Hindawi

Scientific Programming

Volume 2019, Article ID 9067512, 11 pages
https://doi.org/10.1155/2019/9067512

Research Article

Hindawi

A Practical Approach to Protect IoT Devices against Attacks and
Compile Security Incident Datasets

Bruno Cruz®,' Silvana Gémez-Meire

,! David Ruano-Ordas ®,">>* Helge Janicke,>*

1,2

Iryna Yevseyeva ,>* and Jose R. Méndez

'Department of Computer Science, University of Vigo, ESEI—Escuela Superior de Ingenieria Informdtica, Edificio Politécnico,
Campus Universitario As Lagoas s/n, 32004 Ourense, Spain

2SING Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain

3Cyber Technology Institute, School of Computer Science and Informatics, De Montfort University, Gateway House 5.33,
The Gateway, LEI 9BH Leicester, UK

*Faculty of Computing, Engineering & Media (CEM), De Montfort University, Leicester, UK

Correspondence should be addressed to Jose R. Méndez; moncho.mendez@uvigo.es
Received 27 April 2019; Revised 26 June 2019; Accepted 7 July 2019; Published 29 July 2019
Guest Editor: Daniele D’Agostino

Copyright © 2019 Bruno Cruz et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The Internet of Things (IoT) introduced the opportunity of remotely manipulating home appliances (such as heating systems,
ovens, blinds, etc.) using computers and mobile devices. This idea fascinated people and originated a boom of IoT devices together
with an increasing demand that was difficult to support. Many manufacturers quickly created hundreds of devices implementing
functionalities but neglected some critical issues pertaining to device security. This oversight gave rise to the current situation
where thousands of devices remain unpatched having many security issues that manufacturers cannot address after the devices
have been produced and deployed. This article presents our novel research protecting IOT devices using Berkeley Packet Filters
(BPFs) and evaluates our findings with the aid of our Filter.tlk tool, which is able to facilitate the development of BPF expressions

that can be executed by GNU/Linux systems with a low impact on network packet throughput.

1. Introduction and Meotivation

The evolution of Internet and communication networks
from their emergence in the sixties to today has enabled a
revolution in the way people and businesses interact. People
today communicate worldwide using mobile devices, which
have a reliable broadband (4G) Internet connection. Despite
these great advances, Aceto et al. [1] note that network
outages are still a challenge to solve because they are fre-
quent, hard to fix, expensive, and, in particular, poorly
understood by users. Whilst there exists a variety of prob-
lems surrounding network availability (Aceto et al. [1]), this
study presents a proposal to avoid or at least minimize the
effects of problems caused by software attacks through
networks, including worms [2, 3] and remote attacks to
exploit server vulnerabilities [4].

Patching avoids the compromise of target systems
through, e.g., malware and vulnerability exploits. However,
the growth of Internet of Things (IoT) applications running
on devices, that frequently do not support patching, using
Internet and TCP/IP networks for communication purposes,
limits this possibility. Moreover, software upgrades are not
always immediately available when the vulnerability is
discovered, as patch development and distribution depend
on developer circumstances. The existence of proactive
defense mechanisms [5] capable of mitigating risks associ-
ated with unpatched components within an otherwise
trusted TCP/IP network would be very valuable. In this
study, we take advantage of the firewall support of operating
systems to develop a highly efficient mechanism to detect
and bring together information about malicious network
traffic.


mailto:moncho.mendez@uvigo.es
https://orcid.org/0000-0003-3022-2301
https://orcid.org/0000-0001-7815-9909
https://orcid.org/0000-0002-6050-373X
https://orcid.org/0000-0002-1627-7624
https://orcid.org/0000-0002-1935-4760
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/9067512

Firewalling support has become an essential feature of
modern operating systems. The use of firewalls is one of the
easiest mechanisms to manage network defense. However,
its effectiveness is clearly limited to protect IoT devices
against malware and vulnerability exploiting [6]. In the well-
known Linux operating system, firewall capabilities have
been provided primarily through packet filtering technology
and have evolved from a netfilter ipfw system port (included
in Linux kernel 1.1) to netfilter/iptables (included in Linux
2.4 kernel series). This evolution entailed the introduction of
significant innovations such as the tracking of TCP con-
nections or the possibility of altering packets in transit
(mangle table). Despite the popularity of these filters, net-
filter/iptables firewalling subsystem will be replaced in order
to speed up the filtering process and increase the in-
formation achieved for each packet to filter (such as payload
information).

Wireshark capture filters [7] are defined by using
libpcap filter language. Filter examples that are designed
to detect some worms and exploits are available in
Wireshark Wiki [8] showing the power of this filter
syntax. The syntax of capture filters is commonly known
as Berkeley Packet Filter (BPF) and is supported in the
kernel of most UNIX-like operating systems. This syntax
is also implemented by libpcap/Winpcap to be used at the
user level in tools such as Wireshark. BPF [9] was first
introduced in 1990 as a tool for capturing and filtering
network packets that matched specific rules. BPF support
was included in Linux kernel by implementing a small
virtual machine that runs compiled BPF programs in-
jected from user-space [10]. Later, a BPF Just-In-Time
(JIT) compiler was added to speed up the performance of
the execution of bytecodes. Currently, BPF can be loaded
for its execution into kernel with different tools to execute
different tasks, such as system monitoring (trough using
perf tool), network traffic control and quality of service
(through tc tool), and packet filtering (through ip link tool
included in iproute2 suite or iptables).

Due to its flexibility, BPF has been used by important
technology companies such as Google, Facebook,
Cloudflare, and Netflix to address network security issues,
load-balancing, traffic-filtering, and monitoring [11-14].
A comparison of the filtering performance achieved by a
BPF-based filter (BPFilter), iptables, and nftables has also
been provided in other studies [11, 15] showing that
BPFilter runs up to 5 times faster than iptables. This
scenario led to the consideration of BPF as a reliable
candidate to replace iptables (and nftables) as the kernel
firewall subsystem for Linux [11]. However, despite the
fact that BPF syntax is more powerful than that offered by
current Linux firewalls, BPFilter only takes advantage of
the BPF virtual machine to speed up rules created by older
tools. Majkowski [16, 17] demonstrated how to take ad-
vantage of BPF in conjunction with iptables to filter
packages and define new chains. These works allowed
system administrators to take advantage of the rich syntax
and efficient execution of BPF expressions to filter
packages in real environments and protect IoT devices
against malware and vulnerability exploiting.

Scientific Programming

We developed Filter.tk to work in conjunction with these
tools. Filter.tk is a framework to complete the full lifecycle
(creation, debugging, and testing) of BPF iptables-compliant
pattern design for mitigating both worm and exploit attacks.
The development of patterns will be useful for the future
creation of a BPF rules database usable in the form of well-
known community collaboration products such as Ansible
Galaxy [18, 19] or DockerHub [20], where users can share
BPF to protect IoT devices, computers, and software against
worm and exploit attacks. Additionally, the information
about harmful network packets can be uploaded to cen-
tralized repository for research purposes. Particularly, this
data, if compiled worldwide, could allow the identification of
security threats and help in the identification of new of-
fensive packet patterns.

The remainder of this paper is structured as follows:
Section 2 introduces the state of the art in well-known
worms, security vulnerabilities, and IoT security. Section 3
introduces our proposal to address both the protection of
devices against security vulnerabilities (and hence, worm
attacks exploiting those vulnerabilities), and the compilation
of security incident datasets in the context of IoT while
Section 4 is centered on discovering the utility of the toolset
through case studies. Finally, Section 5 presents the main
conclusions of the work and outlines the directions for
future research.

2. State of Art

During the early 2000s, Internet worms became very popular
due to the effects of well-known worms such as Code Red
(versions 1 and 2), Nimda, SQL Slammer, or Blaster. Some of
these worms are compiled in the work of Qing and Wen [2].
However, due to the increased awareness of users and de-
velopers about the importance of security, this kind of
malicious software is solely spread in P2P networks and
operates in a passive form [21]. Instead of performing an
active search to infect computers, passive worms require
human intervention, i.e., by downloading an infected file
from a P2P network, to replicate themselves. Despite the
propagation of passive worms in P2P networks mainly
connected with the illegal downloading of software and
multimedia materials, the dissemination of these Internet
worms and their mitigation has been fairly well discussed in
previous studies [21-29]. The detection of new vulnerabil-
ities allowing remote exploitation is a very active area as
evidenced by the latest exploits published in exploit-db [4].
Although the existence of vulnerabilities allowing the exe-
cution of remote commands could provide a mechanism for
the dissemination of worms, the quick response of software
development teams to provide security patches discourages
malware developers from designing new worms. With this in
mind, the goal of this work is to mitigate attacks exploiting
software vulnerabilities, with a special interest in those
targeting an IoT device.

Many IoT applications and devices have become avail-
able for smart home automation. Querying “remote”
“hardware” exploits in exploit-db and other similar data-
bases resulted in a number of exploitable vulnerabilities in



Scientific Programming

well-known products (such as intelligent TVs, cameras, etc.).
This shows that IoT developers have been prioritizing the
development and creation of functionalities for most de-
manding wusers while frequently neglecting security
considerations.

A few works have addressed issues in IoT security,
such as the use of block-chain communications [30-33].
These usually refer to security issues pertaining to con-
fidentiality, integrity, and availability in the communi-
cations between IoT devices and IoT. The work of Ammar
et al. [34] provides a critical review of eight well-known
IoT frameworks with special emphasis on security issues
(analyzing models and approaches provided for ensuring
security and privacy, pros and cons of each framework in
terms of fulfilling the security requirements and meeting
the standard guidelines, and identifying design flaws).
Wood and Stankovic [35, 36] provide studies about
network issues. Particularly, the former work is centered
in security-related issues about IoT communication
protocols whilst the later analyzes denial of service threats
in IoT environments.

Wack et al. [37] review the risk of platform software/
firmware vulnerabilities that enable the reception of
malicious attacks. To the best of our knowledge, there is
no research work focused on the prevention, manage-
ment, and response to vulnerability exploiting and worm
attacks in IoT. Closing this gap, we studied how to take
advantage of firewalling schemes to implement these
protections.

2.1. OS Firewalling Support. Common OS firewalls, such as
those that can be implemented through GNU/Linux kernel
firewalling subsystem, are usually implemented as packet
filters [37, 38], which consist of a default policy for packets
and a sequence of rules that define the actions performed on
packets when they satisty certain conditions. Specifically,
each firewalling rule contains a triggering condition, usually
a simple condition or the logical AND of simple conditions,
together with an action to execute when the rule is triggered.
Triggering conditions are defined over the second, third, and
fourth TCP/IP layers. The support for stateful inspection of
connections is available for kernel versions 2.4 and above
[39].

The first GNU/Linux firewall generation was included on
1.1 kernel through an implementation of ipfw functionalities
contributed by Alan Cox [40]. The ipfwadm user-space tool
was used to configure the ipfw services offered by the kernel
[41]. These kernels allowed defining three different firewall
filters to handle (i) input packets (-I ipfwadm argument), (ii)
output packets (-O), and (iii) forwarded packets (-F, used in
conjunction with ip_forwarding feature). Accept, deny
(discard the packet), and reject actions were used either for
rules (-a command parameter) or as default policy (-p). In
order to create and design the trigger condition of each rule,
the system administrator can test for the protocol (TCP, UDP,
ICMP, or IP), the port (for TCP and UDP) or the ICMP type.
Logging is supported through the -o modifier.

The support for ipfw was replaced by ipchains in the 2.2
version of the kernel [42]. One of the most important

changes in the ipchains scheme was the introduction of
chains to help reduce the computational cost and facilitate
its design [43]. As opposed to the others, ipchains firewalls
include INPUT, OUTPUT, and FORWARD chains, which
bring together filtering rules applied to packets where the
current computer is the destination, the origin, or a router
for the packet, respectively. Each firewall chain is com-
posed of a ruleset and a default policy. The default policy is
applied to packets that do not match any rule. The exis-
tence of default policies allows defining firewalls using two
different schemes: (i) accept all except those packets ex-
plicitly denied or (ii) deny all except those packets ex-
plicitly accepted. Of these, the latter is advisable for
security reasons.

New functionalities offered by ipchains with regard to
ipfw were quite limited, so it was quickly replaced by
iptables (in Linux 2.4 series) [44]. Iptables/netfilter in-
cluded the table concept to bring together chains with
similarities. Iptables included the firewall tables filter, nat,
and mangle. The first one included three chains to support
the filtering of input, output, and forwarded connections
(INPUT, OUTPUT, and FORWARD respectively). The
NAT table is composed of PREROUTING and POST-
ROUTING chains to add rules to change destination or
source addresses, respectively. To this end, rules included
in these chains could only use DNAT, SNAT, REDIRECT,
or MASQUERADE actions. Finally, MANGLE table al-
lows marking packages for further processing and mod-
itying some parameters of packets including TOS or TTL.
These actions could be executed by using MARK, TOS,
and TTL actions. Finally, iptables brought the stateful
packet inspection to Linux firewalls making it possible to
determine whether a packet belongs to an established TCP
connection (-m state--state=ESTABLISHED) or, con-
versely, is connected with other previous packets (-m
state--state = RELATED).

Iptables have been widely used to implement packet
filters on Linux for many years [45]. However, some
limitations of iptables, such as the existence of a unique
action for a rule or the complexity of the syntax, led to the
creation of other filtering frameworks. Hence, nftables
emerged as an iptables replacement on kernel version 3.13
(2013) [44]. Nftables included a completely new and fresh
syntax that avoided the need to use hyphens and the
uppercase/lowercase flags. The use of nftables allows ta-
bles and chains to be created with specific names and
associated with hooks, thus avoiding the strict tables/
chains structure defined by iptables.

Despite the new functionalities of nftables, most Linux
users continue using the old iptables framework, in part
due to the numerous changes in the syntax which hin-
dered adoption. Some translation utilities were in-
troduced to aid in the migration from iptables to nftables
[46]. In addition, nftables work as a sequential filter
whereby every packet is matched one by one against a list
of rules. The speed of checking the rules is quite limited
(up to three times slower than using BPF) [11], which led
to the emergence of bpfilter as a new Linux firewalling
subsystem [47] able to outperform the speed of previous



filtering alternatives [11]. Bpfilter has been added ex-
perimentally to Linux kernel 3.18, now allowing nftables
and iptables rules to be executed by Linux kernel as BPF.

Standard definitions within BPF only allow current
packet filtering firewall [48] schemes to analyze some
information from packet headers (such as IP and MAC
addresses, ports, TCP flags, ICMP types, etc.) and packet
state. Additional new features would improve the fire-
walling performance, such as analyzing the payload of the
packet or the information about application layer pro-
tocols. These features are frequently included in deep
packet inspection techniques [49, 50] but are often too
slow to be included in standard firewalls. In order to
provide a deep description of packets on the firewall layer
and quickly evaluate them, the use of BPF language to-
gether with the BPF virtual machine subsystem included
in the current versions of Linux kernel seems to be an
elegant solution, especially as BPF had been used before to
accomplish similar difficult network tasks with low
computational effort [11].

Despite its performance and low computational costs,
developing a BPF-based firewall able to exploit full packet
data (headers and payload) is a hard task that would
require both the existence of tools to aid in the devel-
opment of conditions and packet datasets. Caploader [51]
and Wireshark/tcpdump [7], which can also be integrated
with NDPI [52], are capable of loading and analyzing
packets included in PCAP files and check whether a BPF
expression match them. These tools can be successfully
executed with large collections of packets, such as that
shared by Netresec [53]. However, the design of BPF filters
is not easy and should be simplified to impact on real-
world firewall applications. Similarly, the evaluation of
BPF filters should be automated to improve performance.
Both the simplification and automation have been
addressed by our Filter.tlk toolset and are the main
contribution of this work. Filter.Ik’s functionality and its
practical use are described in the next section.

3. Filter.tlk

This section provides a comprehensive description of the
design architecture of Filter.tlk [54] tool and documents the
process of creating customized filters to classify network
traffic according to the content of the packets.

Filter.tlk comprises three different utilities to aid in the
creation of BPF filters: (i) an interface to design BPF filtering
conditions, (ii) a Wireshark LUA plugin to automate the
testing of BPF filters with PCAP packet datasets, and (iii) a
script to easily compile BPF filters and create iptables rules.
Figure 1 shows the different components included in Fil-
ter.tlk and their use in a real environment.

As we can deduct from Figure 1, the design of a
firewall rule with Filter.tlk comprises three stages that are
made with different tools included in the package. We
begin by taking advantage of the BDAT (BPF design aid
tool) to design a filtering condition to detect a certain
kind of packet. The designed BPF filters can then be tested

Scientific Programming

with different packet sets (a set of packets matching the
pcap filter and others mismatching the pcap filter) using
BPF Testing tool (BTT). BTT is able to easily assess the
quality of an input filter by using different datasets. Once
BPF rules have been tested, they can be easily transformed
into iptables rules using IPTables Rule Builder (IPTRB)
script.

BDAT is responsible for creating BPF filters as con-
ditions defined from transport and network layers (see
Figure 1). By using BDAT through a simple graphical
interface, we can create a Boolean BPF filter evaluating
expressions related to network or transport headers and
payloads (UDP, TCP, IP, ICMP). In order to create header
conditions, users must select the field of the header on
which they want to establish the condition that the filter
must fulfill. Once the condition has been defined, the user
can continue adding new conditions for the same filter or
create a new one. Once all filters are defined, they can be
exported to a file for testing in BTT (BPF Testing Tool). As
an example, Figure 2 shows how administrators can easily
incorporate a condition about a HT'TP POST request by
specifying conditions about TCP payload.

As depicted in Figure 2(a), we selected the first four
octets from TCP payload for comparison purposes. BDAT
allows selecting one, two, or four octets from each word
(32Dbits) to check the condition. The next step of the
wizard (see Figure 2(b)) allows to easily define the value
using Hexadecimal, ASCII, or Decimal notations. In order
to compare any octet from payload (and options/pad-
ding), the offset value (highlighted in red in Figure 2(a))
can be edited to the desired value. Please note that the
designed condition is provided as example and should be
complemented with a “header length” value of five to
ensure the absence of options/padding field. In the next
step of the wizard, the current BPF condition rule is added
to the whole BPF filter, allowing the generation of filters
comprising multiple tests.

BTTis a plugin for Wireshark that applies a filter or set
of filters over a pcap file. As a result, we obtain in-
formation for each applied filter about the number of
packages analyzed, accepted, and rejected. A set of pcaps
with the packets accepted by the filter grouped by the
destination IP is also provided for debugging purposes. In
order to detect errors, each rule should be tested using a
pcap database containing only the packets that should be
captured (ensuring a result of 0 rejected is achieved) and
another one containing normal network traffic (guaran-
teeing a result of 0 accepted is achieved).

Finally, IPTRB (IPTables Rule Builder) script can
transform the BPF uncompiled filters into full featured
[PTables rules. The process is guided by an intuitive
libncurses-based graphical user interface that allows
customizing the generated rule. The rule can be generated
for filtering and/or harmful packet logging purposes. A
scheduled task (i.e., crontab) could be periodically exe-
cuted (for instance once a day) to upload the compiled
information (logs) to a centralized repository for its
further analysis.



Scientific Programming

Filter.tlk

=8

o-
TCP UDP 1P = @
BPF rules

ip[8:1] == 016

=&
=)
E

BPF rules

tcp[20:40] < 52
udp[0:2] <0 x 11

tep[13] == 64

2
2

I3

@ 1 IP Tables

t rule builder
mam

ailcie Poeset
T T T
5]

IP Tables

BPF rul

PCAP file LILES ks

743 0
743 311
743 13

743

Eiw @

FiGure 1: Filter.tlk architecture.

3.1. Filter.tlk Implementation. This subsection provides a
brief description of the most relevant implementation issues
for the development of each tool included in Filter.tlk.

BDAT was designed as a Java standalone application,
which can easily be executed using any Java Virtual Machine
implementation. The interface was designed using JFC/
Swing library [55].

BTTis a Wireshark plugin that was implemented using
the Lua programming language [56], which is supported
by Wireshark for the development of new functionalities,
such as the creation of dissectors or listeners [57]. The
dissectors are intended to analyze part of the data of a
packet, while the listeners are used to count the number of
occurrences of an event; for example, the number of
packets matching a filter. In this study, we used Lua
language to implement a Wireshark listener to evaluate
filters and count packets fitting the target BPF condition
(accepted) or not (rejected).

IPTRB is a bash script that combines the use of dialog
command [58] to provide an easy-to-use intuitive
graphical user interface. Moreover, the compilation of
BPF rules into bytecode is done by using tcpdump [59]
functionalities.

Finally, we used Ansible [19] (a well-known IT Auto-
mation tool) to automate the installation of Filter.tlk in all
supported platforms. Ansible is a popular IT automation
tool whose main features are (i) avoiding the need of scripts
and/or custom code to deploy and update applications and

(ii) replacing agents on remote systems by standard SSH
tools. The installation script was provided for Debian-
based GNU Linux distributions.

3.2. Deployment of Generated Filters. To take advantage of
expressions (iptables rules and BPF) generated using our
BPF framework, we consider two different scenarios: (i) IoT
devices using a GNU Linux-based software/firmware (ii) and
other IoT devices with no BPF/iptables support. In the first
scenario, iptables rules can be directly integrated into the
firmware to protect them against malicious attacks. We are
working on the development of a service to share BPFs
together with a tool able to automatically download and
upgrade BPFs for different IoT devices.

Although GNU/Linux is present in some devices, there
are many appliances running other operating systems
where the execution of BPF is not possible. Taking this into
account, we are working on the design of a small bridge
router (brouter) [60] device running GNU/Linux and
ebtables. A brouter is a device that is able to transparently
forward all traffic between two ethernet interfaces and
allows the inclusion of filtering rules for network interfaces.
This solution would be applicable for IoT devices connected
to the network through an ethernet connection.

The main weakness of using BPF filters to protect
devices against attacks is that we are unable to protect
802.11-based (WLAN, wireless local area network) IoT
devices that do not run GNU/Linux.



Scientific Programming

Create TCP filtering rules - X

TCP Packet
Offsets Octet 0 1 2 3
Octet Bit o|1|2|3]|4|s|6|7 |8l9lrol11]12|13|14]1516[17[18|19|20[21|22]|23|24|25|26]|27|28]29|30|31
0 ] [ Source Port “ Destination Port }
4 32 ( Sequence Number J
8 64 ( Acknowledgment Number }
C|IE[U[IAIP]IRISIF
12 96 t'::dfr: s ImiclRllc]s|ls vl { Window Size
9 RJIE Ik LT v v
16 128 I Checksum “ Urgent Pointer J
Options && Padding && Payload
20 160 First Octet Second Octet “ Third Octet ‘ [ Fourth Octet ‘
| Q seeFilter | | «Back |
(a)
Select Condition - X
Enter the conditions that the filter must meet.

Pattern rule: tcp[20:4]

Condition: = v

Value: () HEX @® Asc O DEC

POST
|oxs04F5354
© 0K « Back

(b)

FIGURE 2: BPF rule definition process. (a) Select TCP payload octets. (b) Establish values for octets.

Next section presents a comprehensive practical example
describing the process of using the Filter.tlk tool to design a
filter capable of detecting and filtering two important vul-
nerabilities recently discovered on well-known IoT devices.

4. Experiments

In this section, we test the filter designed to detect and filter
attacks using two vulnerabilities in two well-known IoT
devices that allow the remote execution of arbitrary

commands: (i) LG Supersign TVs, and (ii) ASUS ADSL
Router DSL-N12E_C1. The next subsection shows the work
environment prepared in order to generate high-quality
BPF patterns. Moreover, subsection 4.2 presents the ex-
perimental protocol and results of our case studies while
subsection 4.3 measures the impact of the use of these filters
in the performance of IoT devices. Finally, subsection 4.4
shows how to compile and take advantage of the in-
formation gathered by IoT devices using Filter.tlk for
scientific purposes.



Scientific Programming

4.1. Configuring the Working Environment. In order to
generate high-quality BPF expressions that describe the
pattern of vulnerability exploitation, the use of a large
packet database for testing purposes is advisable. Fortu-
nately, many publicly available packet datasets can be freely
downloaded from the Internet. Table 1 compiles a list of
useful datasets.

From the datasets included in Table 1 and other sources,
we built up a group of packets that would be used to ensure
that inoffensive network requests are not captured by the
designed BPF expression.

We decided to study and generate BPF filters for two
vulnerabilities of well-known IoT devices. In order to
determine the quality of the BPF expressions created using
a BTT Lua script, we used as negative samples the con-
junction of all packets from sources introduced in Table 1
and other legitimate packet sets compiled by us. In order to
aggregate all negative samples in a single pcap file, we
combined all sources using the mergecap [64] tool pro-
vided by Wireshark.

4.2. Executing the Experiment. Recently, a vulnerability
allowing remote execution of arbitrary commands
appeared on LG SuperSign TVs (CVE-2018-17173)
[65, 66]. These smart TVs include a CMS running on the
top of LG webOS 3.3 (a Linux-based OS). The discovered
vulnerability allows remote code execution (by achieving a
reverse shell connection) by taking advantage of the URL
used to see thumbnails of the user images. We used the
exploit versions to generate a pcap file capturing the at-
tacks. The Filter.tk comprises a three-stage operation. The
first step designs the filtering condition to detect the
packets, and the second step tests the BPF filter with a set of
packets captured in a pcap filter and with a set of normal
packets. The third step converts the BPF into iptables rules.
The generated BPF expression is shown in Table 2. These
BPF expressions could be directly included in LG webOS to
protect the TV.

The second analysis is about a remote code execution
vulnerability in ASUS DSL-N12E_C1 router, specifically in
firmware version 1.1.2.3_345 (CVE-2018-15887) [67]. This
vulnerability has been classified as critical because it allows
the execution of arbitrary code using an unknown function
of the file “Main_Analysis_Content.asp.” A remote attacker
can then access the router as a privileged user via telnet
application and run OS commands. Again, we take ad-
vantage of our framework to generate BPF expressions to
filter this type of attack. The generated BPF is shown in
Table 3.

As shown in Tables 2 and 3, an iptables command can be
easily generated from a BPF expression to drop and log
packets that match it. Although iptables can only check
expressions in the header of network packets, BPF expres-
sions make it possible to examine information included in
both packet headers and payload in order to find any po-
tential exploitation of vulnerabilities. The second generated
iptables rule allows for storing security information that can
be uploaded to a centralized repository for its further

TaBLE 1: Publicly available datasets.

Number Number Short
Dataset of Format ..
of files description
packets
Collect
malicious and
Contagiodump 988898 1154 pcap exploit peaps
[61] zipped  from various
public resources
(2013-2015)
Malware traffic ca Malicious
analysis [62] | 245211 1291 ZE’ Ie’ | network traffic
Y pp (2013-2018)
Malware
GTISK PANDA .
malrec [63] 100201 373 pcap  samples run in

PANDA (2018)

analysis. In next section, we evaluate the performance im-
pact on the IoT devices when using these filters.

4.3. Impact on Filter Throughput. We assessed the impact of
using BPF filters on IoT devices in order to determine if they
could be successfully used to protect IoT devices against
network vulnerability exploitation. To perform this analysis,
we used an Apache web server installed on a Raspberry Pi 2
Model B [68].

We leveraged the functionalities of Apache HTTP server
benchmarking [69] and GNU parallel [70] tools to evaluate
the impact of using BPF firewalls in IoT hardware. Using
these tools, we benchmarked the execution of two parallel
tests making 10000 HTTP requests distributed in 10 threads,
with 1000 requests per thread. The average of measurements
made for parallelized tests is provided as result. For com-
parison purposes, we used the generated BPF expressions for
the two case studies shown before. Table 4 compares the
performance between the absence of attack protections and
the usage of two BPF filtering rules.

The results compiled in Table 4 show that the perfor-
mance impact when using BPF filters is quite limited and will
not severely affect the overall operation of IoT devices. We
analyzed the impact of progressively adding BPF rules to the
filter by adding up to 100 new rules and measured the
transfer rate after each BPF expression was added (see
Figure 3). As long as the performance is highly influenced by
the presence of additional traffic in network and other
processes consuming CPU, we plotted a trend line to observe
the degradation.

As can be seen from Figure 3, the throughput degra-
dation is close to zero when using up to 50 (nonfitting) BPF
rules. However, the inclusion of more than 50 rules clearly
damages the performance of GNU/Linux firewalling system
and would require the usage of additional iptables speedup
strategies, such as the creation of additional chains [71] and
counters-based optimizations [72].

One of the most interesting features of Filter.tlk
framework is the compilation of information about
worldwide IoT security incidents. The information gathered
could be successfully analyzed using machine learning



Scientific Programming

TaBLE 2: BPF expression to mitigate CVE-2018-17173 vulnerability.

ip[2:2] > 0x008A and ip[9] ==0x06 and tcp[2:2] ==0x2378 and tcp[32] ==0x47 and tcp[77:4] ==

BPF expression

0x3d253237 and tcp[81 : 4] == 0x2532302d and tcp[85] == 0x3b

BPF assembler code Bytecode
(000) 1dh [12] 22
(001) jeq #0x800 jt 2 if 21 400012
(002) 1dh [16] 21 0 19 2048
(003) jgt #0x8a jt 4 if 21 400016
(004) 1db [23] 37017 138
(005) jeq #0x6 jt6 if 21 480023
(006) jeq #0x6 jit7 if 21 210156
(007) 1dh [20] 200146
(008) jset #OX1fFf jt 21 if 9 40 0 0 20
(009) 1dxb 4 * ([14] &O0xf) 69 12 0 8191
(010) 1dh [x+16] 177 0 0 14
(011) jeq #0x2378 jt 12 jt 21 720016
(012) 1db [x +46] 21 0 9 9080
(013) jeq #0x47 jt 14 if 21 80 00 46
(014) 1d [x+91] 210771
(015) jeq #0x3d253237 jt 16 if 21 640091
(016) 1d [x+95] 21 0 51025847863
(017) jeq #0x2532302d jt 18 if 21 640095
(018) 1db [x+99] 21 0 3 624046125
(019) jeq #0x3b jt 20 if 21 80 00 99
(020) ret #262144 210159
(021) ret #0 600 262144

6000

Iptables commands

iptables -t filter -A INPUT -m bpf --bytecode “22,40 0 012,21 019 2048,40 0 016,37 017 138,48 0 0 23,21 015 6,21 014 6,40 0 0 20,69 12 0
8191,177 0 0 14,72 0 0 16,21 0 9 9080,80 0 0 46,21 0 7 71,64 0 0 91,21 0 5 1025847863,64 0 0 95,21 0 3 624046125,80 0 0 99,21 01 59,6 0 0

262144,6 0 0 0” -j DROP

iptables -t filter -A INPUT -m bpf --bytecode “22,40 0 012,21 019 2048,40 0 016,37 017 138,48 0 0 23,21 015 6,21 014 6,40 0 0 20,69 12 0
8191,177 0 0 14,72 0 0 16,21 0 9 9080,80 0 0 46,21 0 7 71,64 0 0 91,21 0 5 1025847863,64 0 0 95,21 0 3 624046125,80 0 0 99,21 01 59,6 0 0

262144,6 0 0 0” -j LOG --log-prefix “Filter.tlk”

techniques to provide worthwhile knowledge about (i) the
origin of the threat, (ii) better patterns for traffic-filtering,
or (iii) the threat scale. Studying information about
systems from which the attack is performed, we can
successfully identify worms exploiting a certain vulner-
ability, the presence of an individual hacker, and the
execution of Distributed Denial of Service attacks or
botnets.

Offering IoT users a product to protect their devices
against attacks, whilst at the same time achieving information
about dangerous offensive network packets targeting IoT
products, will replicate a threat response model undertaken
by traditional antivirus products. This knowledge allows the
identification of better and perhaps simpler BPF patterns that
can be used for network intrusion detection.

5. Conclusions and Future Work

In this paper, we have introduced an easy-to-use framework
designed to aid in the development of fast firewalls based on
using BPF, which can be executed by using standard firewall
capabilities included in the Linux kernel (IPTables/netfilter).
These firewalls have been specifically conceived to protect IoT
devices against the exploitation of remote vulnerabilities. Since

the use of BPF bytecode can drastically speed up the execution
of firewalls, we designed a collection of tools to facilitate the
inclusion of BPF into firewalling rules. An experiment was
carried out for the application of the introduced toolset.

Since BPF is one of the most efficient forms of filtering
traffic, it provides a reliable solution for filtering in the
context of IoT. Although, the use of specific BPF filters
allows using payload information included in packets, it can
only be directly implemented in devices using a GNU/
Linux-based firmware. We are currently working on the
design of specific hardware to overcome the limitations of
nonGNU/Linux ethernet IoT devices and on the develop-
ment of a package manager to automatically download BPF
filtering strings and configure the firewall.

One of the most relevant functionalities of this scheme
is the ability to easily build a dataset with the security
incidents occurred in worldwide IoT devices, such as
VizSec [73]. Future work will include mechanisms for
analyzing them to achieve valuable security knowledge. We
consider evolutionary computation as a candidate method
for automatic filter generation through packet captures and
consider DPI (deep packet inspection [52]) to be a reliable
way of simplifying filtering conditions, since it allows access
to application layer information to define matching



Scientific Programming 9

TaBLE 3: BPF expression to mitigate CVE-2018-15887 vulnerability.

ip[2:2] > 0x0174 and ip[9] == 0x06 and tcp[2:2] ==0x0050 and tcp[32] ==0x47 and tcp[326:4] ==

BPF expression 0x3d253630

BPF assembler code Bytecode
(000) 1dh [12] 18
(001) jeq #0x800 jt 2 it 17 400012
(002) 1dh [16] 21 0 15 2048
(003) jgt #0x174 jt4 it 17 400016
(004) 1db [23] 37013 372
(005) jeq #0x6 jt6 it 17 480023
(006) jeq #0x6 jit7 it 17 210116
(007) 1dh [20] 210106
(008) jset #Ox1fff jt17 it 9 400020
(009) 1dxb 4 * ([14] &0xf) 69 8 0 8191
(010) 1dh [x+16] 177 0 0 14
(011) jeq #0x50 jt 12 it 17 720016
(012) 1db [x +46] 2105 80
(013) jeq #0x47 jt 14 it 17 80 0 0 46
(014) 1d [x + 340] 210371
(015) jeq #0x3d253630 jt 16 it 17 64 0 0 340
(016) ret #262144 21 01 1025848880
(017) ret #0 600 262144

6000

Iptables commands

iptables -t filter -A INPUT -m bpf --bytecode “18,40 0 0 12,21 0 15 2048,40 0 016,37 0 13 372,48 0 0 23,21 0 11 6,21 0 10 6,40 0 0 20,69 8 0
8191,177 0 0 14,72 0 0 16,21 0 5 80,80 0 0 46,21 0 3 71,64 0 0 340,21 0 1 1025848880,6 0 0 262144,6 0 0 0” -j DROP

iptables -t filter -A INPUT -m bpf --bytecode “18,40 0 012,21 0 15 2048,40 0 0 16,37 0 13 372,48 0 0 23,21 0 11 6,21 0 10 6,40 0 0 20,69 8 0
8191,177 0 0 14,72 0 0 16,21 0 5 80,80 0 0 46,21 0 3 71,64 0 0 340,21 0 1 1025848880,6 0 0 262144,6 0 0 0” -j LOG --log-prefix “Filter.tlk”

TABLE 4: Performance impact when using BPF filters.

. With BPF

No protection (2 rules)
HTML transferred (bytes) 107010000 107010000
Concurrent time per 1.9345 1937
request (ms)
Time per request (ms) 19.3465 19.367
Time taken for tests (seconds) 19.3465 19.367
Total transferred (bytes) 109750000 109750000
Transfer rate (Kbytes/sec) 5539.905 5534.1

BPF rules throughput impact

Kbps

N° BPF rules

—e— N° BPF rules
—=p Trend line

FIGURE 3: Analysis of the impact of BPF rules in throughput.



10

expressions. While DPI expressions cannot be directly
included in BPF filters, we believe that they could be au-
tomatically transformed into simple BPF expressions to
simplify the generation of BPF filters.

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

D. Ruano-Ordas was supported by a postdoctoral fellowship
from Xunta de Galicia (ED481B 2017/018). Additionally, this
work was funded by the project Semantic Knowledge In-
tegration for Content-Based Spam Filtering (TIN2017-
84658-C2-1-R) from the Spanish Ministry of Economy,
Industry and Competitiveness (SMEIC), State Research
Agency (SRA), and the European Regional Development
Fund (ERDF) and by the Conselleria de Educacion, Uni-
versidades e Formacion Profesional (Xunta de Galicia)
under the scope of the strategic funding of ED431C2018/55-
GRC Competitive Reference Group. SING group thanks
CITI (Centro de Investigacion, Transferencia e Innovacién)
from University of Vigo for hosting its IT infrastructure.

References

[1] G. Aceto, A. Botta, P. Marchetta, V. Persico, and A. Pescapé,
“A comprehensive survey on internet outages,” Journal of
Network and Computer Applications, vol. 113, pp. 36-63, 2018.

[2] S. Qing and W. Wen, “A survey and trends on Internet
worms,” Computers ¢ Security, vol. 24, no. 4, pp. 334-346,
2005.

[3] D.E. Hiebeler, A. Audibert, E. Strubell, and I. J. Michaud, “An
epidemiological model of internet worms with hierarchical
dispersal and spatial clustering of hosts,” Journal of Theoretical
Biology, vol. 418, pp. 8-15, 2017.

[4] Offensive Security, Exploit Database, 2009.

[5] M. Ge, J. B. Hong, S. E. Yusuf, and D. S. Kim, “Proactive
defense mechanisms for the software-defined Internet of
things with non-patchable vulnerabilities,” Future Generation
Computer Systems, vol. 78, pp. 568-582, 2018.

[6] R. K. Deka, K. P. Kalita, D. K. Bhattacharya, and J. K. Kalita,
“Network defense: approaches, methods and techniques,”
Journal of Network and Computer Applications, vol. 57,
pp. 71-84, 2015.

[7] G. Combs, Wireshark Go Deep, 1998.

[8] Wireshark, Wireshark CaptureFilters, 2016.

[9] S. McCanne and V. Jacobson, “The BSD packet filter: a new
architecture for user-level packet capture,” in Proceedings of
the USENIX Winter 1993 Conference, p. 2, San Diego, CA,
USA, January 1993.

[10] P. Anand, “An intro to using eBPF to filter packets in the
Linux kernel,” 2017, http://www.OpenSource.com.

[11] T.Graf, “Why is the kernel community replacing iptables with
BPF?,” November 2018, https://cilium.io/blog/2018/04/17/
why-is-the-kernel-community-replacing-iptables/.

Scientific Programming

[12] L. Makowski and P. Grosso, “Evaluation of virtualization and
traffic filtering methods for container networks,” Future
Generation Computer Systems, vol. 93, pp. 345-357, 2019.

[13] G. Bertin, “XDP in practice: integrating XDP into our DDoS
mitigation,” in Proceedings of the Technical Conference on
Linux Networking, p. 5, Seoul, South Korea, November 2017.

[14] M. Yuhara, B. N. Bershad, C. Maeda, and J. E. B. Moss,
“Efficient packet demultiplexing for multiple endpoints and
large messages,” in Proceedings of the 1994 Winter USENIX
Conference, pp. 153-165, San Francisco, CA, USA, January
1994.

[15] D. Scholz, D. Raumer, P. Emmerich, A. Kurtz, K. Lesiak, and
G. Carle, “Performance implications of packet filtering with
Linux eBPF,” in Proceedings of the 2018 30th International
Teletraffic Congress (ITC 30), pp. 209-217, Vienna, Austria,
September 2018.

[16] M. Majkowski, BPF—the Forgotten Bytecode, 2014.

[17] M. Majkowski, Introducing BPF Tools, 2014.

[18] Read Hat, Ansible Galaxy, Read Hat, Inc., Raleigh, NC, USA,
2018.

[19] M. DeHaan, Ansible is Simple IT Automation, Read Hat, Inc.,
Raleigh, NC, USA, 2012.

[20] Docker Inc., Docker Hub, Docker, Inc., San Francisco, CA,
USA, 2016.

[21] M. A. Rguibi and N. Moussa, “Hybrid trust model for worm
mitigation in P2P networks,” Journal of Information Security
and Applications, vol. 43, pp. 21-36, 2018.

[22] F. Wang, Y. Zhang, and J. Ma, “Defending passive worms in
unstructured P2P networks based on healthy file dissemi-
nation,” Computers & Security, vol. 28, no. 7, pp. 628-636,
2009.

[23] T. Chen, X.-S. Zhang, H. Li, X.-D. Li, and Y. Wu, “Fast
quarantining of proactive worms in unstructured P2P net-
works,” Journal of Network and Computer Applications,
vol. 34, no. 5, pp. 1648-1659, 2011.

[24] C.-S. Feng, J. Yang, Z.-G. Qin, D. Yuan, and H.-R. Cheng,
“Modeling and analysis of passive worm propagation in the
P2P file-sharing network,” Simulation Modelling Practice and
Theory, vol. 51, pp. 87-99, 2015.

[25] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina, “The
Eigentrust algorithm for reputation management in P2P
networks,” in Proceedings of the Twelfth International Con-
ference on World Wide Web, p. 640, Budapest, Hungary, May
2003.

[26] L. Xiong and L. Liu, “PeerTrust: supporting reputation-based
trust for peer-to-peer electronic communities,” IEEE Trans-
actions on Knowledge and Data Engineering, vol. 16, no. 7,
pp. 843-857, 2004.

[27] R. Zhou and K. Hwang, “PowerTrust: a robust and scalable

reputation system for trusted peer-to-peer computing,” IEEE

Transactions on Parallel and Distributed Systems, vol. 18, no. 4,

pp. 460-473, 2007.

I. Stirling, W. Calvert, and C. Spencer, “Evidence of stereo-

typed underwater vocalizations of male Atlantic walruses

(Odobenus rosmarus rosmarus),” Canadian Journal of Zool-

0gy, vol. 65, no. 9, pp. 2311-2321, 1987.

[29] L. Cai and R. Rojas-Cessa, “Mitigation of malware pro-
liferation in P2P networks using double-layer dynamic trust
(DDT) management scheme,” in Proceedings of the IEEE
Sarnoff Symposium, pp. 1-5, Princeton, NJ, USA, April 2009.

[30] D. Minoli and B. Occhiogrosso, “Blockchain mechanisms for
IoT security,” Internet of Things, vol. 1-2, pp. 1-13, 2018.

[28


http://www.OpenSource.com
https://cilium.io/blog/2018/04/17/why-is-the-kernel-community-replacing-iptables/
https://cilium.io/blog/2018/04/17/why-is-the-kernel-community-replacing-iptables/

Scientific Programming

[31] M. A. Khan and K. Salah, “ToT security: review, blockchain
solutions, and open challenges,” Future Generation Computer
Systems, vol. 82, pp. 395-411, 2018.

[32] Y. Qian, Y. Jiang, J. Chen et al., “Towards decentralized IoT
security enhancement: a blockchain approach,” Computers &
Electrical Engineering, vol. 72, pp. 266273, 2018.

[33] 1. Makhdoom, M. Abolhasan, H. Abbas, and W. Ni,
“Blockchain’s adoption in IoT: the challenges, and a way
forward,” Journal of Network and Computer Applications,
vol. 125, pp. 251-279, 2019.

[34] M. Ammar, G. Russello, and B. Crispo, “Internet of things: a
survey on the security of IoT frameworks,” Journal of In-
formation Security and Applications, vol. 38, pp. 8-27, 2018.

[35] A.K. Das, S. Zeadally, and D. He, “Taxonomy and analysis of
security protocols for Internet of things,” Future Generation
Computer Systems, vol. 89, pp. 110-125, 2018.

[36] A. D. Wood and J. A. Stankovic, “Denial of service in sensor
networks,” Computer, vol. 35, no. 10, pp. 54-62, 2002.

[37] J. P. Wack, K. Cutler, and J. Pole, Guidelines on Firewalls and
Firewall Policy, Booz Allen Hamilton Inc, McLean, VA, USA,
2002.

[38] K. A. Scarfone and P. Hoffman, Guidelines on Firewalls and
Firewall Policy, National Institute of Standards and Tech-
nology, Gaithersburg, MD, USA, 2009.

[39] R. P. Hinglaspure and B. R. Burghate, “Analysis of packet
filtering technology in computer network security,” In-
ternational Journal of Computer Science and Mobile Com-
puting, vol. 3, no. 4, pp. 1302-1927, 2014.

[40] O. Kirch and T. Dawson, Linux Network Administrator’s
Guide, O’Reilly Media, Newton, MA, USA, 2nd edition, 2000.

[41] J. Vos and W. Konijnenberg, “IPFWADM: Linux firewall
facilities for kernel-level packet filtering,” in Proceedings of the
NLUUG Spring Conference, Amsterdam, Netherlands, May
1996.

[42] R. Russell, Linux IPCHAINS-HOWTO, 2000.

[43] J. Stanger and P. T. Lane, “Chapter 9—implementing a
firewall with ipchains and iptables,” in Hack Proofing Linux,
pp. 445-506, Syngress, Burlington, MA, USA, 2001.

[44] P. Russell, Netfilter: Firewalling, NAT, and Packet Managing
for Linux, 2000.

[45] B. Sharma and K. Bajaj, “Packet filtering using IP tables in
Linux,” International Journal of Computer Science Issues,
vol. 8, pp. 320-325, 2011.

[46] A. Alemayhu, “Moving from iptables to nftables,” 2018,
https://nftables.org.

[47] J. Corbet, “BPF comes to firewalls,” 2018, https://lwn.net/.

[48] K. Ingham and S. Forrest, “A history and survey of network
firewalls,” Technical Report 2002-37, University of New
Mexico, Albuquerque, NM, USA, 2002.

[49] R. Antonello, S. Fernandes, C. Kamienski et al., “Deep packet
inspection tools and techniques in commodity platforms:
challenges and trends,” Journal of Network and Computer
Applications, vol. 35, no. 6, pp. 1863-1878, 2012.

[50] T. Bujlow, V. Carela-Espaiol, and P. Barlet-Ros, “In-
dependent comparison of popular DPI tools for traffic clas-
sification,” Computer Networks, vol. 76, pp. 75-89, 2015.

[51] Netresec A. B., CapLoader, 2018.

[52] Ntop Team, Say Hello to nDPI 2.0, 2017.

[53] Netresec, “Publicly available PCAP files,” 2018, http://www.
netresec.com.

[54] B. Cruz, D. Ruano-Ordas, and J. R. Mendez, FilterTLK, 2019.

[55] Oracle, Trail: Creating a GUI with JEC/Swing, Oracle, Red-
wood City, CA, USA, 2017.

11

[56] R. Ierusalimschy, W. Celes, and L. H. de Figueiredo, The Pro-
gramming Language Lua, Lua.Org, Brazil, ISBN: 8590379868,
4th edition, 2016.

[57] H. Kaplan, Lua Dissectors, 2015.

[58] W. Shotts, LinuxCommand: Dialog, No Starch Press, San
Francisco, CA, USA, 2000.

[59] The Tcpdump Group, Tecpdump and Libpcap, 2010.

[60] Netfilter Project, Ebtables, http://ebtables.netfilter.org.

[61] M. Parkour, Contagio—Malware Dump, 2014.

[62] B. Duncan, “A Source for Pcap files and Malware Samples,”
Malware-Traffic-Analysis. 2018.

[63] B. Dolan-Gavitt, GTISK PANDA Malrec—PCAP Files from
Malware Samples Run in PANDA, 2018.

[64] S. Renfo and B. Guyton, MergeCap: merges two or more
capture files into one 2018, https://www.wireshark.org/docs/
man-pages/mergecap.html.

[65] A. Fanjul, LG SuperSign RCE, 2018.

[66] Common Vulnerabilities and Exposures, CVE-2018-17173,
2018, https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2018-17173.

[67] Common Vulnerabilities and Exposures, CVE-2018-15887,
2018, https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2018-15887.

[68] Raspberry P. I., Raspberry Pi 2 Model B, 2018.

[69] Apache Software Foundation, Apache HTTP Server Bench-
marking Tool: Apache HTTP Server Version 2.4, Apache
Software Foundation, Forest Hill, MD, USA, 2018.

[70] O. Tange, GNU Parallel 2018, 2018.

[71] L. Zhao, A. Shimae, and H. Nagamochi, “Linear-tree rule
structure for firewall optimization,” in Proceedings of the Sixth
{IASTED} International Conference on Communications, In-
ternet, and Information Technology, pp. 67-72, Banff, Canada,
July 2007.

[72] L. Defert, Iptables-optimize, 2014.

[73] VizSec Group, “VizSec ciber security datasets,” in Proceedings
of the IEEE Symposium on Visualization for Cyber Security,
Berlin, Germany, June 2019, https://vizsec.org/.


https://nftables.org
https://lwn.net/
http://www.netresec.ccom
http://www.netresec.ccom
http://ebtables.netfilter.org
https://www.wireshark.org/docs/man-pages/mergecap.html
https://www.wireshark.org/docs/man-pages/mergecap.html
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-17173
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-17173
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-15887
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-15887
https://vizsec.org/

D. | Advances in !

s .  WNultimedin
Applied v
Computational

Intelligence and Soft
El_:_@guting-r -

The Scientific Mathematical Problems E ’Miu”:l s ;
World Journal in Engineering

(24 [~4

Modelling &
Simulation

in Engineering Intelligence

Hindawi

Reconfigurable Submit your manuscripts at

_Eomputing www.hindawi.com

Journal of

Computer Networhs
and Communications
International Journal of

Advances in

Scientific ' e Engineering : i
Civil Engineering

Programming Interaction Mathematics

I International Journal of
Journal of Computer Games
Robotics Technology

Journal of
Electrical and Computer Computational Intelligence
Engineering and Neuroscience


https://www.hindawi.com/journals/ijcgt/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/afs/
https://www.hindawi.com/journals/ijrc/
https://www.hindawi.com/journals/acisc/
https://www.hindawi.com/journals/aai/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/jcnc/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/journals/ijbi/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/cin/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ahci/
https://www.hindawi.com/journals/sp/
https://www.hindawi.com/
https://www.hindawi.com/

