attribute: java.io.File, java.lang.StringBuffer, org.nlpa.-
types.SynsetSequence, org.nlpa.types.TokenSequence, and
org.nlpa.types.FeatureVector. Table 1 compiles the input and
output data types of the data attribute for all tasks included
in our framework.

As shown in Table 1, most tasks are designed to use
java.lang.StringBuffer (a mutable representation of strings)
as input data. Some useful operations, such as the processing
of abbreviations, slang, interjections, stopwords, URLs, and
references to users, are made from this representation.

-e following subsections describe the tasks implemented
by our framework, classified by the data type required for the
data attribute of instances being processed. Additionally, for
each task, we will provide an example of use.

3.1. Processing java.io.File Data Type. Although streaming
sources could be easily used with NLPA, it currently uses
locally stored files (i.e., in a local or network file system)
represented through java.io.File objects as the primary
means of reading data instances. Descriptions of each
available task for processing instances containing java.io.File
objects as data are included hereinafter. For each task, we
also include the changes made in the following instance
represented in JSON (JavaScript Object Notation): {props:
{}, name: “1”, data: “_spam_/ex.tsms”, source: “_spam_/
ex.tsms”, target: null}. In the example, source and data at-
tributes are instances of java.io.File (but represented as
String) while name is really a String object.

File2StringBufferPipe is able to transform the data attri-
bute of an instance from java.io.File to a java.lang.StringBuffer
type. For this reason, the textual content of the target file (only
for supported formats) is stored in the data attribute. -e
modification made by this task in the example is {data:
“December is hre :-), ho ho ho! Beat the Christmas days with
us and we’ll even give you 19% off online until 31 Dec. Visit us
on <a href� \”http://www.xx.com\“>here, #xx or @xx”}.
After the execution of this task, the data attribute is an in-
stance of java.lang.StringBuffer.

GuessDateFromFilePipe is able to find the date of the
contents (when available) in the input file (interpreting their
formats). As a result of this process, the date is stored as a
property of each instance (using “date” as default name).
Using this task, the attribute props of the instance provided
as an example is transformed as follows {props: {“date”:
null}}. As long as the tsms (Text of an SMS message) format
does not contain the date of the message, the date property is
filled with null.

StoreFileExtensionPipe creates a property to insert the
type of content into the instance properties (using “exten-
sion” as the default name). -e value of the property is

Instance

– Serializable data
– Serializable target
– Serializable name
– Serializable source
– boolean is Valid
– Map<String, Serializable> props
+ Instance(Instance i)
+ Instance(Serializable data, Serializable target, Serializable name, Serializablesource)
+ Serializable cloneObject(Serializable obj)
+ Instance clone()
+ Serializable getData()
+ void setData (Serializable d)
+ Serializable getTarget()
+ void setTarget(Serializable t)
+ Object getName()
+ void setName(Serializable n)
+ Object getSource()
+ void setSource(Serializable s)
+ Set<String>getPropertyList()
+ Collection<Serializable> getValueList()
+ setProperty(String key, Serializable value)
+ Object getProperty(String key)
+ boolean hasProperty(Stringkey)
+ String toString()
+ void invalidate()
+ boolean isValid()

Serializable

Figure 1: UML representation of the BDP4J Instance class.

4 Scientific Programming

http://www.xx.com

computed as the extension of the file referenced by the data
attribute of the instance. Using this task, the props attribute
of our example is changed as follows {props: {“extension”:
“.tsms”}}.

Finally, TargetAssigningFromPathPipe can be applied
only for classification purposes. -is task searches the path
of the File referenced by the data attribute of the instance to
find a folder matching the class. -is task uses a transfor-
mation map to connect system folder names with instance
categories. By using this task, the target attribute of the input
example is changed as follows {target: “spam”}.

Once a java.io.File is processed into a java.lang.StringBuffer
(i.e., using File2StringBufferPipe task), a wide variety of op-
erations can be used to preprocess the text.-e next subsection
presents the tasks that can be used for the processing
StringBuffer object included as a data instance.

3.2. Processing java.io.StringBuffer Data Type.
StringBuffer class is used to represent and modify textual
contents (issued by mutable property provided by String-
Buffer Java class). Once the text is extracted, a wide variety of
tasks are provided to transform input contents by dropping
parts (interjections, stopwords, emoticons, etc.) and/or
replacing the text (slang forms, abbreviations, etc.). -e
descriptions of available tasks for processing this type of data
(alphabetically ordered) are provided hereinafter. For this
subsection, we will use the following instance as an example:
{props: {}, name: “1”, data: ”December is hre :-), ho ho ho!
Beat the Christmas days with us and we’ll even give you 19%
off online until 31 Dec. Visit us on <a href� “http://
www.xx.com”>here, #xx or @xx”, source: “_spam_/
ex.tsms”, target: null}.

AbbreviationFromStringBufferPipe detects abbreviations
in text and expands them using dictionaries. Abbreviation

dictionaries are implemented for several languages (such as
English, Spanish, French, or Russian) using JSON files. In
order to properly select the right abbreviations dictionary, a
property storing the language of text should previously exist
(see GuessLanguageFromStringBufferPipe). As a result of
preprocessing the example with the pipeline (StripHTML-
FromStringBufferPipe | GuessLanguageFromStringBufferPipe
| AbbreviationFromStringBufferPipe), the following modifi-
cations (props and data attributes) are made {props:
{“language”: “EN”, “language-reliability”: “0.9”}, data:
“December is hre :-), ho ho ho! Beat the Christmas days with
us and we’ll even give you 19% off online until 31 December
Visit us on here, #xx or @xx”}.

ComputePolarityFromStringBufferPipe adds the polarity
of the text as an instance property. Possible results are in the
form of the 5-level Likert scale (i.e., 0 to indicate “Very
Negative”, 1 to “Negative”, 2 to “Neutral”, 3 to “Positive”,
and 4 to “Very Positive”).-e polarity is computed by taking
advantage of the Stanford NLP framework. -e change of
the instance made by executing this task is {props: {“po-
larity”: “1”}}.

ComputePolarityTBWSFromStringBufferPipe adds the
polarity of the text by querying the TextBlob (https://
textblob.readthedocs.io) Python library. -e polarity score
computed by using this library is a float within the range
[−1.0, 1.0]. In order to query Python TextBlob library from
Java, a REST (Representational State Transfer) web service
(TBWS, TextBlob Web Service) was developed to be easily
launched as a Docker container using the scripts provided
with the tool. By executing this task, the props attribute of the
example is modified as follows: {props: {“polarityTBWS”:
“0.0”}}.

ContractionsFromStringBufferPipe replaces contractions
in the original text using dictionaries (JSON files). To make
the replacements, some language-specific dictionary files are

Table 1: Input and output data types for all tasks.

Output data
File StringBuffer SynsetSequence TokenSequence FeatureVector

Input
data

File
GDFF,
SFE,
TAFP

F2SB

StringBuffer

AFSB, CPFSB, CPTFSB, CFSB, FEjISB, FEtISB,
FHISB, FUISB, FUNISB, GLFSB, IFSB,

MLFSB, NFSB, SBTLC, SFSB, SHFSB, SWFSB,
TCFSB

SB2SS SB2TS

SynsetSequence SS2FV
TokenSequence TSPS, TSSI TS2FV

FeatureVector TCFFV,
TDFFV

Available tasks: Input data file: GuessDateFromFilePipe (GDFF), StoreFileExtensionPipe (SFE), TargetAssigningFromPathPipe (TAFP), Fil-
e2StringBufferPipe (F2SB). Input data StringBuffer: AbbreviationFromStringBufferPipe (AFSB), ComputePolarityFromStringBufferPipe (CPFSB),
ComputePolarityTBWSFromStringBufferPipe (CPTFSB), ContractionsFromStringBufferPipe (CFSB), FindEmojiInStringBufferPipe (FEjISB), FindE-
moticonInStringBufferPipe (FEtISB), FindHashtagInStringBufferPipe (FHISB), FindUrlInStringBufferPipe (FUISB), FindUserNameInStringBufferPipe
(FUNISB), GuessLanguageFromStringBufferPipe (GLFSB), InterjectionFromStringBufferPipe (IFSB), MeasureLengthFromStringBufferPipe (MLFSB),
NERFromStringBufferPipe (NFSB), StringBufferToLowerCasePipe (SBTLC), SlangFromStringBufferPipe (SFSB), StripHTMLFromStringBufferPipe
(SHFSB), StopWordFromStringBufferPipe (SWFSB), TeeCSVFromStringBufferPipe (TCFSB), StringBuffer2SynsetSequencePipe (SB2SS), String-
Buffer2TokenSequencePipe (SB2TS). Input data SynsetSequence: SynsetSequence2FeatureVectorPipe (SS2FV). Input data TokenSequence: TokenSe-
quencePorterStemmerPipe (TSPS), TokenSequenceStemIrregularPipe (TSSI), TokenSequence2FeatureVectorPipe (TS2FV). Input data FeatureVector:
TeeCSVFromFeatureVectorPipe (TCFFV), TeeDatasetFromFeatureVectorPipe (TDFFV).

Scientific Programming 5

https://textblob.readthedocs.io
https://textblob.readthedocs.io

included in NLPA. In order to properly select the right
contractions dictionary, a property storing the language of
text should be previously computed (see GuessLanguage-
FromStringBufferPipe). By preprocessing the example of
instance with the pipeline (StripHTMLFromStringBufferPipe
| GuessLanguageFromStringBufferPipe | Con-
tractionsFromStringBufferPipe), the following modifications
are made: {props: {“language”: “EN”, “language-reliability”:
“0.9”}, data: “December is hre :-), ho ho ho! Beat the
Christmas days with us and we will even give you 19% off
online until 31 Dec. Visit us on here, #xx or @xx” }.

FindEmojiInStringBufferPipe finds and removes (if de-
sired) emojis from text and adds them as a property of the
instance. By default, the property name is “emoji”. -e
process is made by taking advantage of the emoji-java library
(https://github.com/vdurmont/emoji-java). After executing
this task, the following fields of the example provided in this
subsection are modified: {props: { “emoji”: “?” }, data:
“December is hre:-), ho ho ho! Beat the Christmas days with
us and we’ll even give you 19% off online until 31 Dec. Visit
us on <a href � \“http://www.xx.com”>here, #xx or
@xx”}.

FindEmoticonInStringBufferPipe finds and removes (if
needed) emoticons from text and creates a new property
(named “emoticon” by default) for the instance. Emoticons
are found using a complex regular expression over the whole
text. One of the main limitations of this task is that Find-
HashtagInStringBufferPipe (see next paragraph) cannot be
executed afterwards. After executing this task, the following
fields of the example provided in this subsection are
modified: {props: {“emoticon”: “:-)”}, data: “December is
hre, ho ho ho! Beat the Christmas days with us and we’ll even
give you 19% off online until 31 Dec. Visit us on <a
href� \“http://www.xx.com”>here, #xx or @xx”}.

FindHashtagInStringBufferPipe searches for hashtags in
text and adds them as a property (“hashtag” by default) of
the instance. Additionally, the task can be configured to
remove the identified hashtags from the original text. In-
ternally, this task uses a regular expression to find hashtags
in text. Using this task, the provided example will be
modified as {props: {“hashtag”: “#xx”}, data: “December is
hre :-), ho ho ho! Beat the Christmas days with us and we’ll
even give you 19% off online until 31 Dec. Visit us on <a
href� \“http://www.xx.com”>here, or @xx”}.

FindUrlInStringBufferPipe finds URLs from the text,
adding them as a property (“URLs” by default) of the in-
stance. Additionally, removing URLs from the original text
is also possible. -is task is carried out by using regular
expressions. FindUserNameInStringBufferPipe (see next
paragraph) task cannot be executed after FindUrlIn-
StringBufferPipe. When applied on the provided example,
the following changes can be observed {props: {“URLs”:
“http://www.xx.com”}, data: “December is hre :-), ho ho ho!
Beat the Christmas days with us and we’ll even give you 19%
off online until 31 Dec. Visit us on <a href� \“\”>here,
#xx or @xx”}.

FindUserNameInStringBufferPipe takes advantage of
regular expressions to search and optionally remove tokens

in the form “@<userName>” from the text. Also, it adds the
identified user references as a property of the instance
(“@userName” by default). -e preprocessing of the ex-
ample implies the following changes {props: {“@userName”:
“@xx”}, data: “December is hre :-), ho ho ho! Beat the
Christmas days with us and we’ll even give you 19% off
online until 31 Dec. Visit us on <a href� \“http://www.xx.
com”>here, #xx or “}.

GuessLanguageFromStringBufferPipe determines the
language of the text included in the instance. It adds
“language” and “language-reliability” properties (by default)
to the instance in order to store the result of the process. -e
data of the instance should contain text without HTML tags
(call StripHTMLFromStringBufferPipe task). To detect both
the language and the probability of a successful identifica-
tion, we take advantage of the language-detector library for
Java (https://github.com/optimaize/language-detector),
which can distinguish up to 71 languages. By applying the
pipeline (StripHTMLFromStringBufferPipe | GuessLangua-
geFromStringBufferPipe) on the example, the instance is
changed as follows: {props: {“language”: “EN”, “language-
reliability”: “0.9”}, data: “December is hre :-), ho ho ho! Beat
the Christmas days with us and we’ll even give you 19% off
online until 31 Dec. Visit us on here, #xx or @xx”}.

InterjectionFromStringBufferPipe is able to identify and
optionally drop interjections from text using dictionaries (JSON
files). It adds them to the “interjection” property of the instance.
Interjections are language-dependant and, therefore, the lan-
guage of the instance should be computed before executing this
task (GuessLanguageFromStringBufferPipe). -is task modifies
the following attributes of the provided example: by applying the
pipeline (StripHTMLFromStringBufferPipe | GuessLanguage-
FromStringBufferPipe | InterjectionFromStringBufferPipe) on the
example, the instance is changed as follows: {props: {“language”:
“EN”, “language-reliability”: “0.9”, “interjection”: “ho ho ho! --
ho -- here – “}, data: “December is hre :-), ho ho ho! Beat the
Christmas days with us and we’ll even give you 19% off online
until 31 Dec. Visit us on here, #xx or @xx”}.

MeasureLengthFromStringBufferPipe adds the “length”
property (by default) computed by measuring the length of
the text included in the data attribute of the instance. -is
task made the following changes to the provided example:
{props: {“length”: “181”}}.

NERFromStringBufferPipe implements NER by adding
all identified entities into instance properties and optionally
deletes them from the input text. By default, date (property
“NERDATE”), money (“NERMONEY”), number (“NER-
NUMBER”), address (“NERADDRESS”), and location
(“NERLOCATION”) are the entities that can be recognized.
NER is implemented through the Stanford NLP framework.
-e changes made on the example when executing this task
are {props: {“NERDATE”: “December”, “NERMONEY”: “”,
“NERNUMBER”: “31”, “NERADDRESS”: “”, “NERLOCA-
TION”: “”}}.

SlangFromStringBufferPipe detects slang terms in the input
text and replaces them with their corresponding formal term
taken from dictionaries (JSON files). In order to select the
appropriate dictionary, the language of the text should be

6 Scientific Programming

https://github.com/vdurmont/emoji-java
http://www.xx.com
http://www.xx.com
http://www.xx.com
http://www.xx.com
http://www.xx.com
http://www.xx.com
https://github.com/optimaize/language-detector

previously computed (GuessLanguageFromStringBufferPipe).
Using the pipeline (StripHTMLFromStringBufferPipe | Gues-
sLanguageFromStringBufferPipe | SlangFromStringBufferPipe),
the provided example gets modified as follows: {props:
{“language”:“EN”, “language-reliability”: “0.9”}, data: “De-
cember is here :-), hold on hold on hold on! Beat the Christmas
days with us and we’ll even give you 19% off online until 31
Dec. Visit us on here, #xx or @xx”}.

StripHTMLFromStringBufferPipe removes HTML tags
and changes HTML entities by their corresponding char-
acters (i.e., “ñ” is converted to “ñ”). Using this task, the input
example is converted as follows: {data: “December is hre :-),
ho ho ho! Beat the Christmas days with us and we’ll even give
you 19% off online until 31 Dec. Visit us on here, #xx or
@xx”}.

StopWordFromStringBufferPipe drops stopwords from
text included in the data attribute of an instance. -e
text language should be previously detected to select
the appropriatestopword dictionary. -e Abbreviation-
FromStringBufferPipe task cannot be executed after
his one.-e modifications of the example when
executing (StripHTMLFromStringBufferPipe | GuessLangua-
geFromStringBufferPipe | StopWordFromStringBufferPipe) are
the following ones: {props: {“language”: “EN”, “language-
reliability”: “0.9”}, data: “December hre:-), ho ho ho! Beat
Christmas days give 19% online 31 Dec. Visit here, #xx @xx”}.

Finally, the StringBufferToLowerCasePipe transforms the
textual content included in the data attribute of an instance
into lowercase. -is task modifies the provided example as
follows: {data: “December is hre :-), ho ho ho! Beat the
Christmas days with us and we’ll even give you 19% off
online until 31 dec. visit us on <a href� \“http://www.xx.
com”>here, #xx or @xx”}.

Additionally, an instance containing a StringBuffer can be
transformed into a SynsetSequence or a TokenSequence (de-
tailed in Sections 3.3 and 3.4). -ese functionalities are
implemented by StringBuffer2SynsetSequencePipe and
StringBuffer2TokenSequencePipe, respectively. -e former
uses Babelfy API (http://babelfy.org) to recognize synsets of
each word included in the text. -e latter implements a
tokenizing process using a set of characters as word delimiters
(tokens are represented in base64 format). Furthermore,
TeeCSVFromStringBufferPipe stores instances in a Comma
Separated Value(s) (CSV) file containing all computed
properties together with the respective text and keeps
the instance unmodified. -e pipeline (StripHTML-
FromStringBufferPipe | GuessLanguageFromStringBufferPipe |
StringBuffer2SynsetSequencePipe) produces the following
modifications of the example provided: {props: {“language”:
“EN”, “language-reliability”: “0.9”}, data: [[“bn:00025645n”,
“December”], [“bn:00006898n”, “ho”], [“bn:03100869n”, “ho
ho”], [“bn:00009396n”, “Beat”], [“bn:00000086n”, “Christmas
days”], [“bn:03149538n”, “online”], [“bn:00025645n”,
“Dec”], [“bn:14194518n”, “Visit”]]}. Conversely, the
pipeline (StripHTMLFromStringBufferPipe | GuessLangua-
geFromStringBufferPipe | StringBufferToLowerCasePipe |
StringBuffer2TokenSequencePipe) makes the following mod-
ifications: {props: {“language”: “EN”, “language-reliability”:
“0.9”}, data: [“tk:ZGVjZW1iZXI� ”, “tk:aXM� ”, “tk:aHJl”,

“tk:aG8� ”, “tk:aG8� ”, “tk:aG8� ”, “tk:8J +OhQ�� ”, “tk:
YmVhdA�� ”, “tk:dGhl”, “tk:Y2hyaXN0bWFz”, “tk:
ZGF5cw�� ”, “tk:d2l0aA�� ”, “tk:dXM� ”, “tk:YW5k”, “tk:
d2U� ”, “tk:bGw� ”, “tk:ZXZlbg�� ”, “tk:Z2l2ZQ�� ”, “tk:
eW91”, “tk:MTk� ”, “tk:b2Zm”, “tk:b25saW5l”, “tk:
dW50aWw� ”, “tk:MzE� ”, “tk:ZGVj”, “tk:dmlzaXQ� ”, “tk:
dXM� ”, “tk:b24� ”, “tk:aGVyZQ�� ”, “tk:eHg� ”, “tk:
b3I� ”, “tk:eHg� ”]}.

3.3. Processing org.nlp.types.SynsetSequence. A SynsetSe-
quence object brings together a sequence of synsets that are
found in the text of an instance. To handle instances with this
data type as input, NLPA includes the task SynsetSe-
quence2FeatureVectorPipe. It is able to transform a Syn-
setSequence into a FeatureVector (detailed in Section 3.5)
which compiles duplicated features and assigns a score to
each feature according to a grouping scheme. -e grouping
scheme can be one of the following: (i) Sequence-
GroupingStrategy.COUNT (default value), which indicates
the number of times that a synset is observed in the se-
quence; (ii) SequenceGroupingStrategy.BOOLEAN, which
assigns 1 when the synset is included in the content, oth-
erwise 0; and (iii) SequenceGroupingStrategy.FREQUENCY,
which indicates the frequency of the synset in the text
(number of times that the synset is observed divided by the
entire number of synsets). By applying this task to the ex-
ample instance having a SynsetSequence in the data attribute
(see previous subsection), we achieve the following changes:
{data: {“bn:00025645n”: 2, “bn:00006898n”: 1, “bn:
03100869n”: 1, “bn:00009396n”: 1, “bn:00018836n”: 1, “bn:
03149538n”: 1, “bn:14194518n”: 1 }}.

3.4. Processing org.nlp.types.TokenSequence. A TokenSe-
quence contains the sequence of tokens that are found in the
text of an instance. To handle instances with this data type as
input, NLPA includes the tasks described hereinafter. For
this subsection, we will use the instance containing a
TokenSequence in data attribute shown in Section 3.2.

TokenSequence2FeatureVectorPipe, similarly to Syn-
setSequence2FeatureVectorPipe, transforms the list of tokens
included in the text of the data instance into a FeatureVector
according to a selected grouping scheme (Sequence-
GroupingStrategy). Using this task, the example instance can
achieve the following transformations: {data: [“tk:
ZGVjZW1iZXI� “: 1.0, “tk:aXM� ”: 1.0, “tk:aHJl”: 1.0, “tk:
aG8� “: 3.0, “tk:8J +OhQ�� ”: 1.0, “tk:YmVhdA�� “: 1.0,
“tk:dGhl”: 1.0, “tk:Y2hyaXN0bWFz”: 1.0, “tk:ZGF5cw�� “:
1.0, “tk:d2l0aA�� ”: 1.0, “tk:dXM� ”: 2.0, “tk:YW5k”: 1.0,
“tk:d2U� ”: 1.0, “tk:bGw� ”: 1.0, “tk:ZXZlbg�� ”: 1.0, “tk:
Z2l2ZQ�� “: 1.0, “tk:eW91”: 1.0, “tk:MTk� ”: 1.0, “tk:
b2Zm”: 1.0, “tk:b25saW5l”: 1.0, “tk:dW50aWw� ”: 1.0, “tk:
MzE� ”: 1.0, “tk:ZGVj”: 1.0, “tk:dmlzaXQ� ”: 1.0, “tk:
b24� ”: 1.0, “tk:aGVyZQ�� ”: 1.0, “tk:eHg� ”: 2.0, “tk:
b3I� ”:1.0]}.

TokenSequencePorterStemmerPipe applies the Porter
stemmer algorithm to the TokenSequence included in an
instance. -is scheme is able to reduce the inflected (or
sometimes derived) words to their stem form, using a set of

Scientific Programming 7

http://www.xx.com
http://www.xx.com
http://babelfy.org

language-dependant rules. -e rules are defined by language.
Hence, the language of the texts should be previously computed
(see GuessLanguageFromStringBufferPipe in Section 3.2). By
using this task, the example provided is transformed as follows:
{data: [“tk:ZGVjZW1i”, “tk:aQ�� ”, “tk:aHJl”, “tk:aG8� ”, “tk:
aG8� ”, “tk:aG8� ”, “tk:8J +OhQ�� ”, “tk:YmVhdGU� ”, “tk:
dGhl”, “tk:Y2hyaXN0bWE� ”, “tk:ZGF5”, “tk:d2l0aA�� ”,
“tk:dQ�� ”, “tk:YW5k”, “tk:d2U� ”, “tk:bGw� ”, “tk:
ZXZlbg�� ”, “tk:Z2l2ZQ�� ”, “tk:eW91”, “tk:MTk� ”, “tk:
b2Y� ”, “tk:b25saW4� ”, “tk:dW50aWw� ”, “tk:MzE� ”, “tk:
ZGVj”, “tk:dmlzaXQ� ”, “tk:dQ�� ”, “tk:b24� ”, “tk:
aGVyZQ�� ”, “tk:eA�� ”, “tk:b3I� ”, “tk:eA�� ”] }. As an
example, the task changes some tokens including “days” that is
transformed into “day”.

TokenSequenceStemIrregularPipe applies irregular
stemming (through language-dependent dictionaries) to
tokens with the same purpose as the previous one. -e ir-
regular stemming task, if applied, should be executed before
TokenSequencePorterStemmerPipe, and the language of the
text should be computed before its use. In this case, the
instance is modified as follows: {data: [“tk:
ZGVjZW1iZXI� ”, “tk:YmU� ”, “tk:aHJl”, “tk:aG8� ”, “tk:
aG8� ”, “tk:aG8� ”, “tk:8J +OhQ�� ”, “tk:YmVhdA�� ”,
“tk:dGhl”, “tk:Y2hyaXN0bWFz”, “tk:ZGF5cw�� ”, “tk:
d2l0aA�� ”, “tk:dXM� ”, “tk:YW5k”, “tk:d2U� ”, “tk:
bGw� ”, “tk:ZXZlbg�� ”, “tk:Z2l2ZQ�� ”, “tk:eW91”, “tk:
MTk� ”, “tk:b2Zm”, “tk:b25saW5l”, “tk:dW50aWw� ”, “tk:
MzE� ”, “tk:ZGVj”, “tk:dmlzaXQ� ”, “tk:dXM� ”, “tk:
b24� ”, “tk:aGVyZQ�� ”, “tk:eHg� ”, “tk:b3I� ”, “tk:
eHg� ”]}. Concretely, as an example, the second term “is”
has been changed to “be”.

3.5. Processing org.nlp.types.FeatureVector. FeatureVector
compiles a set of features of text properties (synset-based or
token-based), identified in the text of an instance, and their
values. To handle input instances with this data type, NLPA
includes both TeeCSVFromFeatureVectorPipe and TeeDa-
tasetFromFeatureVectorPipe tasks, which are able to save a
dataset into disk (CSV format) or to memory (org.bdp4j.-
types.Dataset) for their subsequent use.-ese datasets can be
easily used to execute experiments in Weka Machine
Learning Software (https://www.cs.waikato.ac.nz/ml/weka/)
through the functionalities provided by BDP4J framework.

-e next section presents a case study in which NLPA is
used in order to show the creation and exploitation of a
pipeline containing some of the previously described tasks.

4. Using NLPA

NLPA is a plugin for BDP4J that implements a set of natural
language processing task definitions. BDP4J is a pipelining
Java framework able to combine and orchestrate the exe-
cution of preprocessing tasks in sequence or in parallel. -e
orchestration can be defined in Java source or using XML
files. Additionally, BDP4J adds a wide variety of constraint
checks that prevent development errors (dependencies and
input/output types for tasks). BDP4J also supports the in-
stance invalidation required when an NLPA task fails. It also

resumes the execution of pipelining processing after a
hardware-software failure. Finally, BDP4J supports the
debugging mode that is able to avoid the execution of some
tasks by restoring the results they achieved in a previous
execution. -is functionality was particularly useful during
the development of the NLPA plugin.

Figure 2 includes a class diagram and a fragment of
source code showing the interaction of BDP4J and NLPA
projects. Figure 2(a) specifies some architecture details to
facilitate the comprehension of the inner operation of both
projects. As we can see, NLPA tasks (three of them have been
included as examples) are created as a subclass of
org.bdp4j.pipe.AbstractPipe BDP4J.

As we can see in Figure 2(b), the pipeline orchestration
comprises some tasks (see Section 3) executed in sequence
(lines 2–18). In order to check whether the pipeline has been
correctly defined, a dependency check is executed (lines
21–25). Additionally, NLPA incorporates mechanisms to
automatically load instances from files (lines 28–29). And
finally, instances are processed (line 30).

-e next subsection introduces a complete case study
showing the functionality of the NLPA plugin in greater
detail and its interaction with BDP4J to invoke Weka
functionalities.

4.1.ACase Study. In order to test the functionality of NLPA,
we developed a complete case study, which is presented
hereinafter. In this context, we propose a spam filtering
problem that will be solved using ML binary supervised
classification (spam and ham classes). To take advantage of
TargetAssigningFromPathPipe task, files to classify will be
stored into “_ham_” and “_spam_” folders according to
their real class. It should be noted that assigning a target is
not required for other kinds of problems (i.e., clustering).

For this particular case study, we search for spam cor-
pora containing NLPA supported formats. Table 2 compiles
a list of publicly available corpora that were found with this
purpose.

For the current work, we selected small corpora that can
be quickly analysed even when the available computational
resources are low. As a result, we found that YouTube Spam
Collection Dataset and SMS-Spam-Collection v.1 are themost
adequate corpora for this case study. For preprocessing
YouTube Spam Collection Dataset, we used the IDs of
comments (not the text included in the original source) and
redownloaded the original text using the YouTube public
API6 (https://developers.google.com/youtube/v3/). Both
corpora were preprocessed using the NLPA pipeline shown
in Figure 3. -e names of the tasks have been abbreviated
according to the nomenclature shown in Table 1.

As shown in Figure 3, pSynsets and pTokens are two
examples of SerialPipes comprising a set of preprocessing
tasks (identified with a number) to process corpora. -e
inner processing made by both pipelines is very similar
(there are many common steps which are shown in black in
Figure 3). However, pSynsets generates a dataset using
synsets for representing the text while pTokens generates a
token-based representation. When both pipelines are

8 Scientific Programming

https://www.cs.waikato.ac.nz/ml/weka/
https://developers.google.com/youtube/v3/

started, a target class (ham or spam) is assigned to each
instance (task 1). -en, the type of input file (task 2) and the
text date (task 3) are stored in the “extension” and “date”
properties of the instance. After that, the textual content is
obtained from the original file and included in the data at-
tribute of an instance as a StringBuffer object (task 4). From
the text of the instance, several properties (using the default
name) are extracted: (i) the length of the text (task 5), (ii) user
names (task 6), (iii) hashtags (task 7), (iv) URLs (task 8), (v)
emoticons (task 9), and (vi) emojis (task 10). Additionally, all

text recognized and included in the previously mentioned
properties (except i) is removed from the original content.

After removing HTML tags and substituting entities by
their corresponding character (task 11), and due to the need
of identifying the language of instances for applyingmany text
transformations, we use GuessLanguageFromStringBufferPipe
(task 12). Several dictionary-based tasks are then executed
over the text: (i) expand contractions (task 13), (ii) expand
abbreviations (task 14), (iii) transforming slang terms into
formal terms (task 15), (iv) detect and remove interjections

BDP4J Framework

<<Interface>>
Pipe

+ Instance pipe(Instance carrier)
+ Collection<Instance> pipeAll(Collection<Instance> c)
+ boolean checkDependencies()

AbstractPipe

+ String getErrorMessage()
+ Collection<Instance> pipeAll(Collection<Instance> c)

SerialPipes ParallelPipes

+ pipeAll(Collection<Instance> c) + pipeAll(Collection<Instance> c)

NLPA

TargetAssigningFromPathPipe StoreFileExtensionPipe GuessDateFromFilePipe

~ Map<String, String> targets - String extensionProp ~ HashMap<String, DateExtractor> htExtractors
~ String dateProp+ Class<?> getInputType() + Class<?> getInputType()
+ Class<?> getInputType()+ Class<?> getOutputType() + Class<?> getOutputType()

+ void setTargets(Map<String, String> targets) + void setExtensionProp(String extensionProp) + Class<?> getOutputType()

+ Map<String, String> getTargets() + String getExtensionProp()
+ void setDateProp(String dateProp)

+ Instance pipe(Instance carrier) + Instance pipe(Instance carrier)
+ String getDateProp()
+ Instance pipe(Instance carrier)

(a)

1 /∗ Creating the processing pipe ∗/ 17 logger.info("orchestration:" + p.toString() +
2 AbstractPipe p = new SerialPipes(18 " \ n");
3 new AbstractPipe[]{ 19
4 new TargetAssigningFromPathPipe(), 20 /∗Check orchestration dependencies∗/
5 new StoreFileExtensionPipe(), 21 if (!p.checkDependencies()) {
6 new GuessDateFromFilePipe(), 22 logger.fatal("[CHECK DEPENDENCIES] " +
7 new File2StringBufferPipe(), 23 AbstractPipe.getErrorMessage());
8 new StripHTMLFromStringBufferPipe(), 24

25
System.exit(-1);

9 new GuessLanguageFromStringBufferPipe(),
10 new SlangFromStringBufferPipe(), 26
11 new StringBufferToLowerCasePipe(); 27 /∗Load and process instances∗/
12 new StringBuffer2TokenSequencePipe(), 28 ArrayList<Instance> instances =
13 new TokenSequence2FeatureVectorPipe(), 29 InstanceListUtils.load("instances/")
14 new TeeCSVFromFeatureVectorPipe() 30 p.pipeAll(instances);
15 }
16);

}

(b)

Figure 2: Example of the use of NLPA. (a) BDP4J framework and NLPA plugin interaction. (b) Example of pipeline orchestration and
execution defined in Java.

Scientific Programming 9

(task 16), and finally (v) drop stopwords (task 17). -e text is
then converted to lowercase (task 18).

After the 18th task, the operation of pSynsets and pTokens is
clearly different. pSynsets (highlighted in green) builds a Syn-
setSequence (i.e., a list of synsets identified in the remaining text)
and then transforms the synset sequence into a synset-based
FeatureVector (using SequenceGroupingStrategy.COUNT). Fur-
thermore, pTokens (highlighted in blue) transforms the text into
a TokenSequence (task 19). After that, each token is reduced to
its root form (tasks 20 and 21 for irregular and regular stem-
ming) and then a token-based FeatureVector is built compiling
duplicated tokens into a single feature with the number of times
the token was found.

Finally, datasets are generated in memory and disk using
TeeCSVFromFeatureVectorPipe and TeeDatasetFromFeatur-
eVectorPipe (tasks 21 and 22 for pSynsets and 23 and 24 for
pTokens). Storing the results of preprocessing in a CSV file is
useful to avoid future preprocessing of the same corpora.

After preprocessing (NLPA functionalities), and in order to
continue with the classification process, each dataset was split
into two stratified groups with 80% and 20% of the original
instances to be used for training and testing purposes,

respectively. -e dimensionalities of these datasets were re-
duced by applying Weka Information Gain implementation
[33] to the training data. Weka implementations of (Sequential
Minimal Optimization) SMO and NäıveBayes algorithms were
then used to create classifier models using the training data.
Finally, each trainedmodel was evaluated using test instances as
input.

For comparison purposes, Figure 4 shows a percentage-
based evaluation to analyse the number of false positive (FP),
false negative (FN) errors, and the hits (OK) together with a
detailed comparison using kappa, recall, precision, and
f-score evaluations.

As we can see from Figure 4, the differences achieved
between token-based and synset-based classification pro-
cesses are not significant in SMS-Spam-Collection v.1.
However, we find appreciable differences in YouTube Spam
Collection Dataset. -e poor performance achieved when
using synsets representation is due to the reduced number of
synsets found in more than one message of each dataset. In
this regard, NLPA does not implement generalization
schemes, which would allow grouping synset features with
similar semantic meanings [21]. For instance, “Viagra”,

Table 2: List of available corpora for spam classification.

Dataset name Language Type of
contents

Size
Available at

Ham Spam
CSDMC 2010
Spam Corpus English

E-mail
messages

2,949 1,378 https://github.com/hexgnu/spam_filter/tree/master/data

TREC 2007 Public
Corpus English 25,220 50,199 http://plg.uwaterloo.ca/∼gvcormac/treccorpus07/

SpamAssassin English 4,150 1,897 http://spamassassin.apache.org/old/publiccorpus/
Enron e-mail English 619,446 0 http://spamassassin.apache.org/old/publiccorpus/
Bruce Guenter
spam collection English 0 >3M http://untroubled.org/spam/

Ling spam English 2,412 481 http://csmining.org/index.php/ling-spam-datasets.html
SMS-spam-
collection v.1 English SMS

messages

4,827 747 http://www.dt.fee.unicamp.br/∼tiago/smsspamcollection/

British English
SMS corpora English 450 425 https://mtaufiqnzz.wordpress.com/british-English-sms-

corpora/
Webspam-UK
2007 English

Web pages

105,896,555 http://chato.cl/webspam/datasets/index.php— —
Websmap-UK
2011 English 1,769 1,998 https://sites.google.com/site/heiderawahsheh/home/web-spam-

2011-datasets/uk-2011-web-spam-dataset

DC 2010/EU 2010 English, French,
and German

23M https://dms.sztaki.hu/en/letoltes/
ecmlpkdd—2010—discovery—challenge—data—set— —

Webb spam 2011 - 0 330,000 http://www.cc.gatech.edu/projects/doi/WebbSpamCorpus.html

ClueWeb 09 Multilingual 1,040M http://www.lemurproject.org/clueweb09.php/
— — http://www.lemurproject.org/clueweb12.php/

ClueWeb 12 English 870M
— —

http://commoncrawl.org/Common Crawl
Data Multilingual 0 9B

YouTube
Comments
Dataset

Multilingual YouTube
comments

5,950,137 481,334 http://mlg.ucd.ie/yt/

YouTube Spam
Collection Dataset English 951 1,005 https://archive.ics.uci.edu/ml/datasets/

YouTube+Spam+Collection

HSpam14.s2 - Twitter
messages

14M http://www3.ntu.edu.sg/home/axsun/datasets.html— —

10 Scientific Programming

https://github.com/hexgnu/spam_filter/tree/master/data
http://plg.uwaterloo.ca/%7Egvcormac/treccorpus07/
http://spamassassin.apache.org/old/publiccorpus/
http://spamassassin.apache.org/old/publiccorpus/
http://untroubled.org/spam/
http://csmining.org/index.php/ling-spam-datasets.html
http://www.dt.fee.unicamp.br/%7Etiago/smsspamcollection/
https://mtaufiqnzz.wordpress.com/british-Eenglish-sms-corpora/
https://mtaufiqnzz.wordpress.com/british-Eenglish-sms-corpora/
http://chato.cl/webspam/datasets/index.php
https://sites.google.com/site/heiderawahsheh/home/web-spam-2011-datasets/uk-2011-web-spam-dataset
https://sites.google.com/site/heiderawahsheh/home/web-spam-2011-datasets/uk-2011-web-spam-dataset
https://dms.sztaki.hu/en/letoltes/ecmlpkdd-2010-discovery-challenge-data-set
https://dms.sztaki.hu/en/letoltes/ecmlpkdd-2010-discovery-challenge-data-set
http://www.cc.gatech.edu/projects/doi/WebbSpamCorpus.html
http://www.lemurproject.org/clueweb09.php/
http://www.lemurproject.org/clueweb12.php/
http://commoncrawl.org/
http://mlg.ucd.ie/yt/
https://archive.ics.uci.edu/ml/datasets/YouTube+Spam+Collection
https://archive.ics.uci.edu/ml/datasets/YouTube+Spam+Collection
http://www3.ntu.edu.sg/home/axsun/datasets.html

“Cialis”, and “Xanax” synsets could be grouped into a new
“drug” feature. While the use of bigger datasets could
partially solve this situation, these solutions are not within
the scope of this work.

-e source code of this case study is provided for its
evaluation as a supplementary file (nlpa_case_study.zip). As
shown, NLPA can be easily used to evaluate different text
preprocessing and representation configurations. -e next

section compiles some conclusions achieved during the
development of NLPA software.

5. Learned Lessons and Main Outcomes

-edevelopment of this work started from the idea of applying
big data tools to preprocess the most popular and hard to
process sources: text. Many researchers are mining the big

syn

19 20
SS2FV

1

1
TAFP

2

2
SFE

3

3
GDFF

4
F2SB

4

56

6
FUNISB MLFSB

5

7

7
FHISB

8

8
FUISB

9

9
FEtISB

10

10
FEjISB

1

1
SHFSB

12

12
GLFSB

13

13
CFSB

14

14
AFSB

15

15
SFSB

16

16
IFSB

tok

17

17
SWFSB

18

18
SBTLC

SB2TS
19

TSSI
21

TSPS
20

TS2FV
22 23

21
TCFFV

24

22
TDFFV

SB2SS

pSynsets
pTokens
pSynsets + pTokens

Figure 3: Pipeline used to preprocess corpora.

100
90
80
70
60
50

100
90
80
70
60
50

YouTube spam collection dataset SMS spam collection v.1

SMO NB NBSMO
Tokens Synsets

SMO NB NBSMO
Tokens Synsets

%OK
%FN
%FP

%OK
%FN
%FP

(a)
Synsets Tokens Synsets Tokens Synsets Tokens Synsets Tokens

Kappa 0.539 0.668 0.670 0.779 0.773 0.845 0.867 0.888

Recall 0.623 0.789 0.667 0.829 0.820 0.893 0.807 0.832

Precision 0.754 0.789 0.902 0.887 0.788 0.842 0.976 0.984

f-score 0.683 0.789 0.767 0.857 0.804 0.866 0.883 0.902

(b)

Figure 4: Evaluation of preprocessing configurations. (a) Percentage comparison. (b) Kappa, recall/precision, and f-score evaluations.

Scientific Programming 11

streams of data generated by social networks for different
purposes (see Introduction section) without using specific big
data tools and frameworks. In this work, we create a BDP4J
plugin (NLPA), implementing some tasks to be used for
preprocessing text sources using pipeline schemes.

-e BDP4J framework contributes practical capabilities
such as resuming a pipeline execution after unexpected
software or hardware failures. However, the most important
issue that can be highlighted from BDP4J is the support it
provides to invalidate instances anytime during the entire
pipelining process (when discovering a problem with the
data). In fact, this functionality allows adequately handling
situations such as the deletion of contents included in a data
source (for instance a tweet) or discarding instances that
cannot be processed because their language cannot be de-
termined. Nevertheless, in the case study, the pipeline was
defined using Java API and can be graphically (GUI) defined
using the command “java -jar bdp4j.java gui”. Using GUI, it
is possible to generate an XML file that can be used to
preprocess instances. Finally, the debug mode was partic-
ularly useful for saving time during the development of
concrete tasks since it allows skipping the execution of
previous steps by loading their results from disk.

NLPA makes an extensive use of regular expressions.
Regular expressions are the most efficient form of recog-
nizing text patterns (such as URLs and Hashtags). In ad-
dition to these common uses, regular expressions were also
employed to facilitate the execution of dictionary-based
tasks such as stopwords removal, abbreviation expanding, or
slang translation, which allowed us to correctly complete the
matching process for entire words, and facilitated the de-
velopment of our proposal. However, regex patterns should
be carefully created and invoked in order to prevent speed
loss [34, 35]. In particular, the methods included in jav-
a.lang.String class should not be used, as they imply
recompiling regular expressions.

Finally, we utilized software configuration management
(SCM) tools and version control systems (VCS), namely,
Maven and Git. -e former allowed us to efficiently manage
software dependencies in order to automatically build, test,
and make the software through a repository available. -e
next section shows conclusions and outlines future work.

6. Conclusions and Future Work

-is work has introduced NLPA, a plugin to preprocess big
data text contents into full-featured datasets containing dif-
ferent generic text properties (e.g., length, language) together
with synset or token columns. To this end, NLPA incorporates
a wide variety of small preprocessing tasks (e.g., urban lan-
guage translation, finding interjections, or abbreviation
expanding). NLPA was built using a pipeline-based frame-
work (BDP4J) to facilitate the processing of big data text
sources. BDP4J implements the orchestration and execution
of a computational pipeline and facilitates the integration of
data with the Weka machine learning framework.

NLPA provides several important features such as
multiple data source support (Twitter, e-mail, YouTube
comments, websites, and SMS) and the implementation of

the semantic representation of text (synsets). Additionally,
only minimal time is required to learn how to operate NLPA
and build a pipeline configuration in comparison with other
tools such as GATE or UIMA. Moreover, the design of new
preprocessing tasks to extend NLPA can be made by simply
extending org.bdp4j.pipe.AbstractPipe class. Finally, NLPA is
distributed as open-source software using GPL v.3 license
and can be downloaded from GitHub [36].

In this work, we have incorporated a complete case study
of the use of NLPA to classify two publicly available spam
datasets. -e provided case study implements a basic
analysis of the capabilities of the plugin that highlights its
applicability for developing and testing different solutions in
the Text Analytics domain.

-e development of NLPA and other similar tools be-
came essential in order to take advantage of current hard-
ware advances for analysing big data and, in particular, a vast
number of textual data sources. Future work comprises an
extension of the plugin by implementing new preprocessing
tasks (such as POS tagging or ngram token feature support)
and an application for analysing big data from different
domains to achieve relevant information.

Data Availability

-e source code of the NLPA plugin described in this study has
been deposited in the GitHub repository (https://github.com/
sing-group/nlpa, DOI: 10.5281/zenodo.3356589). -e whole
source used developed for the case study included in the work
has been included as a supplementary file (nlpa_case_study.zip).
-e SMS-Spam-Collection v.1 dataset used to run the case study
included in this work is available for download at http://www.dt.
fee.unicamp.br/∼tiago/smsspamcollection/ and https://archive.
ics.uci.edu/ml/datasets/sms+spam+collection. A formatted ver-
sion of this corpus (ready for its usage on NLPA) is included in
the sms-spam-collection folder in the provided supplementary
file (nlpa_case_study.zip).

Conflicts of Interest

-e authors declare that they have no conflicts of interest
regarding the publication of this paper.

Acknowledgments

D. Ruano-Ordás was supported by a postdoctoral fellowship
fromXunta de Galicia (ED481B 2017/018). Additionally, this
work was funded by the project Semantic Knowledge In-
tegration for Content-Based Spam Filtering (TIN2017-
84658-C2-1-R) from the Spanish Ministry of Economy,
Industry and Competitiveness (SMEIC), State Research
Agency (SRA), and the European Regional Development
Fund (ERDF). SING group thanks CITI (Centro de Inves-
tigación, Transferencia e Innovación) from the University of
Vigo for hosting its IT infrastructure.

Supplementary Materials

-ewhole source used developed for the case study included
in the work has been included as a supplementary file

12 Scientific Programming

https://github.com/sing-group/nlpa
https://github.com/sing-group/nlpa
http://dx.doi.org/http://10.5281/zenodo.3356589
http://www.dt.fee.unicamp.br/%7Etiago/smsspamcollection/
http://www.dt.fee.unicamp.br/%7Etiago/smsspamcollection/
https://archive.ics.uci.edu/ml/datasets/sms+spam+collection
https://archive.ics.uci.edu/ml/datasets/sms+spam+collection

(nlpa_case_study.zip). A formatted version of this corpus
(ready for its usage on NLPA) is included in the sms-spam-
collection folder in the provided supplementary file
(nlpa_case_study.zip). (Supplementary Materials)

References

[1] M. Armstrong, “Global data creation is about to explode,”
2019, https://www.statista.com/chart/17727/global-data-
creation-forecasts/.

[2] K. Slavakis, G. B. Giannakis, and G. Mateos, “Modeling and
Optimization for Big Data Analytics: (Statistical) learning
tools for our era of data deluge,” IEEE Signal Processing
Magazine, vol. 31, no. 5, pp. 18–31, 2014.

[3] M. Chen, S. Mao, and Y. Liu, “Big data: a survey,” Mobile
Networks and Applications, vol. 19, no. 2, pp. 171–209, 2014.

[4] C. L. Philip Chen and C.-Y. Zhang, “Data-intensive appli-
cations, challenges, techniques and technologies: a survey on
Big Data,” Information Sciences, vol. 275, pp. 314–347, 2014.

[5] L. Shanhong, “Big data market revenue forecast worldwide
2011-2027,” 2019, https://www.statista.com/statistics/254266/
global-big-data-market-forecast/.

[6] M. Gualtieri, “Hadoop is data’s darling for a reason,” 2016,
https://go.forrester.com/blogs/hadoop-is-datas-darling-for-
a-reason/.

[7] S. Kemp, “Digital 2018: global digital overview,” 2018.
[8] J. Leipzig, “A Review of Bioinformatic Pipeline Frameworks,”

Briefings in Bioinformatics, vol. 18, no. 3, Article ID bbw020, 2016.
[9] X. Liu, N. Iftikhar, and X. Xie, “Survey of real-time processing

systems for big data,” in Proceedings of the 18th International
Database Engineering & Applications Symposium on-IDEAS ’14,
pp. 356–361, ACM Press, New York, New York, USA, 2014.

[10] P. O’Donovan, K. Leahy, K. Bruton, and D. T. J. O’Sullivan,
“An industrial big data pipeline for data-driven analytics
maintenance applications in large-scale smart manufacturing
facilities,” Jornal of Big Data. vol. 2, p. 25, 2015.

[11] S. Saif and S. Wazir, “Performance analysis of big data and
cloud computing techniques: a survey,” Procedia Computer
Science, vol. 132, pp. 118–127, 2018.

[12] Q. Zhang, L. Cheng, and R. Boutaba, “Cloud computing:
state-of-the-art and research challenges,” Journal of Internet
Services and Applications, vol. 1, no. 1, pp. 7–18, 2010.

[13] Z. Zheng, J. Zhu, and M. R. Lyu, “Service-generated big data
and big data-as-a-service: an overview,” in Proceedings of the
2013 IEEE International Congress on Big Data, pp. 403–410,
Santa Clara, CA, USA, June 2013.

[14] K. Gai and S. Li, “Towards cloud computing: a literature
review on cloud computing and its development trends,” in
Proceedings of the 2012 Fourth International Conference on
Multimedia Information Networking and Security, pp. 142–
146, Nanjing, China, November 2012.

[15] P. Di Tommaso, “Awesome-pipeline,” 2014, https://github.
com/pditommaso/awesome-pipeline.

[16] A. Moreno and T. Redondo, “Text analytics: the convergence
of big data and artificial intelligence,” International Journal of
Interactive Multimedia and Artificial Intelligence, vol. 3, no. 6,
p. 57, 2016.

[17] M. Shastri, S. Roy, and M. Mittal, “Stock price prediction
using artificial neural model: an application of big data,” ICST
Transactions on Scalable Information Systems, 2018.

[18] P. Ducange, R. Pecori, and P. Mezzina, “A glimpse on big data
analytics in the framework of marketing strategies,” Soft
Computing, vol. 22, no. 1, pp. 325–342, 2018.

[19] S. Bloehdorn and A. Hotho, “Boosting for text classification
with semantic features,” in Advances in Web Mining and Web
Usage Analysis, pp. 149–166, Springer, Berlin, Germany, 2006.

[20] A. Ben Abacha and P. Zweigenbaum, “Automatic extraction
of semantic relations between medical entities: a rule based
approach,” Journal of Biomedical Semantics, vol. 2, p. S4, 2011.

[21] J. R. Méndez, T. R. Cotos-Yañez, and D. Ruano-Ordás, “A
new semantic-based feature selection method for spam fil-
tering,” Applied Soft Computing, vol. 76, pp. 89–104, 2019.

[22] S. A. Babar and P. D. Patil, “Improving performance of text
summarization,” Procedia Computer Science, vol. 46,
pp. 354–363, 2015.

[23] M. Novo-Lourés, J. R. Méndez, Y. Lage, R. Laza, R. Pavón, and
M. Reboiro, “BDP4J: Big Data Preprocessing for Java,” 2019,
https://github.com/sing-group/bdp4j.

[24] B. Putano, A Look At 5 of the Most Popular Programming
Languages of 2019.

[25] A. K. McCallum, “MALLET: a machine learning for language
toolkit,” 2002, http://mallet.cs.umass.edu.

[26] H. Cunningham, V. Tablan, A. Roberts, and K. Bontcheva,
“Getting more out of biomedical documents with GATE’s full
lifecycle open source text analytics,” PLoS Computational
Biology, vol. 9, no. 2, Article ID e1002854, 2013.

[27] C. D. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. J. Bethard,
and D. McClosky, “-e Stanford CoreNLP natural language
processing toolkit,” in Proceedings of the 52nd AnnualMeeting
of the Association for Computational Linguistics, pp. 55–60,
https://stanfordnlp.github.io/CoreNLP/, Baltimore, MD,
USA, June 2014.

[28] Apache Software Foundation, “Open NLP,” 2017, http://
opennlp.apache.org.

[29] D. Ferrucci, A. Lally, K. Verspoor, and E. Nyberg, “UIMA:
unstructured information management architecture,” 2009,
https://uima.apache.org.

[30] I. Gurevych, M. Mühlhäuser, J. Steimle, M. Weimer, and
T. Zesch, “Darmstadt knowledge processing repository based
on UIMA,” in Proceedings of the First Workshop on Un-
structured Information Management Architecture at Biannual
Conference of the Society for Computational Linguistics and
Language Technology, Tubingen, Germany, 2007, https://
fileserver.tk.informatik.tu-darmstadt.de/Publications/2007/
gldv-uima-ukp.pdf.

[31] R. Agerri, X. Artola, Z. Beloki, G. Rigau, and A. Soroa, “Big
data for natural language processing: a streaming approach,”
Knowledge-Based Systems, vol. 79, pp. 36–42, 2015.

[32] P. Resnick, “Internet message format,” 2008, https://tools.ietf.
org/html/rfc5322.

[33] J. R. Méndez, I. Cid, D. Glez-Peña, M. Rocha, and F. Fdez-
Riverola, “A comparative impact study of attribute selection
techniques on naı̈ve bayes spam filters,” in Advances in Data
Mining. Medical Applications, E-Commerce, Marketing, and
Jeoretical Aspects, pp. 213–227, Springer, Berlin, Heidelberg,
2008.

[34] Baeldung, “An overview of regular expressions performance
in java,” 2019, https://www.baeldung.com/java-regex-
performance.

[35] C. Mocanu, “Optimizing regular expressions in java,” 2007,
https://www.javaworld.com/article/2077757/optimizing-regular-
expressions-in-java.html.

[36] J. R. Méndez, M. Novo, R. Pavón et al., “NLPA: natural
language pre-processing architecture,” 2019.

Scientific Programming 13

http://downloads.hindawi.com/journals/sp/2020/2390941.f1.zip
https://www.statista.com/chart/17727/global-data-creation-forecasts/
https://www.statista.com/chart/17727/global-data-creation-forecasts/
https://www.statista.com/statistics/254266/global-big-data-market-forecast/
https://www.statista.com/statistics/254266/global-big-data-market-forecast/
https://go.forrester.com/blogs/hadoop-is-datas-darling-for-a-reason/
https://go.forrester.com/blogs/hadoop-is-datas-darling-for-a-reason/
https://github.com/pditommaso/awesome-pipeline
https://github.com/pditommaso/awesome-pipeline
https://github.com/sing-group/bdp4j
http://mallet.cs.umass.edu
https://stanfordnlp.github.io/CoreNLP/
http://opennlp.apache.org
http://opennlp.apache.org
https://uima.apache.org
https://fileserver.tk.informatik.tu-darmstadt.de/Publications/2007/gldv-uima-ukp.pdf
https://fileserver.tk.informatik.tu-darmstadt.de/Publications/2007/gldv-uima-ukp.pdf
https://fileserver.tk.informatik.tu-darmstadt.de/Publications/2007/gldv-uima-ukp.pdf
https://tools.ietf.org/html/rfc5322
https://tools.ietf.org/html/rfc5322
https://www.baeldung.com/java-regex-performance
https://www.baeldung.com/java-regex-performance
https://www.javaworld.com/article/2077757/optimizing-regular-expressions-in-java.html
https://www.javaworld.com/article/2077757/optimizing-regular-expressions-in-java.html

