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)ree-way concept lattices have been widely used in various types of applications. As the construction of three-way concept
lattices is rather time consuming, especially for large formal contexts, it is not applicable to construct the lattices from the
beginning when changes are made to the contexts. Motivated by this problem, the influences of three-way concept lattices caused
by variations of attribute values are explored in this study. Specifically, we discuss two types of changes. One is changing the value
of a specific incidence relation from 0 to 1, and the other is from 1 to 0. Furthermore, two types of three-way concept lattices are
investigated. One is the object-induced three-way concept lattice, and the other is the attribute-induced three-way concept lattice.
Both the mathematical proofs and the examples show the effectiveness of our proposed methods.

1. Introduction

Formal concept analysis (FCA) is a mathematical theory put
forward by Wille in 1982 [1, 2]. Concept lattice is one of the
main outcomes of FCA and describes a domain by using a
set of concepts. At present, FCA has been used as an effective
tool in data analysis and knowledge discovery. For instance,
it has been applied in the fields of CT analysis [3], expert
systems [4, 5], data mining [6, 7], data clustering [8, 9],
software engineering [10], etc. However, it is worth noting
that although both positive attributes and negative attributes
play equal roles in many knowledge-based activities
[11, 12, 13], classical concepts concern only positive attri-
butes while left negative ones aside. As a result, we may lose
many useful information.

By taking both positive and negative attributes into
consideration, Qi et al. [14, 15] proposed the theory of three-
way concept analysis (3WCA). In essence, 3WCA gener-
alizes classical FCA by absorbing the theory of three de-
cisions [16–21]. In 3WCA, there are two types of concept
lattices. One is object-induced three-way concept lattice, and
the other is attribute-induced three-way concept lattice. It
has been proved that as a generalization of classical concepts,
three-way concepts can provide more details than that of

classical concepts [15]. On the basis of an object-induced
three-way concept, we divide the attributes of the intent of
this concept into three disjoint parts: positive parts, negative
parts, and the rest, based on which we can make further
decisions.

Nowadays, three-way concept analysis has attracted
more and more attentions. Li and Wang [22] proposed
three-way approximate concepts under the framework of
three-way concept analysis. Shivhare and Cherukuri [23]
applied the idea of three-way concept analysis to simulate a
cognitive learning process. Mouliswaran et al. [24] designed
a role-based access control scheme by using three-way
formal concept analysis. Ren and Wei [25] studied the at-
tribute reduction of three-way concept lattices. Li et al. [26]
described a three-way cognitive concept learning process
from a multigranularity perspective. Zhi and Li [27] studied
granular description based on positive and negative attri-
butes. Furthermore, in order to manage fuzziness, Singh
[28, 29] proposed three-way fuzzy concepts. In addition,
Singh also generalized three-way concepts to bipolar fuzzy
concepts [30] and m-polar fuzzy concepts [31] to derive
useful concepts from fuzzy contexts for decision making.

As three-way concept lattice is of vital importance in
3WCA-based applications, the construction of three-way
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concept lattices is an important topic and deserves our con-
tinuous efforts. For instance, Qi et al. [14, 15] elaborated on the
relationship between three-way concept lattices and classical
concept lattices and constructed three-way concept lattices by
combining the sublattices of classical concept lattices.

Compared with the construction of three-way concept
lattices, how to effectively update the three-way concept
lattices to cater the continuous changing of formal context
has not received enough attentions. However, this is very
important both in theoretical research and applications.
Let’s consider the following example.

Example 1. Consider five European students, each of which
wants to learn some courses about Chinese history. At
present, the available courses are about five dynasties of
Chinese history, i.e., Tang Dynasty, Song Dynasty, Yuan
Dynasty, Ming Dynasty, and Qing Dynasty. Before they
come to China, each student has chosen their interested
dynasties. In Table 1, their interests are listed and a “×”
indicates a student favors a specific dynasty. For instance, as
the Yuan Dynasty had a great influence on European history,
four students have chosen this dynasty. By using this table,
we want to analysis the main interests of the students.

However, after they came to China, some of them
changed their minds. For instance, the charming of Xi’an
attracted another two students to choose Tang Dynasty. At
the same time, three students removed Yuan Dynasty from
their curriculums. Accordingly, Table 1 is updated to Table 2,
and we have to update our analysis result. Furthermore, if
the analysis is based on three-way concept lattices, we must
initially update the three-way concept lattice and then up-
date the analysis result. )en, incremental approaches are
needed to solve this problem, and studies have shown their
effectiveness to cater dynamic systems [32, 33, 34].

Motivated by the above problems, we will investigate the
approach to update the three-way concept lattice caused by
variations of attribute values. Specifically, this problem can
be formulated as follows: given a formal context and its
three-way concept lattice, if the attribute values are changed,
how to update the corresponding three-way concept lattice.
As in dynamic information systems, the values of attributes
keep changing from time to time and the construction of a
concept lattice is rather time consuming, the problem dis-
cussed in this paper is extremely important in both theo-
retical research and applications.

)e rest of this paper is organized as follows. Section 2
briefly reviews some basic notions in 3WCA. In Section 3, the
influences of changing attribute values on the object-induced
three-way concept lattice are studied, and the algorithms for
updating the object-induced three-way concept lattice are
proposed. In Section 4, we investigate the effect of changing
attribute values on the attribute-induced three-way concept
lattice. Finally, conclusions are provided in Section 5.

2. Preliminaries

A formal context is a triple K � (G, M, I) [1], consisting of a
nonempty finite set of objects G, a nonempty finite set of

attributes M, and a crisp binary relation I which is func-
tionally given as I: G × M⟶ 0, 1{ } with I(x, a) � 1 (resp.
I(x, a) � 0), indicating that object x satisfies (resp. does not
satisfy) the attribute a. Moreover, the complement of K is
defined as Kc � (G, M, Ic), where Ic � G × M − I.

ForX ∈ 2G andA ∈ 2M, the associated positive operators
∗: 2G⟶ 2M and ∗: 2M⟶ 2G are, respectively, defined as

X
∗

� a ∈M |∀x ∈ X, I(x, a) � 1{ },

A
∗

� x ∈ G |∀a ∈ A, I(x, a) � 1{ }.
(1)

Besides, the associated negative operators ∗: 2G⟶ 2M

and ∗: 2M⟶ 2G are, respectively, defined as

X
∗

� a ∈M |∀x ∈ X, I(x, a) � 0{ },

A
∗

� x ∈ G |∀a ∈ A, I(x, a) � 0{ }.
(2)

Let G be a nonempty finite set and 2G × 2G be the
Cartesian product. )en, (2G × 2G) is a poset. )e corre-
sponding partial order relation ≤ is defined as

A1, B1( 􏼁≥ A2, B2( 􏼁⟺A1 ⊇A2, B1 ⊇B2. (3)

Moreover, if A1 � A2 and B1 � B2, then (A1, B1) �

(A2, B2).
In addition, the intersection “∩” and union “∪” in 2G ×

2G are, respectively, defined as

A1, B1( 􏼁∩ A2, B2( 􏼁 � A1 ∩A2, B1 ∩B2( 􏼁,

A1, B1( 􏼁∪ A2, B2( 􏼁 � A1 ∪A2, B1 ∪B2( 􏼁.
(4)

In 3WCA, there are two types of three-way concept
lattices. One is the object-induced three-way concept lattice,
and the other is the attribute-induced three-way concept
lattice.

Definition 1 [14, 15]. Let K � (G, M, I) be a formal context,
X ∈ 2G and (A, B) ∈ 2M × 2M. A pair of three-way operators
⋗ : 2G⟶ 2M × 2M and ⋖ : 2M × 2M⟶ 2G are defined,
respectively, as

Table 1: Students and their interests before they came to China.

Tang Song Yuan Ming Qing
1 × ×

2 × × ×

3 × × ×

4 × ×

5 × × ×

Table 2: Students and their interests after they came to China.

Tang Song Yuan Ming Qing
1 × ×

2 × × ×

3 × × ×

4 × ×

5 × ×
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X
⋗

� X
∗
, X
∗

􏼐 􏼑,

(A, B)
⋖

� A
∗ ∩B
∗
.

(5)

Definition 2 [14, 15]. Let K � (G, M, I) be a formal context,
X ∈ 2G and (A, B) ∈ 2M × 2M. If X⋗ � (A, B) and
(A, B)⋖ � X, then the ordered pair (X, (A, B)) is called an
object-induced three-way concept. Moreover, X and (A, B)

are called the extent and intent of the concept (X, (A, B)),
respectively.

)en, all the object-induced three-way concepts con-
tained in K form a complete lattice, which is called the
object-induced three-way concept lattice of K and denoted
by OEL(K).

Furthermore, let (X1, (A1, B1)) and (X2, (A2, B2)) be
two concepts of K. If (X1, (A1, B1))≤ (X2, (A2, B2)) and
there does not exist another concept (X3, (A3, B3)) ofK such
that (X1, (A1, B1))≤ (X3, (A3, B3))≤ (X2, (A2, B2)), then
(X1, (A1, B1)) is called a lower neighbour of (X2, (A2, B2))

or equivalently (X2, (A2, B2)) is called an upper neighbour
of (X1, (A1, B1)), which is denoted by (X1, (A1,

B1))≺ (X2, (A2, B2)) or (X2, (A2, B2))≻ (X1, (A1, B1)).

Definition 3 [14, 15]. Let K � (G, M, I) be a formal context,
A ∈ 2M and (X, Y) ∈ 2G × 2G. A pair of three-way operators
⋗ : 2M⟶ 2G × 2G and ⋖ : 2G × 2G⟶ 2M are defined,
respectively, as

A
⋗

� A
∗
, A
∗

􏼐 􏼑,

(X, Y)
⋖

� X
∗ ∩Y
∗
.

(6)

Definition 4 [14, 15]. Let K � (G, M, I) be a formal context,
A ∈ 2M and (X, Y) ∈ 2G × 2G. If A⋗ � (X, Y) and
(X, Y)⋖ � A, then the ordered pair ((X, Y), A) is called an
attribute-induced three-way concept. Moreover, (X, Y) and
A are called the extent and intent of the concept ((X, Y), A),
respectively.

)en, all the attribute-induced three-way concepts
contained in K form a complete lattice, which is called the
attribute-induced three-way concept lattice of K and
denoted by AEL(K).

Furthermore, let ((X1, Y1), A1) and ((X2, Y2), A2) be
two concepts of K. If ((X1, Y1), A1)≤ ((X2, Y2), A2) and
there does not exist another concept ((X3, Y3), A3) of K such
that ((X1, Y1), A1)≤ ((X3, Y3), A3)≤ ((X2, Y2), A2), then
((X1, Y1), A1) is called a lower neighbour of ((X2, Y2), A2)

or equivalently ((X2, Y2), A2) is called an upper neighbour
of ((X1, Y1), A1), which is denoted by ((X1, Y1), A1)≺
((X2, Y2), A2) or ((X2, Y2), A2) ≻ ((X1, Y1), A1).

3. The Effects on Object-Induced Three-Way
Concept Lattices When Changing
Attribute Values

In this section, we investigate the effects on object-induced
three-way concept lattices caused by the variations of

attribute values. At the beginning, we give several useful
symbols.

(i) Let I and I′ be the binary relations before and after
changing a specific attribute value of the original
formal context, respectively

(ii) Let OEL(K) and OEL(K′) be the object-induced
three-way concept lattices of the formal contexts
before and after changing a specific attribute value of
the original formal context, respectively

3.1./eEffects onObject-Induced/ree-WayConcept Lattices
When Changing Attribute Values from 0 to 1. In this section,
we investigate the effects on object-induced three-way
concept lattices when changing attribute values from 0 to 1.

Theorem 1. Let K � (G, M, I) be a formal context, x ∈ G,
a ∈M, and I(x, a) � 0. If we change the value of I(x, a) from
0 to 1, then the corresponding object-induced three-way
concept lattice needs to be updated as follows:

(i) If there are two concepts (X1, (A1, B1))≺
(X2, (A2, B2)) with a ∈ A1 and x ∈ X2, then generate
a new concept (X1 ∪ x{ }, (A2 ∪ a{ }, B2 − a{ }))

(ii) Furthermore, if X1 ∪ x{ } � X2 and (A1, B1) �

(A2 ∪ a{ }, B2 − a{ }), then (X1, (A1, B1)) and
(X2, (A2, B2)) are no longer concepts in the updated
concept lattice

And if X1 ∪ x{ } � X2 and (A1, B1)≠ (A2 ∪ a{ }, B2 − a{ }),
then (X2, (A2, B2)) is no longer a concept in the updated
concept lattice.

And if X1 ∪ x{ }≠X2 and (A1, B1) � (A2 ∪ a{ }, B2 − a{ }),
then (X1, (A1, B1)) is no longer a concept in the updated
concept lattice.

Proof. Firstly, we prove that if (X1, (A1, B1)) ≺ (X2, (A2,

B2)) with a ∈ A1 and x ∈ X2, then (X1 ∪ x{ }, (A2 ∪ a{ }, B2 −

a{ })) is a new concept of the updated lattice.
On one hand, we have (X1 ∪ x{ })

⋗I′ � X⋗I′1 ∩ x{ }⋗I
′ . As

the only change made to the context is changing I(x, a)

from 0 to 1 and a ∈ A1, we can deduce that
x{ }⋗I
′

� (A2 ∪ a{ }, B2 − a{ }) and X⋗I′1 � X⋗I1 � (A1, B1). As
(X1, (A1, B1))≺ (X2, (A2, B2)), we get that A1 ⊇A2 ∪ a{ }

and B1 ⊇B2 − a{ }.
)en, we have that

X1 ∪ x{ }( 􏼁
⋗I′

� X
⋗I′
1 ∩ x{ }

⋗I′
� A1, B1( 􏼁∩ A2 ∪ a{ }, B2 − a{ }( 􏼁

� A2 ∪ a{ }, B2 − a{ }( 􏼁.

(7)

On the other hand, we have

A2 ∪ a{ }, B2 − a{ }( 􏼁
⋖I′

� A2 ∪ a{ }( 􏼁
∗I′ ∩ B2 − a{ }( 􏼁

∗I′

� A
∗I′
2 ∩ a{ }

∗I′ ∩ B2 − a{ }( 􏼁
∗I′

.

(8)

Besides, based on the condition (X1, (A1, B1))≺
(X2, (A2, B2)) with a ∈ A1 and x ∈ X2, we get that
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X2 ⊇X1 ∪ x{ }. As the only change made to the context is
changing I(x, a) from 0 to 1, we can deduce that a{ }∗I

′
�

a{ }∗I ∪ x{ } � X1 ∪ x{ } and A∗I
′

2 � A∗I2 � X2. Moreover, it is
easy to show that (B2 − a{ })

∗I′ ⊇B∗I′2 � X2. To sum up, we
derive that

A2 ∪ a{ }, B2 − a{ }( 􏼁
⋖I′

� A
∗I′
2 ∩ a{ }

∗I′ ∩ B2 − a{ }( 􏼁
∗I′

� X1 ∪ x{ }.

(9)

By combining (7) and (9), the first part of the theorem is
proved.

As the proof of the second part of the theorem is trivial,
we omit it here. □

Theorem 2. Let K � (G, M, I) be a formal context, x ∈ G,
a ∈M, and I(x, a) � 0. If we change the value of I(x, a) from
0 to 1, then update the object-induced three-way concept
lattice as follows: if there is a concept (X1, (A1, B1)) with
a ∈ A1, all the extents of its upper neighbours do not contain
an element x, and (X2, (A2, B2)) is a smallest father concept
of (X1, (A1, B1)) such that x ∈ X2, then generate a new
concept (X1 ∪ x{ }, (A2 ∪ a{ }, B2 − a{ })).

Proof. It can be proved similarly as that of )eorem 1.
Besides, it is trivial to show that both (X1, (A1, B1)) and
(X2, (A2, B2)) are still concepts of the lattice after changing
I(x, a) from 0 to 1. □

Theorem 3. Let K � (G, M, I) be a formal context, x ∈ G,
a ∈M, and I(x, a) � 0. If we change the value of I(x, a) from
0 to 1 and if there is a concept (X, (A, B)) with x{ } ⊂ X and
a ∈ B, then update the object-induced three-way concept
lattice as follows:

(i) If there does not exist a concept
((A, B − a{ })

⋖, (A, B − a{ })), then generate a new
concept (X, (A, B − a{ }))

(ii) If there does not exist a concept
(X − x{ }, (X − x{ })

⋗), then generate a new concept
(X − x{ }, (A, B))

(iii) (X, (A, B)) is no longer a concept after changing
I(x, a) from 0 to 1

Proof. Before changing I(x, a) from 0 to 1, a ∈ B implies
that a is not possessed by X. After changing I(x, a) from 0 to
1, a is possessed by object x. )en, (X, (A, B)) is no longer a
concept. Meanwhile, (B − a{ }) is the set of attributes which
are not possessed by X. Moreover, as there does not exist a
concept in the form of ((A, B − a{ })

⋖, (A, B − a{ })), we have
to generate a new concept (X, (A, B − a{ })). Besides, as B is
the set of attributes which are not possessed by (X − x{ })

and there does not exist a concept in the form of
(X − x{ }, (X − x{ })

⋗), we have to generate a new concept
(X − x{ }, (A, B)).

Based on the above discussions, we propose Algorithm 1
for updating an object-induced three-way concept lattice
when changing a specific attribute value from 0 to 1.

Let N be the number of concepts of OEL(K). In Al-
gorithm 1, we visit the concept lattice only once. )erefore,
the complexity of Algorithm 1 is O(N). □

3.2. /e Effects on Object-Induced /ree-Way Concept
Lattices When Changing Attribute Values from 1 to 0. In
this section, we study the effects on object-induced three-
way concept lattices when changing attribute values from 1
to 0.

Theorem 4. Let K � (G, M, I) be a formal context, x ∈ G,
a ∈M, and I(x, a) � 1. If we change the value of I(x, a) from
1 to 0, then the corresponding object-induced three-way
concept lattice needs to be updated as follows:

(i) If there are two concepts (X1, (A1, B1))≺
(X2, (A2, B2)) with a ∈ B1 and x ∈ X2, then generate
a new concept (X1 ∪ x{ }, (A2 − a{ }, B2 ∪ a{ }))

(ii) Furthermore, if X1 ∪ x{ } � X2 and (A1, B1) � (A2 −

a{ }, B2 ∪ a{ }), then (X1, (A1, B1)) and (X2, (A2, B2))

are no longer concepts in the updated concept lattice

And if X1 ∪ x{ } � X2 and (A1, B1)≠ (A2 − a{ }, B2 ∪ a{ }),
then (X2, (A2, B2)) is no longer a concept in the updated
concept lattice.

And if X1 ∪ x{ }≠X2 and (A1, B1) � (A2 ∪ a{ }, B2 − a{ }),
then (X1, (A1, B1)) is no longer a concept in the updated
concept lattice.

Proof. Firstly, we prove that if (X1, (A1, B1))≺ (X2,

(A2, B2)) with a ∈ B1 and x ∈ X2, then (X1 ∪ x{ }, (A2 −

a{ }, B2 ∪ a{ })) is a new concept of the updated lattice.
On one hand, we have (X1 ∪ x{ })

⋗I′ � X⋗I′1 ∩ x{ }⋗I
′ . As

the only change made to the context is changing I(x, a) from
1 to 0 and a ∈ B1, we can deduce that x{ }⋗I

′
� (A2 −

a{ }, B2 ∪ a{ }) andX⋗I′1 � X⋗I1 � (A1, B1). As (X1, (A1, B1))≺
(X2, (A2, B2)), we get that A1 ⊇A2 − a{ } and B1 ⊇B2 ∪ a{ }.

)en, we have that

X1 ∪
​

x{ }( 􏼁
⋗I′

� X
⋗I′
1 ∩

​
x{ }
⋗I′

� A1, B1( 􏼁∩ A2 − a{ }, B2 ∪ a{ }( 􏼁

� A2 − a{ }, B2 ∪ a{ }( 􏼁.

(10)

On the other hand, we have

A2 − a{ }, B2 ∪ a{ }( 􏼁
⋖I′

� A2 − a{ }( 􏼁
∗I′ ∩ B2 ∪ a{ }( 􏼁

∗I′

� A2 − a{ }( 􏼁
∗I′ ∩B

∗I′
2 ∩ a{ }

∗I′
.

(11)

Besides, based on the condition (X1, (A1, B1)) ≺ (X2,

(A2, B2)) with a ∈ B1 and x ∈ X2, we get that X2 ⊇X1 ∪ x{ }.
As the only change made to the context is changing I(x, a)

from 1 to 0, we can deduce that a{ }∗I
′

� a{ }∗I ∪ x{ } �

X1 ∪ x{ } and B∗I′2 � B∗I2 � X2. Moreover, it is easy to show
that (A2 − a{ })

∗I′ ⊇A∗I
′

2 � X2. To sum up, we derive that
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A2 − a{ }, B2 ∪ a{ }( 􏼁
⋖I′

� A2 − a{ }( 􏼁
∗I′ ∩B

∗I′
2 ∩ a{ }

∗I′
� X1 ∪ x{ }.

(12)

By combining (10) and (12), the first part of the theorem
is proved.

As the proof of the second part of the theorem is trivial,
we omit it here. □

Theorem 5. Let K � (G, M, I) be a formal context, x ∈ G,
a ∈M, and I(x, a) � 1. If we change the value of I(x, a) from
1 to 0, then update the object-induced three-way concept
lattice as follows: if there is a concept (X1, (A1, B1)) with
a ∈ B1, all the extents of its upper neighbours do not contain
an element x, and (X2, (A2, B2)) is a smallest father concept
of (X1, (A1, B1)) such that x ∈ X2, then generate a new
concept (X1 ∪ x{ }, (A2 − a{ }, B2 ∪ a{ })).

Proof. It can be proved similarly as that of )eorem 4.
Besides, it is trivial to show that both (X1, (A1, B1)) and
(X2, (A2, B2)) are still concepts of the lattice after changing
I(x, a) from 1 to 0. □

Theorem 6. Let K � (G, M, I) be a formal context, x ∈ G,
a ∈M, and I(x, a) � 1. If we change the value of I(x, a) from
1 to 0 and if there is a concept (X, (A, B)) with x{ } ⊂ X and
a ∈ A, then update the object-induced three-way concept
lattice as follows:

(i) If there does not exist a concept ((A − a{ }, B)⋖,

(A − a{ }, B)), then generate a new concept (X,

(A − a{ }, B))

(ii) If there does not exist a concept (X − x{ }, (X −

x{ })
⋗), then generate a new concept (X − x{ }, (A, B))

(iii) (X, (A, B)) is no longer a concept after changing
I(x, a) from 1 to 0

Proof. Before changing I(x, a) from 1 to 0, a ∈ A implies
that a is possessed by X. After changing I(x, a) from 1 to 0, a
is not possessed by object x. )en, (X, (A, B)) is no longer a
concept. Meanwhile, (A − a{ }) is the set of attributes which
are commonly possessed by X. Moreover, as there does not
exist a concept in the form of ((A − a{ }, B)⋖, (A − a{ }, B)),
we have to generate a new concept (X, (A − a{ }, B)). Be-
sides, as A is the set of attributes which are possessed by
(X − x{ }) and there does not exist a concept in the form of
(X − x{ }, (X − x{ })

⋗), we have to generate a new concept
(X − x{ }, (A, B)).

Based on the above discussions, we propose Algorithm 2
for updating an object-induced three-way concept lattice
when changing a specific attribute value from 1 to 0.

Let N be the number of concepts of OEL(K). Similar to
Algorithm 1, the complexity of Algorithm 2 is alsoO(N). □

Example 2. Table 3 shows a formal context K � (G, M, I)

with G � 1, 2, 3, 4{ } and M � a, b, c, d, e{ }. In the table, “×”
means an object has an attribute and a blank indicates the
opposite. )e corresponding object-induced three-way
concept lattice OEL(K) is shown in Figure 1.

For convenience, in the representation of a concept we
omit the curly braces and commas. For instance, we use
(23, (d, ce)) instead of ( 2, 3{ }, d{ }, c, e{ }).

Require: OEL(K) and changing I(x, a) from 0 to 1.
Ensure: OEL(K′).

(1) Sort the concepts into a queue Q based on the ascending order of their extents.
(2) For concept (X, (A, B)) in Q
(3) If there exists another concept (X′, (A′, B′)) such that (X′, (A′, B′))≻ (X, (A, B)), a ∈ A, and x ∈ X′
(4) �en
(5) Generate a new concept (X∪ x{ }, (A′ ∪ a{ }, B′ − a{ })).
(6) If X′ � X∪ x{ } and (A, B) � (A′ ∪ a{ }, B′ − a{ }), delete (X′, (A′, B′)) and (X, (A, B)).
(7) If X′ � X∪ x{ } and (A, B)≠ (A′ ∪ a{ }, B′ − a{ }), delete (X′, (A′, B′)).
(8) If X′ ≠X∪ x{ } and (A, B) � (A′ ∪ a{ }, B′ − a{ }), delete (X, (A, B)).
(9) End If
(10) If a ∈ A and all the extents of its upper neighbours do not contain x
(11) �en
(12) If (X′, (A′, B′)) is a smallest father concept of (X, (A, B)) such that x ∈ X′
(13) then generate a new concept (X∪ x{ }, (A′ ∪ a{ }, B′ − a{ })).
(14) End If
(15) If x{ } ⊂ X and a ∈ B

(16) �en
(17) If there does not exist a concept ((A, B − a{ })

⋖, (A, B − a{ })), then generate a concept (X, (A, B − a{ })).
(18) If there does not exist a concept (X − x{ }, (X − x{ })

⋗), then generate a concept (X − x{ }, (A, B)).
(19) Delete (X, (A, B)).
(20) End If
(21) Update partial orders between concepts where necessary.
(22) End For
(23) Return the updated lattice and end the algorithm.

ALGORITHM 1: Updating object-induced three-way concept lattice when changing a specific attribute value from 0 to 1.
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When we change I(3, e) from 0 to 1, the updating
process is described briefly as follows:

(i) As there exist two cases that fulfill the conditions
of )eorem 1, i.e., there exist (3, (abd, ce))≻
(∅, (abcde, abcde)) and (13, (b,∅))≻ (1, (bce,

ad)), we generate two new concepts (13, (be,∅))

and (3, (abde, c)), respectively, and delete the old
concepts (3, (abd, ce)) and (13, (b,∅))

(ii) As there exist three cases that fulfill the conditions of
)eorem 3, i.e., there exist (234, (∅, e)),
(23, (d, ce)) and (34, (a, e)), we finally generate two
new concepts (23, (d, c)) and (34, (a,∅) re-
spectively, and delete the old concepts (234, (∅, e)),
(23, (d, ce)), and (34, (a, c))

(iii) Update partial orders between concepts where
necessary, and the updated object-induced three-
way concept lattice OEL(K′) is shown in Figure 2

Continued with the above discussions, if we restore
I(3, e) to its original value 0, the updating process is shown
as follows:

(i) As there exist four cases that fulfill the conditions
of )eorem 4, i.e., there exist (1234, (∅,∅))≻
(24, (∅, be)), (23, (d, c))≻ (2, (d, abce)), (34, (a,

∅))≻ (4, (ac, bde)), and (3, (abde, c))≻ (∅, (abc

de, abcde)), we generate four new concepts (234,

(∅, e)), (23, (d, ce)), (34, (a, e)), and (3, (abd, ce)),
respectively, and delete the old concepts (23, (d, c)),
(34, (a,∅)), and (3, (abde, c))

(ii) As there exists a concept (13, (be,∅)) that fulfills
the conditions of )eorem 6, we generate a new
concept (13, (b,∅)) and delete the old concept
(13, (be,∅))

Require: OEL(K) and changing I(x, a) from 1 to 0.
Ensure: OEL(K′).

(1) Sort the concepts into a queue Q based on the ascending order of their extents.
(2) For concept (X, (A, B)) in Q
(3) If there exists another concept (X′, (A′, B′)) such that (X′, (A′, B′))≻ (X, (A, B)), a ∈ B, and x ∈ X′
(4) �en
(5) Generate a new concept (X∪ x{ }, (A′ − a{ }, B′ ∪ a{ })).
(6) If X′ � X∪ x{ } and (A, B) � (A′ − a{ }, B′ ∪ a{ }), delete (X′, (A′, B′)) and (X, (A, B)).
(7) If X′ � X∪ x{ } and (A, B)≠ (A′ − a{ }, B′ ∪ a{ }), delete (X′, (A′, B′)).
(8) If X′ ≠X∪ x{ } and (A, B) � (A′ − a{ }, B′ ∪ a{ }), delete (X, (A, B)).
(9) End If
(10) If a ∈ B and all the extents of its upper neighbours do not contain x
(11) �en
(12) If (X′, (A′, B′)) is a smallest father concept of (X, (A, B)) such that x ∈ X′
(13) then generate a new concept (X∪ x{ }, (A′ − a{ }, B′ ∪ a{ })).
(14) End If
(15) If x{ } ⊂ X and a ∈ A

(16) �en
(17) If there does not exist a concept ((A − a{ }, B)⋖, (A − a{ }, B)), then generate a concept (X, (A − a{ }, B)).
(18) If there does not exist a concept (X − x{ }, (X − x{ })

⋗), then generate a concept (X − x{ }, (A, B)).
(19) Delete (X, (A, B)).
(20) End If
(21) Update partial orders between concepts where necessary.
(22) End For
(23) Return the updated lattice and end the algorithm.

ALGORITHM 2: Updating object-induced three-way concept lattice when changing a specific attribute value from 1 to 0.

(1234, (∅, ∅))

(234, (∅, e))

(23, (d, ce))

(2, (d, abce)) (3, (abd, ce)) (4, (ac, bde))

(∅, (abcde, abcde))

(1, (bce, ad))

(34, (a, e)) (24, (∅, be)) (12, (∅, a)) (13, (b, ∅)) (14, (c, d))

Figure 1: Object-induced three-way concept lattice OEL(K) of
Example 2.

Table 3: A formal context K of Example 2.

a b c d e
1 × × ×

2 ×

3 × × ×

4 × ×
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(iii) Update partial orders between concepts when
necessary, and the updated object-induced three-
way concept lattice restores its original lattice that is
shown in Figure 1

4. The Effects on Attribute-Induced Three-Way
Concept Lattices When Changing
Attribute Values

By using duality principle, we can get the results about the
effects on attribute-induced three-way concept lattices when
changing attribute values. Hence, we just present our ap-
proaches but omit the details.

4.1. /e Effects on Attribute-Induced /ree-Way Concept
LatticesWhen Changing Attribute Values from 0 to 1. In this
subsection, we list the results about the effects on attribute-
induced three-way concept lattices when changing attribute
values from 0 to 1.

Theorem 7. Let K � (G, M, I) be a formal context, x ∈ G,
a ∈M, and I(x, a) � 0. If we change the value of I(x, a) from
0 to 1, then the corresponding attribute-induced three-way
concept lattice needs to be updated as follows:

(i) If there are two concepts ((X1, Y1), A1)≺ ((X2,

Y2), A2) with a ∈ A1 and x ∈ X2, then generate a new
concept ((X1 ∪ x{ }, Y1 − x{ }), A2 ∪ a{ })

(ii) Furthermore, if A1 � A2 ∪ a{ } and (X2, Y2) � (X1 ∪
x{ }, Y1 − x{ }), then ((X1, Y1), A1) and ((X2, Y2), A2)

are no longer concepts in the updated concept lattice

And if A1 � A2 ∪ a{ } and (X2, Y2)≠ (X1 ∪ x{ }, Y1 − x{ }),
then ((X1, Y1), A1) is no longer a concept in the updated
concept lattice.

And if A1 ≠A2 ∪ a{ } and (X2, Y2) � (X1 ∪ x{ }, Y1 − x{ }),
then ((X2, Y2), A2) is no longer a concept in the updated
concept lattice.

Theorem 8. Let K � (G, M, I) be a formal context, x ∈ G,
a ∈M, and I(x, a) � 0. If we change the value of I(x, a) from
0 to 1, then update the attribute-induced three-way concept
lattice as follows: if there is a concept ((X1, Y1), A1) with
x ∈ X1, all the intents of its lower neighbours do not contain
an element a, and ((X2, Y2), A2) is a biggest son concept of
((X1, Y1), A1) such that a ∈ A2, then generate a new concept
((X2 ∪ x{ }, Y2 − x{ }), A1 ∪ a{ }).

Theorem 9. Let K � (G, M, I) be a formal context, x ∈ G,
a ∈M, and I(x, a) � 0. If we change the value of I(x, a) from
0 to 1 and if there is a concept ((X, Y), A) with a{ } ⊂ A and
x ∈ Y, then update the attribute-induced three-way concept
lattice as follows:

(i) If there does not exist a concept ((X, Y −

x{ }), (X, Y − x{ })
⋗), then generate a new concept

((X, Y − x{ }), A)

(ii) If there does not exist a concept ((A − a{ })
⋖,

A − a{ }), then generate a new concept ((X, Y),

A − a{ })

(iii) ((X, Y), A) is no longer a concept after changing
I(x, a) from 0 to 1

Based on the above discussions, we propose Algorithm 3
for updating an attribute-induced three-way concept lattice
when changing a specific attribute value from 0 to 1.

Let N be the number of concepts of AEL(K). /e com-
plexity of Algorithm 3 is O(N).

4.2. /e Effects on Attribute-Induced /ree-Way Concept
Lattices When Changing Attribute Values from 1 to 0. In this
subsection, we list the results about the effects on attribute-
induced three-way concept lattices when changing attribute
values from 1 to 0.

Theorem 10. Let K � (G, M, I) be a formal context, x ∈ G,
a ∈M, and I(x, a) � 1. If we change the value of I(x, a) from
1 to 0, then the corresponding attribute-induced three-way
concept lattice needs to be updated as follows:

(i) If there are two concepts ((X1, Y1), A1)≺ ((X2,

Y2), A2) with a ∈ A1 and x ∈ Y2, then generate a new
concept ((X1 − x{ }, Y1 ∪ x{ }), A2 ∪ a{ })

(ii) Furthermore, if A1 � A2 ∪ a{ } and (X2, Y2) �

(X1 − x{ }, Y1 ∪ x{ }), then ((X1, Y1), A1) and ((X2,

Y2), A2) are no longer concepts in the updated concept
lattice

And if A1 � A2 ∪ a{ } and (X2, Y2)≠ (X1 − x{ }, Y1 ∪ x{ }),
then ((X1, Y1), A1) is no longer a concept in the updated
concept lattice.

And if A1 ≠A2 ∪ a{ } and (X2, Y2) � (X1 − x{ }, Y1 ∪ x{ }),
then ((X2, Y2), A2) is no longer a concept in the updated
concept lattice.

Theorem 11. Let K � (G, M, I) be a formal context, x ∈ G,
a ∈M, and I(x, a) � 1. If we change the value of I(x, a) from

(1234, (∅, ∅))

(23, (d, c)) (34, (a, ∅)) (24, (∅, be)) (12, (∅, a)) (13, (be, ∅)) (14, (c, d))

(∅, (abcde, abcde))

(2, (d, abce)) (3, (abde, c)) (4, (ac, bde)) (1, (bce, ad))

Figure 2: Updated object-induced three-way concept lattice
OEL(K′) of Example 2.
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1 to 0, then update the attribute-induced three-way concept
lattice as follows: if there is a concept ((X1, Y1), A1) with
x ∈ Y1, all the intents of its lower neighbours do not contain
an element a, and ((X2, Y2), A2) is a biggest son concept of
((X1, Y1), A1) such that a ∈ A2, then generate a new concept
((X2 − x{ }, Y2 ∪ x{ }), A1 ∪ a{ }).

Theorem 12. Let K � (G, M, I) be a formal context, x ∈ G,
a ∈M, and I(x, a) � 1. If we change the value of I(x, a) from
1 to 0 and if there is a concept ((X, Y), A) with a{ } ⊂ A and
x ∈ X, then update the attribute-induced three-way concept
lattice as follows:

(i) If there does not exist a concept ((X −

x{ }, Y), (X − x{ }, Y)⋗), then generate a new concept
((X − x{ }, Y), A)

(ii) If there does not exist a concept
((A − a{ })

⋖, A − a{ }), then generate a new concept
((X, Y), A − a{ })

(iii) ((X, Y), A) is no longer a concept after changing
I(x, a) from 1 to 0

Based on the above discussions, we propose Algorithm 4
for updating an attribute-induced three-way concept lattice
when changing a specific attribute value from 1 to 0.

Let N be the number of concepts of AEL(K). /e com-
plexity of Algorithm 4 is O(N).

Example 3. Table 4 shows a formal context K � (G, M, I)

with G � 1, 2, 3, 4{ } and M � a, b, c, d{ }. In the table, “×”
means an object has an attribute and a blank indicates the

opposite. )e corresponding attribute-induced three-way
concept lattice AEL(K) is shown in Figure 3.

When we change I(3, a) from 0 to 1, the updating
process is recorded briefly as follows:

(i) As there exists a pair of concepts ((12, 34),

a)≺ ((1234, 1234),∅) that fulfill the conditions of
)eorem 7, we generate a new concept ((123, 4), a)

and delete the old concept ((12, 34), a)

(ii) As there exists a concept ((23, 14), b) that fulfills the
conditions of)eorem 8, we generate a new concept
((23, 4), ab)

(iii) As there exist three concepts ((1, 3), ac), ((2, 34),

ad), and ((∅, 3), acd) that fulfill the conditions of
)eorem 9, we finally generate two new concepts
((1,∅), ac) and ((∅, 3), cd) and delete old concepts
((1, 3), ac), ((2, 34), ad), and ((∅, 3), acd)

(iv) Update partial orders between concepts when
necessary, and the updated attribute-induced three-
way concept lattice AEL(K′) is shown in Figure 4

Continued with the above discussions, if we restore
I(3, a) to its original value 0, the updating process is
depicted briefly as follows:

(i) As there exist three pairs of concepts ((123, 4), a)≺
((1234, 1234),∅), ((1,∅), ac)≺ ((14, 23), c), and
((∅, ∅), abcd)≺ ((∅, 3), cd) that fulfill the condi-
tions of )eorem 10, we generate three new con-
cepts ((12, 34), a), ((1, 3), ac), and ((∅, 3), acd) and
delete the old concepts ((123, 4), a), ((1,∅), ac),
and ((∅, 3), cd)

Require: AEL(K) and changing I(x, a) from 0 to 1.
Ensure: AEL(K′).

(1) Sort the concepts into a queue Q based on the descending order of their extents.
(2) For concept ((X, Y), A) in Q
(3) If there exists another concept ((X′, Y′), A′) such that ((X′, Y′), A′)≺ ((X, Y), A), a ∈ A′, and x ∈ X

(4) �en
(5) Generate a new concept ((X′ ∪ x{ }, Y′ − x{ }), A∪ a{ }).
(6) If A′ � A∪ a{ } and (X, Y) � (X′ ∪ x{ }, Y′ − x{ }), delete ((X′, Y′), A′) and ((X, Y), A).
(7) If A′ � A∪ a{ } and (X, Y)≠ (X′ ∪ x{ }, Y′ − x{ }), delete ((X′, Y′), A′).
(8) If A′ ≠A∪ a{ } and (X, Y) � (X′ ∪ x{ }, Y′ − x{ }), delete ((X, Y), A).
(9) End If
(10) If x ∈ X and all the intents of its lower neighbours do not contain a
(11) �en
(12) If (X′, (A′, B′)) is a biggest son concept of ((X, Y), A) such that a ∈ A′
(13) then generate a new concept ((X′ ∪ x{ }, Y′ − x{ }), A∪ a{ }).
(14) End If
(15) If a{ } ⊂ A and x ∈ Y

(16) �en
(17) If there does not exist a concept ((X, Y − x{ }), (X, Y − x{ })

⋗), then generate a new concept ((X, Y − x{ }), A).
(18) If there does not exist a concept ((A − a{ })

⋖, A − a{ }), then generate a new concept ((X, Y), A − a{ }).
(19) Delete ((X, Y), A).
(20) End If
(21) Update partial orders between concepts where necessary.
(22) End For
(23) Return the updated lattice and end the algorithm.

ALGORITHM 3: Updating attribute-induced three-way concept lattice when changing a specific attribute value from 0 to 1.
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(ii) As there exists a concept ((2, 134), d) that fulfills the
conditions of )eorem 11, we generate a new
concept ((2, 34), ad)

(iii) As there exists a concept ((23, 4), ab) that fulfills the
conditions of )eorem 12, we delete this old
concept

Require: AEL(K) and changing I(x, a) from 1 to 0.
Ensure: AEL(K′).

(1) Sort the concepts into a queue Q based on the descending order of their extents.
(2) For concept ((X, Y), A) in Q
(3) If there exists another concept ((X′, Y′), A′) such that ((X′, Y′), A′)≺((X, Y), A), a ∈ A′, and x ∈ Y

(4) �en
(5) Generate a new concept ((X′ − x{ }, Y′ ∪ x{ }), A∪ a{ }).
(6) If A′ � A∪ a{ } and (X, Y) � (X′ − x{ }, Y′ ∪ x{ }), delete ((X′, Y′), A′) and ((X, Y), A).
(7) If A′ � A∪ a{ } and (X, Y)≠ (X′ − x{ }, Y′ ∪ x{ }), delete ((X′, Y′), A′).
(8) If A′ ≠A∪ a{ } and (X, Y) � (X′ − x{ }, Y′ ∪ x{ }), delete ((X, Y), A).
(9) End If
(10) If x ∈ Y and all the intents of its lower neighbours do not contain a
(11) �en
(12) If (X′, (A′, B′)) is a biggest son concept of ((X, Y), A) such that a ∈ A′
(13) then generate a new concept ((X′ − x{ }, Y′ ∪ x{ }), A∪ a{ }).
(14) End If
(15) If a{ } ⊂ A and x ∈ X

(16) �en
(17) If there does not exist a concept ((X − x{ }, Y), (X − x{ }, Y)⋗), then generate a new concept ((X − x{ }, Y), A).
(18) If there does not exist a concept ((A − a{ })

⋖, A − a{ }), then generate a new concept ((X, Y), A − a{ }).
(19) Delete ((X, Y), A).
(20) End If
(21) Update partial orders between concepts where necessary.
(22) End For
(23) Return the updated lattice and end the algorithm.

ALGORITHM 4: Updating attribute-induced three-way concept lattice when changing a specific attribute value from 1 to 0.

Table 4: A formal context K of Example 3.

a b c d
1 × ×

2 × × ×

3 ×

4 ×

((1234, 1234), ∅)

((12, 34), a)

((1, 3), ac)

((∅, 3), acd) ((2, 4), abd)

((∅, ∅), abcd)

((2, 34), ad) ((2, 14), bd)

((14, 23), c) ((23, 14), b) ((2, 134), d)

Figure 3: Attribute-induced three-way concept lattice AEL(K) of
Example 3.

((1234, 1234), ∅)

((123, 4), a)

((23, 4), ab)

((2, 4), abd)

((∅, ∅), abcd)

((1, ∅), ac) ((2, 14), bd) ((∅, 3), cd)

((23, 14), b) ((14, 23), c) ((2, 134), d)

Figure 4: Updated attribute-induced three-way concept lattice
AEL(K′) of Example 3.
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(iv) Update partial orders between concepts when
necessary, and the updated attribute-induced three-
way concept lattice restores its original lattice that is
shown in Figure 3

5. Conclusion

In this paper, we study the influences of three-way concept
lattices caused by variations of attribute values. Concretely,
changes can be classified into two types. One is changing a
specific attribute value from 0 to 1, and the other is from 1 to
0. Besides, as there are two types of three-way concept
lattices, i.e., object-induced three-way concept lattice and
attribute-induce three-way concept lattice, we give our so-
lutions to the problems of these two types of three-way
concept lattices, respectively. Besides, we also employ il-
lustrative examples to show the details of our proposed
methods.

Some interesting and unsolved problems still deserve to
be studied. For example, as knowledge representation and
reasoning in fuzzy systems are extremely complex
[35, 36, 37], how to update fuzzy concept lattice and fuzzy
association rules are more interesting and challenging. In
addition, how to effectively update approximate three-way
concept lattices [22, 38, 39] is another interesting problem.
)ese issues will be studied in our forthcoming work.
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