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Community detection is an important analysis task for complex networks, including bipartite networks, which consist of nodes of
two types and edges connecting only nodes of different types. Many community detection methods take the number of
communities in the networks as a fixed known quantity; however, it is impossible to give such information in advance in real-
world networks. In our paper, we propose a projection-free Bayesian inference method to determine the number of pure-type
communities in bipartite networks. .is paper makes the following contributions: (1) we present the first principle derivation of a
practical method, using the degree-corrected bipartite stochastic block model that is able to deal with networks with broad degree
distributions, for estimating the number of pure-type communities of bipartite networks; (2) a prior probability distribution is
proposed over the partition of a bipartite network; (3) we design aMonte Carlo algorithm incorporated with our proposedmethod
and prior probability distribution. We give a demonstration of our algorithm on synthetic bipartite networks including an easy
case with a homogeneous degree distribution and a difficult case with a heterogeneous degree distribution. .e results show that
the algorithm gives the correct number of communities of synthetic networks in most cases and outperforms the projection
method especially in the networks with heterogeneous degree distributions.

1. Introduction

A bipartite network is a network with nodes of two types and
edges connecting only nodes of different types. .e de-
composition of bipartite networks into communities
(clusters, modules, or groups), i.e., community detection,
plays an important role in revealing the structure of large
networked systems, providing new insights into how the
network is organized [1–4].

Many methods [5–9] have been developed for com-
munity detection in bipartite networks in recent years. A
fundamental shortcoming of most community detection
methods is that they partition networks into a fixed number
of groups. However, this number is usually unknown in real-
world networks, and we need tomine such information from
the network data. A lot of research [10–13] for making such
efforts to determine the number of communities in bipartite
networks has been proposed recently. .ere are three main

problems in these methods. One is that they performed
estimation through maximizing the modularity proposed in
[10, 14] that is proved to be NP-hard [15, 16]; the second is
that they gave the number of communities of mixed-type,
which is nearly always substantially less efficient [6]; the
third is that the projection method [15] performed poorly
due to information loss. .e heuristic methods proposed in
[17, 18] for community detection in bipartite networks does
not need the number of communities to be given a priori.

In this paper, we propose a projection-free Bayesian
inference method for determining the number of pure-type
communities in a bipartite network. Our method builds
mainly on the work as below: (i) the degree-corrected bi-
partite stochastic block model, proposed by Larremore et al.
[6], is used to find the community structure of empirical
networks with broad degree distributions; and (ii) the prior
probability distribution over divisions of a network into
groups and a new prior probability distribution based on a
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queueing-type process, both proposed by Riolo et al. [4], are
used for calculating the number of communities in a uni-
partite network.

In Section 2, first, we present the first-principle deri-
vation of a practical method, using the degree-corrected
bipartite stochastic block model that is able to deal with
networks with broad degree distributions, for estimating the
number of pure-type communities of bipartite networks.
Second, we propose a prior probability distribution over the
partition of a bipartite network, with the community-type
parameter ensuring that each community is pure type. In
Section 3, we design a Monte Carlo algorithm incorporated
with our proposed method and prior probability distribu-
tion. In the following section, we demonstrate our method
on synthetic bipartite networks including an easy case with
homogeneous degree distributions and a difficult case with a
heterogeneous degree distribution. .e results show that the
proposed algorithm can determine the correct number of
communities and perform better than our projection
method in every case.

2. Methods

2.1. Degree-Corrected Bipartite Stochastic Block Model.
.e stochastic block model is a generative model used to
produce networks containing blocks, groups, or commu-
nities. .is model is very important in network science and
is used for recovering the community structure in network
data [2, 3]. .e classic stochastic block model can be de-
scribed as follows: divide the number of vertices N into K
disjoint communities; any two vertices i and j are connected
by an edge with probability ωgigj

, which is an entry of a
symmetric K×Kmatrix, and gi is the community of vertex i.
However, the block model described above finds the com-
munity structure merely due to the degree sequence and fails
to detect the known communities in a real-world network
that has heterogeneous degree distributions [19]. Karrer and
Newman [20] extended the classic stochastic block model
including heterogeneity in the degrees of vertices and
proposed the degree-corrected stochastic block model,
which is proved to overcome the problems of the classic
block model.

Most stochastic block model community detection
methods can be naturally applied to bipartite networks
[20, 21]. Unfortunately, the stochastic block model often
overfits bipartite data by mixing nodes of different types
within communities and it is nearly always substantially less
efficient [6]. Built on the work of Karrer and Newman [20],
Larremore et al. [6] proposed the degree-corrected bipartite
stochastic blockmodel, which is employed in our calculations.
In the degree-corrected bipartite stochastic block model, a
bipartite network G is given with an Na × Nb bipartite
asymmetric adjacency matrix B, where Na is the number of
nodes of type-a and Nb is the number of nodes of type-b. Let

A �
0 B

BT 0􏼠 􏼡 be the N × N symmetric adjacency matrix of

the network G with N � Na + Nb. .e type-a nodes are
divided into some number ka of communities, labeled

1, . . . , ka, and the Nb nodes of type-b are divided into kb

communities, labeled ka + 1, . . . , ka + kb. We express the
matrix of community interrelationships as a k × k matrix,
where k � ka + kb. Let gi again encode the community node i
belongs to. Let ti be the type of vertex i and Tr be the type of
community r, imposing the constraint

ti � Tgi
, (1)

which indicates that node types and community types must
match and ensure that communities will be pure type. We
write

ka � 􏽘
k

r�1
δTr,type-a, (2)

kb � 􏽘
k

r�1
δTr,type-b, (3)

where δ is the Kronecker delta. Let θi control the expected
degree of node i and ωrs be the k × k symmetric matrix of
parameters to control the number of edges between com-
munities r and s. Following [4], the normalization of θi can be
fixed by imposing the constraint

1
n

􏽘
i

θiδgi,r
� 1, (4)

where nr � 􏽐iδgi,r
is the number of nodes in community r.

Following [22], we let the numbers of edges between nodes i
and j follow a Poisson distribution with mean θiθjωgigj

.
Enforcing the bipartite constraint of equation (1) produces a
restriction on ω:

ωrs � 0, whenTr � TS. (5)

Given parameters g, k, θ, ω, and T for the specification of
the mode, the probability of observing a bipartite network G
with adjacency matrix A can be written as

P(A | g, k, θ,ω, T) � 􏽙
i<j

ti≠tj

θiθjωgigj
􏼒 􏼓

Aij

Aij!
exp − θiθjωgigj

􏼒 􏼓.

(6)

Allowing for the constraint of equation (4), the proba-
bility P(A | g, k, θ,ω, T) can be simplified to the more
convenient form of

P(A | g, k, θ,ω, T) � 􏽙
i

θdi

i × 􏽙
r<s

Tr≠Ts

ωmrs

rs exp − nrnsωrs( 􏼁,

(7)

where di is the observed degree of vertexes i and mrs �

􏽐i,j
ti ≠ tj

Aijδgi,r
δgj,s is the number of edges between commu-

nities r and s. We have neglected an overall multiplicative
constant in (7) since it cancels out in later calculations. Note
that a similar probability given by Larremore et al. [6] has
been modified in equation (7) as follows:
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(i) .e number k of communities, the objective we will
estimate, is incorporated as an unknown quantity

(ii) .e exponential expression is − nrnsωrs rather than
− ωrs, with the normalization of θi under a different
constraint condition

.en, we integrate out the irrelevant parameters θ and
ω. We assume maximum-entropy (i.e., least informative)
prior probability distributions on the parameters θ and ω.
For θ, this means a uniform prior probability distribution
over the regular simplex of values specified by equation (4).
.en, we let the expected value of the edge probability ωrs

be equal to the observed average edge probability in the
network as a whole: p � 2m/N2, where m is the total
number of edges in the bipartite network. .en, the
maximum-entropy prior probability distribution is an
exponential distribution P(ω) � (1/p)e− ω/p. We assume the
priors to be independent (conditioned on g, k, and T) so
that P(ω, θ ∣ k, g, T) � P(ω ∣ k, T)P(θ ∣ k, g, T) and

P(A | g, k, T) � BP(A | g, k, θ,ω, T)P(θ | g, k, T)P(ω | k, T)dθ dω.

(8)

With these choices of priors, integration is performed on
equation (8). .en, we have

P(A | g, k, T) � 􏽙
r

n
κr

r

nr − 1( 􏼁!

nr + κr − 1( 􏼁!
× 􏽙

r<s
Tr≠Ts

mrs!

pnrns + 1( 􏼁
mrs+1

,

(9)

where κr � 􏽐idiδgi,r
and an overall multiplying constant has

been discarded.

2.2. Prior on Community Partitions. Our goal is to estimate
the correct values of ka and kb for a given bipartite network
using this model as the basis for a Bayesian model selection
procedure. We have

P(g, k, T | A) �
P(g, k, T)P(A | g, k, T)

P(A)
, (10)

whereP(A | g, k, T) is given by equation (6), and the probability
P(A), which in the denominator of equation (10) has no effect on
our results, is unknown but cancels out in later calculations. In
this paper, our primary focus is to get the posterior distribution
on k through summing overg; then, we choose a value for k and
calculate ka and kb using equations (2) and (3). Now, we start to
choose the prior P(g, k, T), which is often the most important
and difficult task of the calculation in the case of Bayesian
methods.

2.2.1. Prior P(g | k) on Community Partitions. If we know
the number of communities k in advanced, let us choose the
prior P(g | k) on community partitions of one type of node.
We first employ the most commonly used approach, which
is described as follows. .e prior on the community par-
tition probabilities c is uniform under the constraint

􏽐rcr � 1, where cr ∈ [0, 1], with which nodes are assigned to
communities independently at random. We can get a par-
ticular community partition with the probability

P(g | c, k) � 􏽙
N

i�1
cgi

� 􏽙
k

r�1
c

nr

r . (11)

.e values cr fall on a regular (k − 1)-dimensional
simplex with volume (k − 1)!, so its probability density is
P(c | k) � (k − 1)!. We integrate equation (11) over the
simplex and get the following equation [4, 23, 24]:

P(g | k) � 􏽚 P(g | c, k)P(c | k)dc �
(k − 1)!

(N + k − 1)!
􏽙

r

nr!.

(12)

Since the process above generates a uniform distribution
over possible community sizes, we then introduce an al-
ternative and simpler way (used by Riolo et al. [4]) to derive

the prior P(g | k). We have N + k − 1
k − 1􏼠 􏼡 possible ways to

choose k communities with 􏽐
k
r�1nr � N and N!/􏽑rnr!

possible ways to place the nodes in the k communities; thus,
any partition g of nodes to communities is given with the
probability

P(g | k) �
1

N − 1

k − 1
⎛⎝ ⎞⎠N!/ 􏽑rnr!( 􏼁

�
(k − 1)!

(N + k − 1)!
􏽙

r
nr!,

(13)

the same to equation (12) without the need for parameters cr.
However, these twomethodsmay generate partitions g with

empty communities. As in [4], we have the binomial coefficient
N − 1
k − 1􏼠 􏼡 possible choices of k communities with nonempty

ones and

P(g | K) �
1

N − 1

k − 1
⎛⎝ ⎞⎠N!/ 􏽑r nr!􏼁.(

(14)

.en, we allow for two different types of partitions and get

P(g | k, T) �
1

Na − 1

ka − 1
⎛⎝ ⎞⎠Na!/ 􏽑Tr�type− anr!􏼐 􏼑

·
1

Nb − 1

kb − 1
⎛⎝ ⎞⎠Na!/ 􏽑Tr�type− bnr!􏼐 􏼑

�
1

Na − 1

ka − 1
⎛⎝ ⎞⎠

Nb − 1

kb − 1
⎛⎝ ⎞⎠Na!Nb!/ 􏽑rnr!( 􏼁

.

(15)
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2.2.2. Choice of the Number of Communities. Some previous
work has been done for the choices of prior P(k) over the
number of communities itself, such as letting P(k) equal 1/N
[23, 24] or 1/k! [21]. We again follow [4] and take a different
approach, in which community partitions g and the number
of communities k can be generated synchronously. We use a
queueing-type mechanism for processing community par-
titions g. For one type, such as type-a, we order theNa nodes
uniformly at random and the first node is placed in com-
munity 1. .en, we place each following node either (a) with
probability 1 − q in the same community as the previous
node or (b) with probability q in the next community; for
another type, we repeat the process above. .is process
ensures that all communities generated are not empty.

For type-a, there are Na! (Nb! for type-b) possible ways
to order the nodes, so the probability of each one occurring
is the same as 1/Na! (1/Nb! for type-b). If k � ka + kb

communities are generated finally, we must create k − 2 new
communities (ka − 1 new type-a ones and kb − 1 new type-b
ones). Because for one type each node except the first starts a
new community with equal probability q, k communities
with sizes n1, . . . , nk are generated with the probability:

(1 − q)
n1− 1

q(1 − q)
n2− 1

q · · · (1 − q)
nka

− 1
(1 − q)

nka+1− 1q

· (1 − q)
nka+2− 1q · · · (1 − q)

nka+kb
− 1

� q
k− 2

(1 − q)
N− k

.

(16)

For each community of the same partition g, the nodes
can be rearranged in 􏽑rnr! ways..us, any given partition is
generated in the process with the probability:

P(g, k, T) �
1

Na!Nb!
q

k− 2
(1 − q)

n− k
􏽙

k

r�1
nr!. (17)

Given that P(g, k, T) � P(k, T)P(g | k, T),

P(k, T) �
P(g, k, T)

P(g | k)
�

Na − 1

ka − 1
⎛⎝ ⎞⎠

Nb − 1

kb − 1
⎛⎝ ⎞⎠q

k− 2
(1 − q)

N− k
.

(18)

We let q � μ/(N − 1), where the expected number of
new communities created is µ. .en,

P(g, k, T) �
(1 − q)N

q2Na!Nb!

μk

(N − μ − 1)k
􏽙

k

r�1
nr!. (19)

In equation (19), ((1 − q)N)/(q2Na!Nb!) has no effect on
our result and cancels out in later calculations.

As in [4], we let µ� 1 and neglecting constants

P(g, k, T) � (N − 2)
− k

􏽙

k

r�1
nr!. (20)

Now, equation (10) can be written as

P(g, k, T | A) � (N − 2)
− k

􏽙
r

n
κr

r nr!
nr − 1( 􏼁!

nr + κr − 1( 􏼁!

× 􏽙
r<s

Tr≠Ts

mrs!

pnrns + 1( 􏼁
mrs+1

,

(21)

and here we allow for equations (9) and (20).
Unfortunately, it is hard to sum over g since the sum has

kN terms [4]. Instead, we approximate the distribution over
k (ka and kb according to different types) by Markov chain
Monte Carlo sampling.

3. Monte Carlo Algorithm for
Bipartite Networks

3.1. Our Algorithm. We design a Monte Carlo algorithm
incorporated with the bipartite block model and prior
probability distribution discussed above to apply the bi-
partite networks. We call our algorithm the bipartite net-
work Monte Carlo algorithm (BMCA), and it is built on the
unipartite network analysis of Riolo et al. [4]. Our algorithm
fulfills the requirements of ergodicity and detailed balance
[25].

.ere are two types of steps used by BMCA:

Type 1: moving one node from its current community
to a different existing community. .ere are again two
types of processes in this type of rearrangement. In the
processes of the first type, BMCA decreases the number
of communities (ka or kb) of the same type as the
community whose last node moved, thereby decreasing
the value of k by one. In the processes of the second
type, the community the node moved from contains
more than one node and themove here does not change
the number of communities.
Type 2: moving one node to a community newly
created. .e number of communities (ka or kb) of the
same type as the community the node moved from and
the value of k increase by one.

.e two types of steps described above make BMCA
meet the requirement of ergodicity.

Detailed balance requires that the rate
R(g, k, T⟶ g′, k′, T′) goes from a state (g, k, T) to an-
other state (g′, k′, T′) and the opposite meet

R g, k, T⟶ g′, k′, T′( 􏼁

R g′, k′, T′ ⟶ g, k, T( 􏼁
�

P g′, k′, T′ | A( 􏼁

P(g, k, T | A)

�
P g′, k′, T′( 􏼁

P(g, k, T)
×

P A | g′, k′, T′( 􏼁

P(A | g, k, T)
,

(22)

where we allow for equation (10). From (20), we have

P g′, k′, T′( 􏼁

P(g, k, T)
� (N − 2)

k− k′􏽑
k
r�1nr
′!

􏽑
k
r�1nr!

. (23)
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We consider R(g, k, T⟶ g′, k′, T′) as
π(g, k, T⟶ g′, k′, T′)α(g, k, T⟶ g′, k′, T′), where the
previous part of the product represents the probability of
proposing a move and the latter represents the probability
chosen to satisfy the detailed balance condition for accepting
the move. .en,

R g, k, T⟶ g′, k′, T′( 􏼁

R g′, k′, T′ ⟶ g, k, T( 􏼁
�
π g, k, T⟶ g′, k′, T′( 􏼁

π g′, k′, T′ ⟶ g, k, T( 􏼁

×
α g, k, T⟶ g′, k′, T′( 􏼁

α g′, k′, T′ ⟶ g, k, T( 􏼁
.

(24)

BMCA is described as follows:

Input: the bipartite adjacency matrix B and the node-
type vector ti.
Initial communities partition: using the process de-
scribed in Section 2.2.2.
Monte Carlo Sampling:

(1) (a) In each step of BMCA, we carry out a rear-
rangement of type 1 with probability 1 − 1/(N − 1).
If k � 2 (i.e., ka � 1 and kb � 1), we do nothing.
Otherwise, when k> 2, first, we randomly select a
community label r in the range 1, . . . , k. If the
number of communities of type Tr is more than
one, then we randomly select a community of type
Tr labels s; otherwise, we turn to communities of
another type, from which we randomly reselect a
pair of communities, respectively, labels r and s.
.en, we randomly select one node from com-
munity r and move it to community s. .e number
k � ka + kb of total communities remains constant.
(b) In the process, if community r becomes empty as
a result that its last node is removed, the number of
communities k decreases by one. In practice, for the
type-a communities labels 1, . . . , ka, we can effi-
ciently change the community ka to have label r and
then change the community k to have label ka;
specially, if r � ka, we only perform the latter
relabeling. In such a process, the number ka of
communities of type-a decreases by 1 and the
number kb of communities of type-b remains
constant. For type-b community labels
ka + 1, . . . , k, we can efficiently change the com-
munity k to have label r; specifically, if r � k, no
relabeling is necessary. In such a process, the
number kb of communities of type-b decreases by 1
and the number ka of communities of type-a re-
mains constant. .e number ka � ka + kb of total
communities decreases by 1.

(2) Otherwise, we carry out a rearrangement of type 2
with probability 1/(N − 1). We randomly select a
community label r in the range 1, . . . , k. If there is
only one node in community r, we do nothing.

Otherwise, if Tr � type − a, we change community
label ka + 1 to k + 1 and create a new empty
community ka + 1. .en, we randomly select a
node from community r and move it to the newly
created community ka + 1. During this process,
the number ka of communities of type-a increases
by 1 and the number kb of communities of type-b
remains constant. If Tr � type − b, we simply
create a new empty community k + 1 and no
relabeling is necessary. .en, we randomly select
a node from community r and move it to the
newly created community k + 1; during this
process, the number kb of communities of type-b
increases by 1 and the number ka of communities
of type-a remains constant. .e number k � ka +

kb of total communities increases by 1.
(3) We accept the rearrangement proposed above with

acceptance probability [4]:

α g, k, T⟶ g′, k′, T′( 􏼁 � min 1,
P A | g′, k′, T′( 􏼁

P(A | g, k, T)
􏼢 􏼣.

(25)

(4) Repeat steps 1–3.
Output: the posterior probabilities P(ka | A) and
P(kb | A).
Rearrangements of any type are performed, and we
always have the following equation (see Table 1):

π g, k, T⟶ g′, k′, T′( 􏼁

π g′, k′, T′ ⟶ g, k, T( 􏼁
�

P g′, k′, T′( 􏼁

P(g, k, T)
. (26)

Taking into consideration equations (22) and (24), the
detailed balance condition can be written as

α g, k, T⟶ g′, k′, T′( 􏼁

α g′, k′, T′ ⟶ g, k, T( 􏼁
�

P A | g′, k′, T′( 􏼁

P(A | g, k, T)
. (27)

.erefore, our algorithm satisfies the detailed balance
with acceptance probability of equation (25) and will sample
correctly from the distribution P(g, k, T | A).

3.2. Output of BMCA. In our implementation, a given
number of steps ti per node is performed in a Monte Carlo
run on a bipartite network, and then we write approximate
posterior probabilities:

P(k, T | A) �
the times k showed out in aMonte Carlo run

S
.

(28)

For type-a, we can get approximately
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P ka | A( 􏼁 �
the times ka showed out in aMonte Carlo run

S
,

(29)

and for type-b,

P kb | A( 􏼁 �
the times kb showed out in aMonte Carlo run

S
.

(30)

.e most likely number of type-a communities in a
bipartite network is ka with the biggest value P(ka | A), and
the number of type-b communities kb can be given in the
same way.

In order to avoid any bias in the results and improve the
correctness of BMCA, instead of just using P(ka | A), we
performed a given number M of Monte Carlo runs for a
bipartite network. .us, we obtained the average value of
each Pi(ka | A) as the final posterior probabilities:

P′ ka | A( 􏼁 �
􏽐

M
i�1Pi ka | A( 􏼁

M
, (31)

for type-a and

P′ kb | A( 􏼁 �
􏽐

M
i�1Pi kb | A( 􏼁

M
, (32)

for type-b.
We take O(N + Na ∗Nb) to calculate the acceptance

probability of each node move, so the time complexity of our
algorithm is O(N2

aNb + NaN2
b).

4. Example Application

Here, we demonstrate our algorithm on synthetic bipartite
networks generated by the bipartite stochastic block model
[6] and find that it works well in most cases.

.ere is often some noise in empirically observed net-
works because of both errors in the measurements and
missing data [26]. .erefore, we employ a mixing model to
generate noisy synthetic networks for testing the robustness
of our algorithm. In this model, we specify g, and the ex-
pected value of an edge is given by
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Figure 1: Test of BMCA against the projection method (PM) on synthetic networks generated using the bipartite stochastic block model in
an easy case. Posterior probabilities P′(ka � 4 | A) (a) and P′(kb � 4 | A) (b) are functions of the mixing parameter λ.
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ω � λωplanted
+(1 − λ)ωrandom

, (33)

where the parameters ωplanted and ωrandom are used to
generate a pure planted community structure and no
community structure, respectively; and the mixing param-
eter λ ∈ [0, 1] is used to control various levels of uniformly
random noise. Following Larremore et al. [6], we let
ωplanted

rs � mrs and ωrandom
rs � κrκs/m, where θi � di/κgi

. We
employ this model to create synthetic networks of an easy
case with a homogeneous degree distribution and a difficult
case with a heterogeneous degree distribution.

We performed M � 10 Monte Carlo runs for each
network of S � 10000 steps per node and found that BMCA
can determine the correct number of communities for
synthetic networks and outperform the projection method
in every case.

4.1. An Easy Case. In the easy case, we use the model above
to create the synthetic networks including four type-a
communities and four type-b communities, i.e.,
ka � kb � 4, and each node has the same degree (i.e., the
network with planted community structure has a homo-
geneous degree distribution). We let the number of each

type of node equal to 1000, and all communities are equally
sized as 250. .en, we let m1,5 � m2,6 � m3,7 � m4,8 � 2500
(i.e., the total number of edges is 10000), and let the block
structure matrix ωplanted be defined with ωplanted

1,5 � ωplanted
2,6 �

ωplanted
3,7 � ωplanted

4,8 � 2500 (the symmetric entry has the same
value). Moreover, the random structure matrix ωrandom can
be defined with ωrandom

i,j � 625 (i � 1, 2, 3, 4; j � 5, 6, 7, 8).
Finally, with these specifications, we create networks of the
easy case to test our algorithm (the code to create these
networks can be downloaded from [27]).

As the mixing parameter λ increases, i.e., the level of noise
is decreased, BMCA begins to estimate the correct number of
communities for the network in an easy case when λ � 0.5; in
addition, the fraction of correct communities number of the
network calculated by BMCA increases as a whole (blue line
in Figure 1). .en, we use our method to derive the synthetic
mixing networks generated with λ � 0.6 and λ � 0.65, in-
dicated by red circles in Figure 1(a) and Figure 1(b) and
showing the posterior probabilities of the number of com-
munities in the network in Figure 2(a) and Figure 2(b). As
shown in Figures 1 and 2, we are able to estimate the correct
number of different types of communities when λ≥ 0.65 with
PBMCA′ (ka � 4 | A) � 0.6 (PBMCA′ (kb � 4 | A) � 0.6); then,
when λ≥ 0.8, the proposal probability of the correct number
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Figure 2: Posterior probabilities P′(ka | A) of the number of communities calculated for the synthetic networks generated using the
bipartite stochastic block model in an easy case. .e synthetic networks were generated with λ � 0.6 (a) and λ � 0.65 (b) in the easy case.
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of communities PBMCA′ (ka � 4 | A) and PBMCA′ (kb � 4 | A) is
equal to 1. However, the projection method gives poorer
results (see the red lines in Figure 1), and it begins to estimate
the correct number of different types of communities at λ �

0.6 with PPM′ (ka � 4 | A) � 0.1 (PPM′ (kb � 4 | A) � 0.1) and
when λ � 1 PPM′ (ka � 4 | A) � 0.9 (PPM′ (kb � 4 | A) � 0.8).
When λ≥ 0.5, PBMCA′ (ka � 4 | A) (PBMCA′ (kb � 4 | A)) is al-
ways bigger than PPM′ (ka � 4 | A)(PPM′ (kb � 4 | A)), as shown
in Figure 3.

4.2. A Difficult Case. In the difficult case, the synthetic
networks are created with two type-a communities (ka �

2) and three type-b communities (ka � 3), and the degree
of each node is different (i.e., the network with planted
community structure has a heterogeneous degree distri-
bution). .e communities are set with different sizes, and
we divide 700 type-a nodes evenly into 2 communities
{350, 350} and 300 type-b nodes into 3 communities {100,
150, 150}. Let m1,3 � m2,4 � 2500 and m1,5 � m2,5 � 1500;
i.e., the total number of edges is 8000. .en, the block
structure matrix ωplanted can be defined with ωPlanted

1,3 �

ωPlanted
2,4 � 2500 and ωPlanted

1,5 � ωPlanted
2,5 � 1500 (the sym-

metric entry has the same value), and the random network
matrix ωrandom can be defined with ωrandom

1,3 � ωrandom
1,4 �

ωrandom
2,3 � ωrandom

2,4 � 1250 and ωrandom
1,5 � ωrandom

2,5 � 1500.
.e symmetric entry has the same value. Finally, with the

specification above, we create networks of the difficult case
to test our algorithm (the code to create these networks
can be downloaded from [27]).

As shown by the blue line in Figure 3, when the level of
noise is decreased, BMCA begins to estimate the correct
number of communities for the network in a difficult case
when λ � 0.5, and the posterior probabilities P′(ka � 2 | A)

and P′(kb � 3 | A) increase sharply after λ≥ 0.55. Especially,
when λ≥ 0.75, the proposal probability PBMCA′ (ka � 2 | A) �

1 (PBMCA′ (kb � 3 | A) � 1); i.e., we are always able to de-
termine the correct number of communities. We used our
method to calculate the probability of the number of
communities in the synthetic mixing networks generated
with λ � 0.55 and λ � 0.6, indicated as red circles in Figure 3,
and show the result in Figure 4. As seen from Figures 3 and
4, our method can estimate the correct number of com-
munities ka � 2 and kb � 3 in the synthetic network when
λ≥ 0.6 for the difficult case. However, the projection method
fails to estimate the correct number of communities even
when λ � 1 and there is no noise, as shown by the red line in
Figure 3.

4.3. Further Testing. We tested our method on synthetic
networks of two different sizes of community as the number
of network communities increases. .e networks were
generated using the bipartite stochastic block model with

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P′
(k

a =
 2

 | 
A)

 in
 a 

di
ffi

cu
lt 

ca
se

λ

P′BCMA(ka = 2 | A)
P′PM(ka = 2 | A)

(a)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P′
(k

b =
 3

 | 
A)

 in
 a 

di
ffi

cu
lt 

ca
se

λ

P′BCMA(kb = 3 | A)
P′PM(kb = 3 | A)

(b)

Figure 3: Test of BMCA against the projectionmethod (PM) on synthetic networks generated using the bipartite stochastic block model in a
difficult case. Posterior probabilities P′(ka � 2 | A) (a) and P′(kb � 3 | A) (b) are functions of the mixing parameter λ.
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λ � 1, and the other parameters are set as listed in Table 2,
where θ(i � 1, . . . , N) is heterogeneous as real-world net-
works and the mean node degree of the network for the
figures is 10. .e number of communities ka or kb estimated
using BMCA was correct until the actual number of com-
munities increased to about 7, which is about 14 for k. .e
results are shown in Figure 5.

.e results show a tendency to underestimate the
number of communities for higher actual numbers of
communities, especially when the size of the community
changes from 250 (Figures 5(a) and 5(b)) to 500 (Figures 5(c)
and 5(d)) and that of the networks increase correspondingly.
However, these calculations appear when BMCA is run with

a random initialization partition of nodes to communities.
When BMCA is started on the same network with com-
munity partitions corresponding exactly to the planted
community structure (yellow triangles), we always find the
accurate number of communities.

Even so, the underestimation of ka (or kb) occurs not
because the correct community partition fails tomaximize the
posterior probability P(ka ∣ A) but rather because BMCA has
not run for long enough to find the maximum..emethod is
theoretically sound, but when the number of possible com-
munity partitions kN increases very rapidly with k, the nu-
merical calculation becomes too demanding [4]. We can
possibly design a more efficient Monte Carlo algorithm to
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Figure 4: Posterior probabilities of the number of communities calculated for the synthetic networks generated using the bipartite stochastic
block model in a difficult case. Posterior probabilities P′(ka | A) of the number of type-a communities in the synthetic networks generated
with λ � 0.55 (a) and λ � 0.55 (b) and P′(kb | A) of the number of type-b communities in the synthetic networks generated with λ � 0.55 (c)
and λ � 0.6 (d).

Table 2: .e parameters set for synthetic networks.

Figure no. nr(r � 1, . . . , k) θi(i � 1, . . . , N) ωrs, r � 1, . . . , kas � r + ka and ka � 1, . . . , 10

Figure 5(a) 250 Homogeneous 2500
Figure 5(b) 250 Heterogeneous 2500
Figure 5(c) 500 Homogeneous 5000
Figure 5(d) 500 Heterogeneous 5000
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solve this problem although it offers some useful information
of a lower bound on the number of communities in the
network given by BMCA.

5. Conclusions

In our paper, a new projection-free Bayesian inference
method for determining the number of pure-type commu-
nities in a bipartite network has been introduced. First, we
present the first principle derivation of a practical method,
using the degree-corrected bipartite stochastic block model
that is able to deal with networks with broad degree distri-
butions, for estimating the number of pure-type communities
of bipartite networks. Second, we propose a prior probability
distribution over the partition of a bipartite network, with
type parameter T ensuring that each community is pure type.
.ird, we design a Monte Carlo algorithm incorporated with
our proposed method and prior probability distribution. We
have illustrated the performance of the method with appli-
cations to a wide range of synthetic bipartite networks, in-
cluding an easy case with homogeneous degree distributions
and a difficult case with heterogeneous degree distributions.
.e results show that the proposed algorithm can determine
the correct number of communities and perform better than

the projection method, especially in networks with hetero-
geneous degree distributions.

However, our method underestimates the number of
communities when the number of communities becomes
large. .e reason for this is due to the number of possible
community partitions increasing very rapidly with the in-
crease in the number of communities and because our al-
gorithm has not run for long enough to find the posterior
probability. .us, our future work will focus on (i) finding a
method that can more efficiently sample the posterior dis-
tribution over community partitions to correctly estimate a
large number of communities in the network and (ii)
extending applications on real-world data sets.
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Web_LWZZ.aspx?TID=2887

Conflicts of Interest

.e authors declare that there are no conflicts of interest.

0 10
0

2

4

6

8

10

Es
tim

at
ed

 k
a

True ka

Random initial conditions
Ground truth initial conditions

2 4 6 8

(a)

True ka

0

2

4

6

8

10

Es
tim

at
ed

 k
a

Random initial conditions
Ground truth initial conditions

0 102 4 6 8

(b)

0

2

4

6

8

10

Es
tim

at
ed

 k
a

Random initial conditions
Ground truth initial conditions

True ka

0 102 4 6 8

(c)

Es
tim

at
ed

 k
a

Random initial conditions
Ground truth initial conditions

True ka

0

2

4

6

8

10

0 102 4 6 8

(d)

Figure 5: Tests of our algorithm on synthetic bipartite networks. In each subgraph, triangles represent results derived from Monte Carlo
runs with the known correct partitions (ground truth initial conditions), while circles represent runs started with a random initial partition
of nodes to community (random initial conditions).
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