
Research Article
An Adaptive Data Placement Architecture in
Multicloud Environments

Pengwei Wang ,1 Caihui Zhao,1 Yi Wei,1 Dong Wang ,2 and Zhaohui Zhang 1

1School of Computer Science and Technology, Donghua University, Shanghai, China
2School of Computer Science & Information Engineering, Shanghai Institute of Technology, Shanghai, China

Correspondence should be addressed to Pengwei Wang; wangpengwei@dhu.edu.cn and Dong Wang; dongwang@sit.edu.cn

Received 23 October 2019; Accepted 24 February 2020; Published 10 June 2020

Guest Editor: Aibo Song

Copyright © 2020 PengweiWang et al.*is is an open access article distributed under the Creative CommonsAttribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Cloud service providers (CSPs) can offer infinite storage space with cheaper maintenance cost compared to the traditional storage
mode. Users tend to store their data in geographical and diverse CSPs so as to avoid vendor lock-in. Static data placement has been
widely studied in recent works. However, the data access pattern is often time-varying and users may pay more cost if static
placement is adopted during the data lifetime. *erefore, it is a pending problem and challenge of how to dynamically store users’
data under time-varying data access pattern. To this end, we propose ADPA, an adaptive data placement architecture that can
adjust the data placement scheme based on the time-varying data access pattern and subject for minimizing the total cost and
maximizing the data availability. *e proposed architecture includes two main components: data retrieval frequency prediction
module based on LSTM and data placement optimization module based on Q-learning. *e performance of ADPA is evaluated
through several experimental scenarios using NASA-HTTP workload and cloud providers information.

1. Introduction

With the development of cloud computing, more and more
companies adapt the cloud to store their data for low
maintenance costs and reliable SLAs (Service Level Agree-
ments) comparing to the traditional data storage mode.
Many mainstream cloud service providers (CSPs) offer a
variety of data storage services to satisfy different users’
demands.*e pricing of services for the same functionality is
diverse among cloud service providers (CSPs). And the
pricing policy of the same CSP is various in different regions.
*e cost of data migration among data centers of the same
CSP is cheaper than that in different CSPs.

In addition to the constraints of high migration costs, a
single cloud faces the risk of vendor lock-in; i.e., major risks
include the price of cloud services and the interruption of
SLA. *ese situations may result in making users pay ex-
pensive migration costs. In our previous work, we have
proposed an ant colony algorithm-based approach for cost-
effective data hosting with high availability in multicloud

environments [1]. In order to avoid vendor lock-in, we can
divide the original data and store the data chunks into
multiple CSPs. Furthermore, there is a more comprehensive
solution to this problem in [2]. We aim at providing a cost-
effective and high-available data placement in multicloud
environments based on users’ demands.

In the previous work [1–3], the workload of data object
affects the choice of data placement scheme. *e data
workload is related to the data retrieving frequency (DAF)
(i.e., Get access rate) during a fixed time period. In the life-
cycle of data placement, the workload is time-varying. *e
data object with high data is read-intensive and in hot-spot
status, which is more likely to be stored in CSPs with lower
out-bandwidth costs additionally. Conversely, the data
object with low DAF is storage-intensive and in cold-spot
status, which is more likely to be stored in CSPs with lower
storage costs [4]. If a user adapts a data placement scheme
with a relatively low-accessible frequency for the entire life-
cycle of data storage, it may generate more out-bandwidth
costs when DAF increases. In another case, if a user employs

Hindawi
Scientific Programming
Volume 2020, Article ID 1704258, 12 pages
https://doi.org/10.1155/2020/1704258

mailto:wangpengwei@dhu.edu.cn
mailto:dongwang@sit.edu.cn
https://orcid.org/0000-0002-5667-3488
https://orcid.org/0000-0003-0291-2508
https://orcid.org/0000-0002-3171-7667
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/1704258

the strategies that are more suitable for hot-spot status in the
entire life-cycle of data storage, it may produce expensive
storage costs when DAF reduces.

In order to reduce the overall cost and enhance avail-
ability during the data object lifetime, it is essential to de-
velop a mechanism to dynamically adjust the data placement
scheme based on data object workload. Due to the uncer-
tainty of future data workload, the overall cost cannot get the
best result.*erefore, predicting the future workload is a key
part of the dynamic data placement mechanism. When the
future workload is obtained, how to design a dynamic
placement scheme based on future access frequency be-
comes another significant component.

ADPA, which can dynamically host the data object with
cost-effective and high availability based on time-varying
data workload, is an adaptive data placement architecture
proposed in our study. *e key contributions of our study
are as follows.

Firstly, we propose a LSTM [5] algorithm based on
workload prediction. It can use historical workload
data to predict future workload.
Secondly, a dynamic data placement algorithm based
on reinforcement learning is proposed. It can migrate
data according to the change of workload to ensure cost
optimization and availability.
Finally, we evaluate ADPA through several experiment
scenarios. *e results show that ADPA algorithm not
only is superior to SOA algorithm, but also can save
more time than ACO and DP algorithm to obtain the
optimal data placement.

*e remainder of this paper is organized as follows.
Section 2 discusses the related work. Section 3 presents the
motivation of the adaptive data placement. Section 4 de-
scribes the architecture of adaptive data placement. Section 5
introduces the proposed algorithm. *e performance of our
proposed algorithm is shown via extensive experiments by
using real-world cloud information in Section 6. Finally,
Section 7 summarizes this paper.

2. Related Work

*ere are many studies for data placement optimization in
cloud computing. We can divide these studies into two
categories based on whether the data storage scheme can be
adjusted according to workload: static data placement and
dynamic data placement. In static data placement, data
placement scheme is determined in advance and does not
adapt to variable data object workload. However, in dynamic
data placement, data placement scheme can be obtained
according to the change of DAF. In the following, we review
and discuss them, respectively.

2.1. Static Data Placement. In [6], the authors present the
fact that availability of service and data lock-in are two
obstacles for cloud computing. In cloud storage, replication
and erasure coding are widely used in increasing data

availability [7]. To avoid data lock-in, multicloud plays an
important role in data storage.

Mansouri et al. [8] propose an approach to replicate data
objects in multiple data centers to enhance data availability
and avoid data lock-in. In [9], the authors adapt erasure
coding to ensure data security and minimize the total cost
under many unreasonable assumptions. Hadji [10] focuses
on minimizing data storage and presents two efficient al-
gorithms to solve it. But the out-bandwidth cost is ignored.
In these studies, each data item is at a fixed number in a static
way; Qu et al. [11] present a resilient, fault-tolerance, and
high-efficient global replication algorithm (RFH) to deter-
mine each data items’ replication, migration, and suicide.

*e above studies only optimize to minimize the
monetary cost or enhance data availability under other QoS
metrics. *e trade-off between cost and availability is not
considered. Wang et al. [1] propose an approach based on
ant colony algorithm that minimizes total cost and enhances
data availability through erasure coding. It is still a single
objective optimization problem. In [12], Liu et al. use
multiobjective particle swarm optimization algorithm to
minimize storage space cost, data migration cost, and
communication cost as well as enhancing the storage reli-
ability. However, they cannot determine how to choose an
optimal solution in the Pareto front.

All the above works only consider the static data
placement and ignore the uncertainty of data object
workload. Once the workload of data object is changed, the
data placement scheme needs to be calculated again.

2.2. Dynamic Data Placement. *e dynamic data placement
in cloud storage becomes a hot direction in research. Zhang
et al. [3] propose a data hosting scheme which contains a
transition of storage modes based on changes of data access
frequency. However, they only put forward a transfer
condition without considering the global data placement
sequence optimization problem. In [13], Su et al. present a
systematic model, in order to formulate data placement
optimization for complex requirements in multicloud en-
vironments. *ey also only discuss the data migration
without making the final decision for developers.

Due to the unknown future data access pattern, the
above studies do not propose the automatic data migration.
Mansouri et al. [4] propose two online algorithms that make
a trade-off residential andmigration cost. Due to the absence
of the future data object workload, the authors use the
deterministic online algorithm to solve the problem.

To achieve a dynamic data replication strategy based on
real data access pattern, Gill and Singh [14] propose a dy-
namic cost-aware rereplication and rebalancing strategy.
*is method firstly determines which file and when to
replicate based on files popularity.*emore the popular it is,
the more possible the file is replicated. *en, it calculates the
replica number to meet the availability requirements. Fi-
nally, a replica placement mechanism is proposed. Lyapunov
optimization is an online control method to solve the
problem which closes the optimal solution. In [15], Qiu et al.
adapt Lyapunov for dynamic content distribution service

2 Scientific Programming

deployment without the need for any future request arrival
information. In other works of dynamically optimized
storage, T. Sreenath Reddy and G. MURALI [16] use GA-
based totally records dissemination alternate technique and
dynamic request redirection to minimize the cost of grouped
gets. *e algorithm IMPSO used in [17] also inspires our
work.

Except for the above methods, a method based on the
historical workload pattern is also effective to solve the
dynamic data placement. In [18], Papaioannou et al. propose
a cloud storage brokerage solution that can periodically
recompute the best provider set using data access statics of
the last sampling periods. It can adjust data placement for
dynamically changing data access pattern. In recent years,
reinforcement learning (RL) has received extensive atten-
tion. RL is a powerful approach for a long time decision-
making under uncertainties [19]. As far as we know, there
are no studies on using RL to optimize the dynamic data
placement.

In this paper, we propose an adaptive data placement
method that mainly contains data retrieval frequency pre-
diction and data placement optimization. In data retrieval
frequency prediction module, we adapt LSTM to predict the
future workload of data object. In data placement optimi-
zation module, an approach based on Q-learning is used to
get a sequential data placement solution according to the
prediction data object workload.

3. Motivation

3.1.DynamicDataObjectWorkload. *eDAF of data object
is time-varying. We collect the trace of NASA-HTTP that
depicts all HTTP requests to the NASA Kennedy Space
Center WWW server in Florida [24]. We calculate the DAF
in a cycle of 10minutes. As shown in Figure 1, it depicts the
DAF’s change from 01/Jul/1995 : 0:0 : 0 to 07/Jul/1995 : 23 :
59 : 59. *e difference between the maximum DAF value
and the minimum DAF value is close to 2. DAF was rela-
tively low at night but increased during the day. *e data
placement scheme needs to be dynamically adjusted
according to the changing DAF, which will be discussed in
Section 3.3.

3.2.HeterogeneousCloudMarket. Now there are many CSPs
providing storage services, and we collect four most popular
CSPs’ pricing strategies: Amazon S3 [20], Microsoft Azure
Cloud Storage [21], Alibaba Cloud Object Storage [22], and
Google Cloud Storage [23] as shown in Table 1. From the
point of users’ cost, the selection of CSP is a research di-
rection in cloud computing. In our previous work, we
proposed some approaches for optimizing selection of cloud
instance types [25–27]. Actually, the price of the same
functional storage service provided by the same CSP in
different regions is different. And the price of the same
functional storage service across CSPs is also different. For
example, Amazon S3 in New York, USA, has lower storage
price than that in Tokyo. For instance, Amazon S3 in New

York has lower storage cost than Microsoft Azure Cloud
Storage in New York.

3.3. Discussions. *e dynamic data object workload and
heterogeneous cloud market inspired us to propose an
adaptive data placement scheme. *en, we discuss this in
detail through the NASA-HTTP example.

When the access frequency is low, the data is suitable for
CSPs with low storage cost. But the bandwidth cost of these
cloud service providers may be relatively high. We assume
that Amazon S3 in New York, Tokyo, and London is chosen
as the data placement scheme because of the lower storage
cost. *e out-bandwidth price of Amazon S3 in New York,
Tokyo, and London is very expensive. As time goes by, DAF
gradually becomes larger and the output bandwidth price
will be very expensive. If users migrate their data to CSPs
with lower out-bandwidth cost, they can save more money
even if they need to pay for additional migration cost.

In this study, we propose an adaptive data placement
scheme which dynamically adjusts the DAF-based data
storage scheme to minimize the total cost.

4. An Adaptive Data Placement Architecture

In this section, we present an adaptive data placement ar-
chitecture with high cost-effective multicloud availability.
*en, we formulate the problem in the architecture.

4.1. Architecture Overview. Figure 2 depicts the architecture
of dynamic data placement. *ere are four components:
Cloud Storage Information Collection, Optimization Module,
Workload Statistics Module, and Prediction Module.

Cloud Storage Information Collection is used to collect
the information of CSPs including storage price, out-
bandwidth price, and operation cost. Apart from this, it
receives DAF prediction to adjust data placement scheme.

Optimization Module is used to optimize the data
placement scheme according to users’ demands which

0.0

0.5

1.0

1.5

2.0

2.5

D
A

F

1995/7/1 1995/7/3 1995/7/91995/7/71995/7/5
Time

DAF

Figure 1: NASA-HTTP requests in ten-minute cycles from 01/Jul/
1995 to 07/Jul/1995.

Scientific Programming 3

contain the size of data object, required availability, initial
DAF, and so on.

Workload Statistics and Prediction Module are respon-
sible for collecting the historical data of workload and were
based on these historical data to predict the DAF for the next
period of time.

4.2. Problem Definition. To describe a dynamic data
placement architecture in detail, we introduce the following
definitions. *e symbols used in this paper are listed in
Table 2.

Definition 1 (data center specification). Assume that there
are N data centers DC � d1, d2, . . . , dN􏼈 􏼉. Each data center d

has tuple: Ps
d, Pb

d, Po
d, ad, where ad defines the probability of

data center d being available.

Definition 2 (data object specification). Assume that there is
a data object with the size S and the DAF r(t) where

t ∈ [1, T], the required availability is Areq, and the required
data retrieval latency is Lreq.

In this work, we also adapt erasure coding to avoid
vendor lock-in, enhance data availability, and reduce storage
and out-bandwidth costs compared to replication. It is worth
noting that the following definitions for availability and cost
are similar to those in [1, 3, 13], which is a universal way to
define them for data hosting in erasure coding mode. We
give the definition of erasure coding at first.

Definition 3 (erasure coding). An (m, n)-erasure coding
denotes the data object which is divided into m chunks and
encodes m chunks into n chunks. Users can retrieve their
data through any m chunks.

Definition 4 (data availability). Since users can tolerate
0∼(n − m) shut-down of data centers at the same time, data
availability is the sum probability of all cases that k DCs are
simultaneously available, k ∈ [m, n]. Assume that D(t)

denotes the data centers chosen for data storage at time slot

Table 1: Pricing of storage (in $/GB/month), Out-bandwidth (in $/GB/month), and get requests (in $/10K/month) of each CSP.

CSP
Amazon S3 [20] Microsoft Azure

Cloud Storage [21]
Alibaba Cloud Object Storage

[22] Google Cloud Storage [23]

New
York Tokyo London New

York Dublin Hong
Kong Beijing San Francisco Sydney Atlanta St.

Ghislain
Changhua
County

Storage price 0.0125 0.019 0.0131 0.0208 0.022 0.024 0.0226 0.02 0.0209 0.026 0.026 0.026
Out-bandwidth
price 0.05 0.12 0.05 0.02 0.02 0.9 0.117 0.076 0.13 0.02 0.02 0.2

Get request price 0.004 0.0037 0.0042 0.004 0.004 0.004 0.001 0.001 0.002 0.004 0.004 0.004

User

Cloud storage
information

collection

Prediction module

Workload statistics
module

Optimization module

Data storage broker

Data hosting/
data migration

Cloud
provider 1

Cloud
provider 2

Cloud
provider 3

Cloud
provider N

Demand:
Size of the data
Data availbility
Other constraints

(i)
(ii)
(iii)

DAF

Multicloud

Figure 2: *e architecture of ADPA.

4 Scientific Programming

t, where D(t) � d1, d2, . . . , dn􏼈 􏼉. We use Θ � 􏼒 |D(t)|

k
􏼓 to

indicate the number of cases that k data centers are available.
DΘj (t) denotes the jth data centers collection in θ cases at
time slot t. *e data availability at time slot t can be defined
as follows:

A(t) � 􏽘
n

k�m

􏽘

Θ

j�1
􏽙

d∈DΘ
j

(t)

ad 􏽙

d∈D(t)\DΘ
j

(t)

1 − ad(􏼁
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦, (1)

where D(t)\Dθ
j(t) is the data centers that are not available.

Definition 5 (storage cost). the storage cost is the sum of
storage cost of n data centers. It can be calculated as

Pstor(t) � 􏽘
d∈D(t)

S

m
P

s
d, (2)

where S/m denotes the size of data stored in each data center.

Definition 6 (network cost). Users can retrieve their data
through any m data chunks. We choose m data centers with
the lowest out-bandwidth price to retrieve data. Since the
DAF is time-varying, network cost is related to r(t) of each
time slot. It can be calculated as follows:

Pnet(t) � min
j∈[1,Θ]

􏽘

d∈DΘ
j

(t)

S

m
r(t)Pbi

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠. (3)

Definition 7 (operation cost). *e operation cost can be
defined as follows:

Pop(t) � min
j∈[1,Θ]

􏽘

d∈DΘ
j

(t)

r(t)Poi
⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠. (4)

It is worth noting that the value of j in (3) and (4) is
equal.

Definition 8 (base cost). *e base cost Cb(t) is the sum of
storage cost, network cost, and operation cost at time slot t.
It can be defined as

CB(t) � Pstor(t) + Pnet(t) + Pop(t). (5)

Definition 9 (migration cost). Different DAFs may corre-
spond to different optimal data placement solutions. It
generates expensive cost if users adapt the previous solution.
*erefore, it can save more cost according to the DAF
dynamically adjustment data placement. But the data
placement adjustment means data migration which also
requires cost. Data migration is not the moment when DAF
changes but satisfies the conditions of the cost saved by the
new solution (compared to the old one) which can cover the
migration cost. We use D′ � D(t − 1)∩D(t) to indicate the
intersection of data placement solutions of time slots t and
(t − 1). *e data centers that need data migration are
D(t − 1)/D′. *e migration cost can be defined as follows:

CM(t) � 􏽘
d∈D(t−1)\D(t)

S

m
P

b
d + P

o
d􏼚 􏼛, (6)

where the condition is as follows:

CB(t − 1) − CB(t)≥CM(t). (7)

Table 2: Symbol table.

Symbols Descriptions
DC List of data centers
N Total number of data centers
Ps

d Storage price of data center d

Pb
d Out-bandwidth price of data center d

Po
d Operation price of data center d

Ld Location of data center d, which contains latitude and longitude
T Number of time slots
r(t) *e data access frequency at time slot t

Areq *e required availability
Lreq *e required data retrieval latency
(m, n) *e parameters of erasure coding
S Size of the data object
D(t) Data placement solution at time slot t

A(t) *e availability of the solution of time slot t

Pstor(t) Storage cost of a solution at time slot t

Pnet(t) Network cost of a solution at time slot t

Pop(t) Operation cost of a solution at time slot t

CB(t) *e sum of storage cost, network cost, and operation cost at time slot t

CM(t) *e migration cost
Dr(t) Data centers for data retrieval at time slot t

l(t) Data retrieval latency at time slot t

D *e candidate data placement solutions
D∗ *e optimal data placement during [1, T]

Scientific Programming 5

Definition 10. (data retrieval latency). *e data centers for
data retrieval Dr(t) at time slot t are m data centers with the
lowest out-bandwidth cost. *e data retrieval latency is the
maximum latency of Dr(t). Since the data retrieval latency is
determined by network latency, we use round-trip time to
indicate data retrieval latency [4, 28, 29]. We use the cal-
culation method in [30], as follows:

l(t) � max
d∈Dr(t)

5 + 0.02Distance(d){ }, (8)

where Distance(d) is the distance between users and data
centers.

4.3. Optimization Problem. In ADPD, it aims to obtain the
data placement solution D(t) in each time slot so that the
total cost during t ∈ [1, T] is minimized. *e optimization
problem is defined as follows:

min
D(t)

􏽘
t∈[1,T]

CB(t) + CM(t)(􏼁, (9)

subject to

(1) |D(t)| � n, ∀t ∈ [1, T]

(2) A(t)≥Areq, ∀t ∈ [1, T]

(3) l(t)≤Lreq, ∀t ∈ [1, T]

Constraint (1) indicates that only n data chunks in each
time slot. Constraints (2) and (3) ensure that the data
placement solutions satisfy the user required availability and
data retrieval latency in each time slot. Obviously, this
optimization problem is NP-hard.

5. Solution

In this section, we describe the implementation of ADPD.
Firstly, we adapt LSTM for data object DAF prediction. In
order to make decision-making effectively, the method to
solve the problem is mainly based on Q-learning that is an
off-policy temporal difference (TD) control algorithm
[31, 32].

5.1. DAF Prediction. Recently, there are many machine
learning approaches including Support Vector Machines
(SVMs), Linear Regression (LR), Random Forest (RF), and
k-Nearest Neighbors (kNNs) adopted for prediction. In this
study, we use LSTM to predict the future DAF. We can also
use other more accurate algorithms to replace LSTM Al-
gorithm 1.

Since our previous work is to predict the price of cloud
spot instance whose problem is also for time series data
prediction [33]. In this study, we also use sliding window to
split the historical DAF data. For DAF prediction, its goal is
to find a function f that used historical DAF to predict the
future DAF.

5.2. Data Placement Optimization. In this section, the data
placement optimization aims to obtain the optimal
solution D(t) according the future DAF. Assuming that

D � D1, D2, . . . , D|D|􏽮 􏽯 denotes the candidate data
placement solutions at each time slot, where

|D| �
|DC|

n
􏼠 􏼡. Let D∗ indicate the optimal data place-

ment solution from t � 1 to t � T, where |D∗| � T. We
describe the process of data placement during [1, T] via
Figure 3. For each Di ∈ D, it has Markov property. *e
reason is that the solution choice for the next time slot is
only related to the currently selected plan and is inde-
pendent of the previous choices. It can be expressed as
P[D(t + 1) | D(t)] � P[D(t + 1) | D(1), D(2), . . . , D(t)].

In data placement process, the cost directly determines
the choice of the plan. And the data placement optimization
is a sequential decision-making problem in our paper. So we
can attribute it to Markov decision process (MDP) and solve
it through reinforcement learning (RL). *e MDP of data
placement process can be defined as follows [34].

Definition 11 (MDP of data placement process). We can
transfer data placement process intoMDP, which is a 5-tuple
one:

(1) A finite set of states is denoted by D

(2) A finite set of actions A are the choice of solution of
next time slot

(3) Pa
DD′ � P[D(t + 1) � D′ | D(t) � D, A(t) � a] is the

probability that data placement D at time slot t when
taking choice a results in solution D′ at time t+1

(4) A reward function R(D, a, D′) is the negative value
of solution transitions total costs from D to D′ when
taking action a between two time slots

(5) *e discount factor λ ∈ [0, 1], which is the attention
of future rewards

*e goal of RL is to find the optimal policy based on
MDP.*e basic architecture of RL is shown in Figure 4 [32].
*e agent not only interacts with the environment through
making action according to the current state, but also gets an
immediate reward and the state of observation [32]. RL aims
to find an optimal policy to maximize the total rewards that
are obtained from every step. In this optimization problem,
the reward function is defined as follows:

R(t) � −CB(t) − CM(t). (10)

So, the RL objective of this problem can be presented as

JD∗ � max
D

ED 􏽘

T

t�1
λt

r(t)⎡⎣ ⎤⎦, (11)

where λ � 1 and D∗ is the optimal data placement solution
during time slot [1, T].

For the above problem, Q-learning is widely used tabular
RL algorithm [19, 31] which is an off-policy TD control. It is
defined by [31]

Q(S, A)⟵Q(S, A) + α R + λmaxaQ S′, a(􏼁 − Q(S, A)􏼂 􏼃,

(12)

6 Scientific Programming

where R � R(t) that is defined in (10) and α is the learning
rate.

As stated previously, we transfer the time series data
placement optimization into an MDP and adapt the ap-
proach based on Q-learning to solve it. For that purpose, we
proposed an MDP that comes from data placement opti-
mization being the most important approach. Algorithm 2
represents the transfer methodology. In order to satisfy the
constraints (1)–(3) in (9), we filter all candidate data
placement solutions according to their availability and la-
tency (Line 5). In the whole life-cycle of data storing, the
DAF is time-varying, which results in the fluctuation of cost.
*en, we calculate the state matrix that contains basic cost
for all satisfied solutions (i.e., D � D1, D2, . . . , D|D|􏽮 􏽯) at
each time slot (Lines 6–9). Finally, the migration cost be-
tween two solutions at time slots t and t − 1 needs to be
calculated as the transfer matrix which is a |D| × |D| matrix
(Lines 12–16). Since the migration cost between the same
two solutions is free, the values of the diagonal on the matrix
are 0.

Compared with general MDP, the reward function
contains not only the value between states, but also the value
of states which is defined in (10). Based on the above MDP,
we present an approach based on Q-learning.*e core of the
method is calculation and update of Q tabular which is the
basis for the agent to choose the next time slot’s action. Since
this paper solves a time-based sequential decision problem,
the Q tabular also has a time dimension. *e strategy of Q
tabular is based on (12). *e value function of next state is
adapted to update the current state, which is called boot-
strapping [32]. *e approach based on Q-learning is an off-
policy method; that is, the action strategy and the target
strategy are different. In Q-learning, the action chosen
strategy is ϵ-greedy and the target is greedy. Algorithm 3
represents the data placement methodology based on
Q-learning.

6. Evaluation

In this section, we firstly describe the dataset used in ex-
periments. *en, we present a basic algorithm to verify the
necessity of future DAF prediction. Since ant colony opti-
mization algorithm (ACO) and genetic algorithm (GA) are
widely used to solve optimization problem [1], we compare
ADPA with them through different experimental scenarios.

6.1. Settings. In this work, the setup for DAF, data centers’
specification, and experiment parameters are as follows.

6.1.1. DAF. We use the real workload trace of NASA-HTTP
from [24] which contains two months’ worth of all HTTP
requests to the NASA Kennedy Space Center WWW server
in Florida from 01/Jul/1995 to 31/Aug/1995. Each piece of
data in NASA-HTTP represents a request, including host,
timestamp, request, HTTP reply code, and bytes in the reply.
In our paper, in order to obtain data access frequency, we
count the number ofGet operations in a specific time period,

which is 600 seconds. *e trace is separated as a train and
test set for the LSTM at a ratio of 7: 3, respectively.

6.1.2. Data Center Specification. *e real-world informa-
tion of data center, including storage price, out-bandwidth
price, Get operation price, and latitude and longitude, is
collected from CSPs official website [20, 22, 23, 35]. We use
18 data centers from different CSPs, and each CSP’s data
center is located in a different city. We also simulate the
availability values of each data center in the [95.0%, 99.9%]
interval.

6.1.3. Experiment Parameters. In the experiments, we
choose (3, 5)-erasure coding as the data splitting method.
*e size of sliding window for LSTM is 12. *e size of data
object is initially 200GB. *e required availability and data
retrieval latency are initially 99.9% and 1000ms,
respectively.

6.2. Performance of ADPA. In the time-varying DAF data
placement, we cannot obtain the global data placement
solutions because of the absence of future DAF. In our
method, we firstly predict future DAF for the global optimal
data placement solutions during the life-cycle of data
storage. In order to verify the performance of ADPA, we
propose a step-by-step optimization algorithm called SOA as
follows.

6.2.1. SOA Algorithm. *is is shown in Algorithm 4. *is
method minimizes the total cost through Greedy. At the
beginning of time slots, the method finds the data placement
solution with the lowest basic cost in all candidate solutions.
*en, the data objects are allowed to the solution with the
lowest total cost at the current time slot (Line 3). In fact, the
optimal solution of SOA is locally optimal.

Based on the DAF prediction, we can obtain the global
optimal data placement solutions, but the solutions of
Greedy are locally optimal. In order to verify this situa-
tion, we study the total costs of ADPA and SOA by varying
data size and data retrieval latency, respectively, as shown
in Table 3 and 4. Obviously, the results of ADPA can save
$13.566, $26.693, $38.78, $52.433, and $65.437 comparing
to Greedy with data size from 100 GB to 500 GB, re-
spectively. Due to the absence of future DAF, SOA only
chooses the best solution at current time slot and ignores
the importance of future total cost. Conversely, ADPA,
based on Q-learning, chooses the current solution which
is based not only on current costs, but also on future
reward.

As shown in Table 4, we study the results of two methods
with the data retrieval latency constraint from 200ms to
500ms, the number of time slots is 12 (i.e., 2 hours), and data
size is 200GB. As latency constraint increases from 200ms
to 500ms, the cost saving of ADPA is 18.6%. When data
retrieval latency is loose, comparing with strict latency, the
method explores the solution with lower cost in a larger

Scientific Programming 7

range. *e algorithm explores solutions in the area near
users to satisfy the strict latency constraint.

In actual life, there are different levels of data access and
these situations have different usage scenarios. In order to
verify the universality of the ADPA algorithm, we extend the
time range of NASA-HTTP request data to one year (24/
Oct/1994–11/Oct/1995) and perform DAF statistics based
on one-day cycles. Due to the wide time range of the second
data set, it has a lower DAF than our first data set. *e
experimental environment is the same; we use the second
dataset to conduct a comparison experiment as shown in
Tables 5 and 6. Similarly, it is clear that ADPA can help users
save more money.

6.3. Performance Comparison with Other Methods. We
compare our method with ACO and DP through the fol-
lowing experimental scenarios. Assume that ACO and GA
can obtain the DAF prediction which is predicted by ADPA.

6.3.1. Cost Saving with Varying Data Size. In this experi-
mental scenario, we evaluate the cost performance of ADPA
when data size is increased from 100GB to 500GB. From the
experimental results, we can know that the total cost of three
algorithms increases when the data size increases, and the
costs of the three algorithms obtained under different data
sizes are the same. Since the DP algorithm can find the
optimal solution, it can prove the correctness of ADPA in
solving the solution. To demonstrate the advantages of
ADPA, the time required to find the optimal solution for the
three algorithms is shown in Figure 5. It can be seen that the
time required by ACO is greater than that of ADPA and DP
algorithm.*e algorithm ADPA is higher than DP when the
data size is 200GB, and the others are better than DP.

6.3.2. Cost Saving with Varying Time Slot Count. In this
scenario, we explore the impact of time slot count (T) on
total costs when T varies from 10 to 18. From these ex-
perimental results, we can know that the greater the T value,
the longer the optimization time and the costs of the three
algorithms obtained under different time slot count (T) are
the same. Because of the same reason as above, this proves
that ADPA has the ability of solving the solution. In order to
reflect the advantages of ADPA, the time required to find the
optimal solution for the three algorithms is shown in Fig-
ure 6. It can be seen that, for ADPA and DP, except for
T�10, the running time of the algorithm proposed in this
paper is only 50% of the DP algorithm; that is, ADPA can
solve the optimal solution in the least time.

6.3.3. Cost Saving with Varying Candidate Data Centers.
We investigate the impact of the number of candidate data
centers (N) on total cost. Figure 7 gives the results when N

increases from 12 to 15.*e change in candidate data centers
count is adding a new data center in the previous set. For
example, when N � 10, the index of data centers is DC �

3, 9, 16, 15, 14, 6, 7, 12, 8, 4, 0, 10{ } and we add a new data
center with index of 13 to this set when N � 11. When N

Input: *e required length max_ step of the series to be forecast, a trained LSTM model Ltrained.
Output: Predicted future DAF;

(1) cnt � 0;
(2) Feed the data in the last window into Ltrained and get a prediction L(SWcnt);
(3) while cnt<max step do
(4) Slide the window forward by one step and put the newly predicted value L(SWcnt) at the end of the slide window;
(5) Feed the data in the new window into Ltrained and get another prediction
L(SWcnt);
(6) cnt � cnt + 1;
(7) end while

ALGORITHM 1: Algorithm LSTM: LSTM network with sliding window.

t = 2t = 1 t = T – 1 t = T

D1 D1 D1D1

D2 D2 D2D2

D|D| D|D| D|D| D|D|

Figure 3: *e data placement during the period [1, T].

Agent

Reward

Environment

ActionState

Figure 4: *e basic architecture of RL.

8 Scientific Programming

Input: *e state matrix, SM, the transfer matrix, TM.
Output: *e optimal data placement solution during t ∈ [1, T], D∗

(1) Initialize parameters of algorithm including learning rate α, discount
(2) Initialize the tabular Q with zero;
(3) s⟵ Initialize the start state;
(4) Initialize data placement sequences Seq;
(5) for e � 1 to epochs do
(6) for t � 1 to T do
(7) fSet⟵Choose feasible data placement solutions through equation
(8) Choose a data placement solution D(t) from fSet through ϵ-greedy function;
(9) Append D(t) in Seq[e];
(10) Obtain the next state snxt, reward r(t), and the next state’s
(11) Q(t, s, D(t)) � Q(t, s, D(t) + α∗(−TM[s, D(t)] − SM[D(t), t] + c∗ max(Q[t + 1, snxt, Anxt])) − Q[t, s, D(t)]);
(12) s � snxt;
(13) Take ε decay;
(14) end for
(15) end for
(16) D∗⟵ Find the sequence with lowest cost in Seq;
(17) return D∗;

ALGORITHM 3: Algorithm DPQ: data placement algorithm based on Q-learning.

Input: *e state matrix, SM, the transfer matrix, TM.
Output: *e optimal data placement solution during t ∈ [1, T],

(1) D(0)⟵ Calculate data placement solution with the lowest
(2) for t� 1 to T-1 do
(3) D(t)⟵ Find the solution with min(TM[D(t − 1), :] + SM[: , t]);
(4) end for
(5) D∗ � D[0: T − 1]

(6) return D∗;

ALGORITHM 4: Algorithm SOA: data placement optimization step by step.

Input: Data center specification, DC, DAF, r(t), the required availability, Areq, the required data retrieval latency, Lreq.
Output: *e state matrix, SM, the transfer matrix, TM.

(1) D⟵Calculate all n-combinations of data centers DC.
(2) for all c ∈ D do
(3) Calculate availability of c ava(c) through (1);
(4) Calculate latency of c latency(c) through (8);
(5) if ava(c)≥Areq and latency(c)≤Lreq then
(6) for t � 1 to T do
(7) Calculate the base cost of c Cc

B(t) through (5);
(8) SM[c][t] � Cc

B(t) + Cc
M(t);

(9) end for
(10) end if
(11) end for
(12) for all c1 ∈ D do
(13) for all c2 ∈ D do
(14) TM[c1][c2]⟵ Calculate the migration cost between c1 and c2 through (6);
(15) end for
(16) end for
(17) return SM, TM;

ALGORITHM 2: Algorithm TDM: transform data placement into an MDP.

Scientific Programming 9

increases, the candidate solutions D(t) have a clear growth
trend. Assuming that data retrieval constraint is 500ms,
T � 12, data size is 500GB and data availability is 0.999;
|D(t)| are 792, 1287, 2002, and 3003 when N varies from 12
to 15. When N� 12, 13, ADPA and ACO can solve the

Table 3:*e total cost ($) of ADPA and SOAwith varying data size
in seven days (based on high DAF).

Data size (GB) ADPA SOA
100 1027.01 1042.33
200 2052.43 2082.52
300 3077.85 3122.71
400 4103.26 4162.90
500 5128.68 5203.09

Table 4: *e total cost ($) of ADPA and SOA with varying data
retrieval latency in seven days (based on high DAF).

Data retrieval latency (ms) ADPA SOA
200 6305.49 6370.93
300 5128.68 5203.95
400 5128.68 5203.95
500 5128.68 5203.95

Table 5:*e total cost ($) of ADPA and SOAwith varying data size
within one year (based on low DAF).

Data size (GB) ADPA SOA
100 204.35 245.27
200 408.44 490.10
300 612.53 734.93
400 816.62 979.76
500 1020.71 1224.59

Table 6: *e total cost ($) of ADPA and SOA with varying data
retrieval latency within one year (based on low DAF).

Data retrieval latency (ms) ADPA SOA
200 204.35 245.27
300 164.65 188.16
400 126.42 157.22
500 126.42 157.21

10

20

30

40

50

60

70

80

Ti
m

e (
s)

200 300 400 500100
Data size (GB)

ADAP
ACO
DP

Figure 5: *e comparison of run time.

0

100

200

300

400

500

600

700
Ti

m
e (

s)

13 14 1512
N

ADAP
ACO
DP

Figure 7: *e comparison of run time.

20

40

60

80

100

120

140

Ti
m

e (
s)

12 14 16 1810
T

ADAP
ACO
DP

Figure 6: *e comparison of run time.

Table 7:*e total cost ($) comparison with varying data size within
one year (based on low DAF).

Data size (GB) ADPA ACO DP
100 204.35 238.51 238.51
200 408.44 476.73 476.73
300 612.53 714.94 714.94
400 816.62 953.16 953.16
500 1020.71 1191.38 1191.38

10 Scientific Programming

optimal solution, but when N� 13, 14, the cost of the ADPA
and ACO is higher than the optimal scheme by $0.99 and
$1.23, respectively. However, from Figure 7, as is manifested,
the running time of ADPA is less than that of the other two
algorithms in allN values; that is, the efficiency of solving the
optimal solution is higher than that of ACO and DP. In this
section, we also perform a comparative experiment on the
dataset with lower DAF and achieve good results, as shown
in Tables 7 and 8.

7. Conclusion

Users should adjust data placement solution based on DAF
to minimize the storage, get operation, out-bandwidth, and
migration costs in the whole life-cycle of data storage. In
order to achieve this goal, we present an adaptive data
placement architecture named ADPA. Because of the ab-
sence of the future DAF, the DAF prediction module based
LSTM of ADPA can predict the future DAF through his-
torical data. And then, the data placement optimization
module, which is based on Q-learning of reinforcement
learning, solves the optimal data placement solution se-
quence according to the prediction DAF. *e experiments
driven by a real workload of NASA-HTTP and cloud
providers information indicate that ADPA not only is su-
perior to the algorithm SOA but can save more time than
ACO and DP to obtain the optimal data placement. In the
future, we intend to present an architecture which can adjust
data placement based on the change of cloud market.

Data Availability

*e data used to support the findings of this study are
available from the corresponding author upon request.

Disclosure

Pengwei Wang and Dong Wang are corresponding authors.

Conflicts of Interest

*e authors declare that they have no conflicts of interest.

Acknowledgments

*is work was partially supported by the National Natural
Science Foundation of China (NSFC) under Grant no.
61602109, DHU Distinguished Young Professor Program
under Grant no. LZB2019003, Shanghai Science and
Technology Innovation Action Plan under Grant no.

19511101802, Natural Science Foundation of Shanghai
under Grant no. 19ZR1401900, Fundamental Research
Funds for the Central Universities, and Alliance PlanSpecial
Tenders For Difficult Problems under Grant no. LM201819.

References

[1] P. Wang, C. Zhao, and Z. Zhang, “An ant colony algorithm-
based approach for cost-effective data hosting with high
availability in multi-cloud environments,” in 15th IEEE In-
ternational Conference on Networking, Sensing and Control,
pp. 1–6, IEEE, Zhuhai, China, March 2018.

[2] P. Wang, C. Zhao, W. Liu, Z. Chen, and Z. Zhang, “Opti-
mizing data placement for cost effective and high available
multi-cloud storage,” Computing and Informatics, vol. 39,
no. 1, pp. 1001–1032. In press, 2020.

[3] Q. Zhang, S. Li, Z. Li, Y. Xing, Z. Yang, and Y. Dai, “Charm: a
cost-efficient multi-cloud data hosting scheme with high
availability,” IEEE Transactions on Cloud Computing, vol. 3,
no. 3, pp. 372–386, 2015.

[4] Y. Mansouri, A. N. Toosi, and R. Buyya, “Cost optimization
for dynamic replication and migration of data in cloud data
centers,” IEEE Transactions on Cloud Computing, vol. 99, p. 1,
2017.

[5] S. Hochreiter and J. Schmidhuber, “Long short-term mem-
ory,” Neural Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[6] M. Armbrust, A. Fox, R. Griffith et al., “A view of cloud
computing,” Communications of the ACM, vol. 53, no. 4,
pp. 50–58, 2010.

[7] Y. Mansouri, A. N. Toosi, and R. Buyya, “Data storage
management in cloud environments: taxonomy, survey, and
future directions,” ACM Computing Surveys (CSUR), vol. 50,
no. 6, 2017.

[8] Y. Mansouri, A. N. Toosi, and R. Buyya, “Brokering algo-
rithms for optimizing the availability and cost of cloud storage
services,” in Proceedings of IEEE 5th International Conference
on Cloud Computing Technology and Science, pp. 581–589,
Bristol, UK, December 2013.

[9] Y. Singh, F. Kandah, and W. Zhang, “A secured cost-effective
multi-cloud storage in cloud computing,” in Proceedings of the
2011 IEEE Conference on Computer Communications Work-
shops, pp. 619–624, Shanghai China, June 2011.

[10] M. Hadji, “Scalable and cost-efficient algorithms for reliable
and distributed cloud storage,” in International Conference on
Cloud Computing and Services Science, pp. 15–37, Lisbon,
Portugal, May 2015.

[11] Y. Qu and N. Xiong, “A resilient, fault-tolerant and high-
efficient replication algorithm for distributed cloud storage,”
in Proceedings of the 2012 41st International Conference on
Parallel Processing (ICPP), pp. 520–529, Pittsburgh, PA, USA,
September 2012.

[12] X. Liu, L. Fan, L. Wang, and S. Meng, “Multiobjective reliable
cloud storage with its particle swarm optimization algorithm,”
Mathematical Problems in Engineering, vol. 2016, Article ID
9529526, 14 pages, 2016.

[13] M. Su, L. Zhang, Y. Wu, K. Chen, and K. LI, “Systematic data
placement optimization in multi-cloud storage for complex
requirements,” IEEE Transactions on Computers, vol. 65,
no. 6, pp. 1964–1977, 2016.

[14] N. K. Gill and S. Singh, “A dynamic, cost-aware, optimized
data replication strategy for heterogeneous cloud data cen-
ters,” Future Generation Computer Systems, vol. 65, pp. 10–32,
2016.

Table 8:*e total cost ($) with varying data retrieval latency within
one year (based on low DAF).

Data retrieval latency (ms) ADPA ACO DP
200 204.35 238.51 238.51
300 164.65 165.16 165.16
400 126.42 141.84 141.84
500 126.42 141.84 141.84

Scientific Programming 11

[15] X. Qiu, H. Li, C. Wu, Z. Li, and F. Lau, “Cost-minimizing
dynamic migration of content distribution services into hy-
brid clouds,” IEEE Transactions on Parallel and Distributed
Systems, vol. 26, no. 12, 2015.

[16] T. S. Reddy and G. Murali, “Implementing the least-price
cloud storage service in multiple cloud providers,” in Pro-
ceedings of the 2018 3rd International Conference on Com-
munication and Electronics Systems (ICCES), pp. 464–469,
Coimbatore, India, October 2018.

[17] P. Wang, Y. Lei, P. R. Agbedanu, and Z. Zhang, “Makespan-
driven workflow scheduling in clouds using immune-based
PSO algorithm,” IEEE Access, vol. 8, pp. 29281–29290, 2020.

[18] T. G. Papaioannou, N. Bonvin, and K. Aberer, “Scalia: an
adaptive scheme for efficient multi-cloud storage,” in Pro-
ceedings of the 2012 International Conference on High Per-
formance Computing, Networking, Storage and Analysis,
pp. 1–10, Salt Lake City, UT, USA, November 2012.

[19] C. Liu, X. Xu, and D. Hu, “Multiobjective reinforcement
learning: a comprehensive overview,” IEEE Transactions on
Systems, Man, and Cybernetics: Systems, vol. 45, no. 3,
pp. 385–398, 2015.

[20] Amazon S3, 2018, https://aws.amazon.com/cn/s3/pricing/?
nc�sn&loc�4.

[21] Microsoft Azure Cloud Storage, https://azure.microsoft.com/
en-us/pricing/details/storage/.

[22] Alibaba Cloud Object Storage, https://www.aliyun.com/price/
product/oss/detail.

[23] Google Cloud Storage, https://cloud.google.com/pricing/.
[24] 2018, http://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html.
[25] P. Wang, W. Zhou, C. Zhao, and Y. Lei, “A dynamic pro-

gramming-based approach for cloud instance types selection
and optimization,” International Journal of Information
Technology andManagement, vol. 19, no. 4, pp. 358–375, 2020.

[26] W. Liu, P. Wang, Y. Meng, Q. Zhao, C. Zhao, and Z. Zhang,
“A novel model for optimizing selection of cloud instance
types,” IEEE Access, vol. 7, pp. 120508–120521, 2019.

[27] W. Liu, P. Wang, Y. Meng, G. Zou, and Z. Zhang, “A novel
algorithm for optimizing selection of cloud instance types in
multi-cloud environment,” in Proceedings of the 25th IEEE
International Conference on Parallel and Distributed Systems
(ICPADS 2019), Tianjin, China, December 2019.

[28] Z. Wu, M. Butkiewicz, D. Perkins, E. Katz-Bassett, and
H. Madhyastha, “Spanstore: cost-effective geo-replicated
storage spanning multiple cloud services,” in Proceedings of
the Twenty-Fourth ACM Symposium on Operating Systems
Principles, (SOSP13), New York, USA, p. 292308, 2013.

[29] Y.Wu, C.Wu, B. Li, L. Zhang, Z. Li, and F. Lau, “Scaling social
media applications into geo-distributed clouds,” IEEE/ACM
Transactions on Networking (TON), vol. 23, no. 8, pp. 689–
702, 2015.

[30] A. Qureshi, Power-demand routing in massive geo-distributed
systems, PhD thesis, MIT, Cambridge, MA, USA, 2010.

[31] C. Watkins and P. Dayan, “Q-learning,” Machine Learning,
vol. 8, no. 3-4, pp. 279–292, 1992.

[32] R. Sutton and A. Barto, Reinforcement Learning: An intro-
duction, MIT press, Cambridge, MA, USA, 1998.

[33] W. Liu, P. Wang, Y. Meng, C. Zhao, and Z. Zhang, “Amazon
EC2 spot instance price prediction using kNN regression,” in
Proceedings of the 2018 Asia-Pacific Services Computing
Conference, IEEE, Zhuhai, China, January 2018.

[34] R. Bellman, “A Markovian decision process,” Indiana Uni-
versity Mathematics Journal, vol. 6, no. 4, pp. 679–684, 1957.

[35] IBM Cloud Object Storage Pricing, https://www.ibm.com/
cloud-computing/bluemix/pricing-object-storage.

12 Scientific Programming

https://aws.amazon.com/cn/s3/pricing/?nc=sn&loc=4
https://aws.amazon.com/cn/s3/pricing/?nc=sn&loc=4
https://azure.microsoft.com/en-us/pricing/details/storage/
https://azure.microsoft.com/en-us/pricing/details/storage/
https://www.aliyun.com/price/product/oss/detail
https://www.aliyun.com/price/product/oss/detail
https://cloud.google.com/pricing/
http://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html
https://www.ibm.com/cloud-computing/bluemix/pricing-object-storage
https://www.ibm.com/cloud-computing/bluemix/pricing-object-storage

