
Research Article
Design and Analysis of Sustainable and Seasonal Profit Scaling
Model in Cloud Environment

Monika Kumari and G. Sahoo

Department of Computer Science and Engineering, BIT Mesra, Ranchi, Jharkhand, India

Correspondence should be addressed to Monika Kumari; monika.kit@gmail.com

Received 17 May 2019; Revised 17 August 2019; Accepted 23 September 2019; Published 24 October 2019

Guest Editor: Justin Shi

Copyright © 2019 Monika Kumari and G. Sahoo.)is is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in anymedium, provided the original work is
properly cited.

Cloud is a widely used platform for intensive computing, bulk storage, and networking. In the world of cloud computing, scaling is a
preferred tool for resource management and performance determination. Scaling is generally of two types: horizontal and vertical.)e
horizontal scale connects users’ agreement with the hardware and software entities and is implemented physically as per the requirement
and demand of the datacenter for its further expansion. Vertical scaling can essentially resize server without any change in code and can
increase the capacity of existing hardware or software by adding resources.)e present study aims at describing two approaches for
scaling, one is a predator-prey method and second is genetic algorithm (GA) along with differential evolution (DE).)e predator-prey
method is a mathematical model used to implement vertical scaling of task for optimal resource provisioning and genetic algorithm (GA)
along with differential evolution(DE) based metaheuristic approach that is used for resource scaling. In this respect, the predator-prey
model introduces two algorithms, namely, sustainable and seasonal scaling algorithm (SSSA) and maximum profit scaling algorithm
(MPSA).)e SSSA tries to find the approximation of resource scaling and the mechanism for maximizing sustainable as well as seasonal
scaling. On the other hand, the MPSA calculates the optimal cost per reservation and maximum sustainable profit.)e experimental
results reflect that the proposed logistic scaling-based predator-prey method (SSSA-MPSA) provides a comparable result with GA-DE
algorithm in terms of execution time, average completion time, and cost of expenses incurred by the datacenter.

1. Introduction

Cloud computing, the booming word in the field of dis-
tributed parallel computing, provides cheaper and powerful
processing and storage technology [1, 2]. It is a geo-
graphically distributed resource sharing system. It deals with
three types of resources, compute intensive, storage in-
tensive, and network intensive, and also provides mainly
three types of services: Infrastructure-as-a-Service, Plat-
form-as-a-Service, and Software-as-a-Service [1].)e vari-
ous cloud deployment models provide the way to access
these services classified as public, private, hybrid, and fed-
erated cloud [3].

Virtualization is considered as the core component of the
cloud environment, enabling access to resources. We can
think virtualization as an abstraction of the computer.)ere
are three primary fundamentals of virtual environment:

guest, host, and virtualization layer [4].)e guest is the part
of a system that communicates with the virtualization layer
directly.)e host provides the actual environment for the
guest to process the job.)e regeneration of homogeneous
and heterogeneous environment for processing the job of
guest is the responsibility of the virtualization layer. Cloud
on-demand gives resource accessibility of hardware plat-
form, operating systems, storage devices, and network re-
sources to use virtually. Assigning users’ requirement to the
sui resources distributed geographically over the internet is a
tedious job. To perform this task, resources are divided into
several execution environments known as virtual machines
(VMs), thus providing a complete system to execute user
requests [5].)e virtualization technique enables elastically
scalable allocation of resources on-demand to the user
during the normal season as well as at peak season time
efficiently [1].

Hindawi
Scientific Programming
Volume 2019, Article ID 7457938, 14 pages
https://doi.org/10.1155/2019/7457938

mailto:monika.kit@gmail.com
https://orcid.org/0000-0003-0231-8568
https://orcid.org/0000-0001-9570-1077
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/7457938

In recent years, various organizations, namely, Amazon
and Google, provide platforms to avail computing and
storage facilities by charging some amount as per the user’s
need. Resource allocation is a way to assign available re-
sources to the needed cloud request as per their demand. It is
possible only by employing an efficient resource allocation
technique; otherwise, the proper use of scarce resources
within the limit of cloud cannot meet cloud user expecta-
tions[6].

Cloud computing provides a multiaccess system in
which the resource exhibits unpredictable behavior upon the
arrival of new user requests, whereas multiaccess systems
result in complexity in the management of resources on-
demand [7].)erefore, optimality in the allocation of de-
sired resources is highly desirable with cloud service
providers.

)e two major aspects of resource allocation in the cloud
are VM allocation and resource provisioning. In the liter-
ature, we found there are two classifications for resource
provisioning: reservation and on-demand plans [8]. When a
customer acquires resource in advance based on its probable
estimation of resource requirements, it is known as a res-
ervation plan, while when customer acquires resource dy-
namically at runtime, it is known as an on-demand plan.)e
cost of resource provisioning is cheaper in the reservation
plan than in the on-demand plan, but in the reservation plan,
the consumer has to pay in advance to the provider [9]. Due
to uncertainty in demand for resources, both plans cannot
put the best provisioning scheme. On the basis of reference
[10], various challenges in incorporating resource pro-
visioning into operations are shown in Figure 1. Many issues
are also involved in consideration of the selection of resource
with conflicting demands.

An attempt has been made here to address the uncertain
arrival of demand with maximum utilization of the resource.
We formulated a predator-prey-based mathematical model
to effectively autoscale the resource as per demand with
optimum cost. Autoscaling is the process of provisioning
and deprovisioning of the resource by adapting the changes
incurred due to oscillation in demand. A set of decisions are
needed to be taken in such a way that cost is minimized and
QoS is maximized [10].)is is the automatic control
problem. We present the control cycle of autoscaling in
Figure 2 [11].

Here, the unlimited distributed resources in the cloud that
are maintained at a positive level are considered renewable
resources. Allocation, the central management of renewable
resources, involved some critical considerations like what
should be the provisioning rate? Also, how sensitive the re-
source fluctuation caused by the provisioning or by the system
failures is?)erefore, the renewable resource control problem is
similar to the predator-prey model. A possible phenomenon of
this was modeled by Lotka and Volterra [12, 13, 14]. In this
paper, we used a predator-prey model for formulating our
resource management problem.

)e above model is based on the classic predator-prey
model of Lotka–Volterra equations and Holling type II
functional response. Here, the functional response is the
principal of time budget due to behavioral change of system.

)e Lotka–Volterra equation is not fit for every situa-
tion. Some assumptions restrict the application of this
model.)e important assumption is that the survival of the
predator (jobs) depends on the presence of the prey (re-
source) [15]. In the predator-prey model, there are two
stages in predation: searching for food and handling of food
which is very similar to the resource provisioning in a cloud
environment; in the first step, we have to identify or search
the suitable VMs for the requested job (predator), and in the
next step, we have to process the job on allocated resources
(prey).

)e logistic prey (resource) growth and Holling type II
functional response (effect of behavioral change of system
after scaling) are taken into consideration. Holling type II
response function allows Hopf bifurcation due to the sto-
chastic nature of the arrival of jobs (predator).)e Hopf
oscillator is the appropriate tool to simulate the seasonal
variation as the Hopf oscillator converges into one limit
cycle from any set of initial conditions [16].

We consider here optimal scaling of renewable resources
such as processing capacity, storage capacity, and bandwidth
capacity in the cloud and try to find the solution for the
following questions:

(i) With proposed reasonable scaling model for re-
newable resource, what would be the maximal sus-
tainable scaling?
(ii) Concerning to giving economical parameters like
discount rate, price, and overhead costs, what is the
maximal sustainable profit?
(iii) At what time or what rate should scaling resume
to maximize the long-term profit?

)e proposed algorithm was designed with a combi-
nation of the genetic algorithm (GA) and the differential
evolution (DE) for resource scaling to identify optimum
solutions to minimize the task and provide the best schedule
within the cloud environment.

)e remainder of this paper is organized as follows.
Section 2 gives a brief overview of the problems related to
the control management and prediction models of re-
source provisioning in the cloud environment. Section 3
describes the motivation for the present work.)e pro-
posed models and algorithms are presented in Sections 4
and 5, respectively. Sections 6 and 7 are devoted to the
experimental setup for simulation and result and discus-
sion. Finally, conclusions and future works are presented
in Section 8.

2. Related Work

Resource provisioning is one of the crucial and important
tasks in cloud computing. In this process, we have to
make a sequence of optimal decisions including the
identification and selection of resources, determination
of resource capacity for allocation, acquistion and release
of resources, and methods to use resources dynamically at
runtime. Cloud computing provides on-demand scaling
or dynamic resource provisioning which helps cloud

2 Scientific Programming

providers to deliver service level agreements (SLAs) re-
lated to performance-based metrics such as response time
and execution time [17]. Many researchers proposed
different solutions for autoscaling of resource on the
cloud. Mao proposed a budget and deadline-based
autoscaling technique and developed a data prefetching
algorithm to reduce the intermediate data transfer time
[18]. Qu provided autoscaling techniques and solutions
for achieving efficient resource utilization with high-cost
efficiency, low network latency, and high availability of
web application [10]. Also, Qu claimed that the proposed
approach maintains acceptable QoS and also increased
the number of requests served during overloading pe-
riods. Mosleh et al. [19] came up with adaptive cost-based
task scheduling algorithm and claimed that it had better
performance and CPU utilization. Kohavi and Long-
botham [20] outlined the experimental results of two
popular web applications showing the direct impact of
increasing response time on their revenues. Cloud pro-
viders, however, have difficulty in ensuring an SLA re-
sponse time as described by Islam et al. [21].

Also, for efficient utilization of the resource, the
challenge is to model a system’s workload behavior so that a
predictive function can be used to complete the resource
scaling in advance. Previous work used different ap-
proaches to model application workload behavior and
predict the resources needed to ensure performance. Most
of the work used CPU and memory resource usage data as
prime inputs to their predictive models because these two
resources mainly affect the performance of a task. Ai et al.
[22] contributed a Markov chain-based continuous time
model for predicting the measurement of elasticity. Wang
et al. [23] proposed a theory based on an exogenous model
of the autoregressive moving average to predict CPU and
memory resource need and scale up virtual machine
configurations that include cores, memory, types, and
speed. Lu et al. [24] outlined prediction model for reducing
undesirable energy consumption of datacenter based on
backpropagation neural network. Roy et al. [25] also
proposed an ARMA workload prediction model to mini-
mize costs. Huang et al. [26] reported computer resource
scaling to meet QoS requirements.)eir approach is rule-

(i) Resource estimation
(ii) Resource configuration

(iii) Evaluating performance
(iv) Operational cost

Design

(i) Monitoring scaling indicator
(ii) Workload prediction

(iii) Oscillation mitigation
(iv) Scaling time
(v) Adaptivity to variation

Analysis
(i) Provisioning of resource

(ii) Deprovisioning of resource

Execution

Figure 2: Control cycle and challenges of autoscaling.

Identification of
VM

Selection of
resource

Autoscaling
Detection of

overloaded and
underloaded VM

Optimization of
selection

Selection
of

resource

Variation of
request

Large number
of competing

resources

Multiple
criteria

Figure 1: Challenges of resource provisioning.

Scientific Programming 3

based and model-based. It has been found that the model-
based approach was the most promising mechanism for
managing resources to provide QoS guarantees. Wang et al.
[23] used vertical scaling to analyze the relationship be-
tween CPU resource allocation and mean response time.
Iqbal et al. [27] proposed a reactive model to automatically
detect and fix resource bottlenecks to provide a fixed
model. Han et al. [28] used a G/G/n queuing model to
develop an adaptive scaling technique to minimize cloud
infrastructure pricing for users. Bi et al. [29] used a
combination of M/M/c and M/M/1 queuing models to
dynamically manage resource allocations to cloud-based
VMs. Wu proposed a cost-effective dataset management
model [30].

A control theory approach for systems provides a
rigorous technique for modeling, designing, analyzing
and evaluating system performance, as mentioned by Zhu
et al. [31].)e theory of control can be used to manage the
uncertainty and disruption of a system, described by
Maggio et al. [32]. Padala et al. [33] relied on control
theory and discussed CPU utilization. Kamra et al. [34]
and Liu et al. [35] showed resource management effi-
ciency, but not in cloud computing. Kalyvianaki et al. [36]
suggested a self-adaptive controller, which used a Kalman
filter to allocate CPU resources dynamically to virtualized
requests in a cloud environment.)ey refer to CPU usage
data fluctuations. Diao et al. [37] suggested a method for
maintaining system performance by controlling the
server’s maximum number of connections and moni-
toring the use of the CPU. Storn and Price’s [38] dif-
ferential evolution (DE) algorithm is a simple but
powerful population-based stochastic search technique
for solving global optimization problems. It is a heuristic
approach to present the possibility of minimizing con-
tinuous space functions that are nonlinear and non-
differentiable.)rough an extensive testbed, it is
demonstrated that the DE method converges faster with
greater certainty than many other acclaimed global op-
timization methods.)e DE method requires a few
variables of control. It is robust, easy to use, and suitable
for parallel computation.

Goswami and Saha used first time in 2013 a predator-
prey model for allocation of resource in the stable and
volatile scenario in a cloud environment [39]. Based on
these two scenarios, Goswami et al. used agent-based al-
gorithm for taking an optimum decision through identi-
fying the situation.)ey extended their work by using the
predator-prey model for defining the elasticity of cloud
resource allocation [9]. Consequently, they proposed a
prediction model based on an ALVEC-model for pre-
dicting future load, dynamically auto-tuning the parame-
ters and allocating VM accordingly. Inspired by the
aforementioned paper, we used the logistic growth model
to determine the resource pool size in VM level scheduling.
We found that the demand of resources is scaled up
according to the resource carrying capacity of the host, and
the performance of the datacenter in terms of reducing the
total execution time of the job can be maximized and while
also maximizing profits.

3. Motivation

In the cloud, resource scaling is one of the challenging tasks
for cloud distributors.)is is the backbone of optimum
resource utilization. In response to increased workload,
cloud providers scale up and down resources (CPU,
memory, storage, network, etc.) and have to face functional
complexity in maintaining QoS.)e user therefore only pays
for the number of resources and services they use. Cloud
hosting companies, on the other hand, aim to maximize
profits by serving customer requirement and also maxi-
mizing resource utilization with minimum cost.)e mo-
tivation of this is to guide a user in their efforts to predict
resource scaling and related costs and to help resource
providers maximize resource utilization while maintaining a
profit. Furthermore, under the reservation plan, we have two
major issues, namely, underprovisioning and over-
provisioning. Underprovisioning is caused due to high
demand and low available resources, while overprovisioning
is due to less demand and highly available resource. Con-
sequently, it is a problem of determining resource pool size.
As a result, we aremotivated to design amathematical model
for profitable optimal resource scaling pool size approxi-
mation to maximize the performance of the datacenter by
reducing the total execution time of job and trying to
maximize their profits.

4. Proposed Work

We proposed to design and analyze two algorithms sus-
tainable and seasonal scaling algorithm (SSSA) and maxi-
mum sustainable profit scaling algorithm (MPSA). In the
case of SSSA, we first tried to find the approximation of
resource scaling (H(U)) under both sustainable scaling and
seasonal scaling and then to determine the optimal resource
scaling pool size (U∗) and time for resuming the scaling (S).
For the development of MPSA, we tried to find the optimal
cost per reservation andmaximum sustainable profit scaling.
Here, both algorithms use the differential evolution (DE)
algorithm. In the proposed algorithm, DE is used to solve the
next population to GA (see Figure 3). In this algorithm, the
premature convergence is avoided by comparing the pro-
duced children with their parents; if the fitness value is better
than the parents, then the parents are replaced by children,
or else it is aborted. Once the initial population is generated,
the fitness values of the solutions are evaluated. In each
iteration of the algorithm, the termination condition is
checked. If the termination condition is satisfied, then the
algorithm produces optimal solutions. Otherwise, GA
combined with DE algorithms are applied to the individuals.

4.1."e Logistic Resource ScalingModel.)is model is based
on two species: the number of predators (job) and the
number of its prey (resource’s capacity) with a fixed number
of predator (job pool) per prey (resource).)is is a scaled
predator-prey model. First, we model the case in which the
numbers of predators and the prey birth and death rates
grow logistically under the environment’s carrying capacity

4 Scientific Programming

limit.)e second case is the effect on the population of prey
after the predation.)is system has a limit cycle.)e range
of this limit cycle will give information about the resource
scaling limit. Inspired from this, we make the simple as-
sumption that resource population under consideration
scales according to the proposed model if left alone. Table 1
depicts the variables and parameters used in our model.

In the actual scenario, the four parameters: p, w, n, and
CB, are not constant. But for simplicity, we assume them here
as constant. Moreover, we shall mostly be interested in the
scaling of a job of constant size on particular physical
machine:

b(t) � U> 0. (1)

)e resource scaling at particular time, denoted as
H(t), is

H(t) � qX(t)b(t), (2)

i.e., proportional to the job per resource, b(t), and the
population of resource, X(t), with a proportionality con-
stant q known as resource selection rate.)erefore, for a
limited job per resource, U, the resource scaling will be

H(t) � qUX(t). (3)

By this assumption, the resource population, X(t), of the
datacenter will satisfy the logistic scaling model:

X′(t) � RX(t) 1 −
X(t)

K
􏼢 􏼣, (4)

where R is a constant, representing an intrinsic rate of in-
crease in the population, andK is the carrying capacity of the
datacenter. If we consider the job that is already running on a
physical machine (PM), then the scaling of the resource for
that job becomes active at a time, S> 0, and equation (4)
becomes

X′(t) � RX(t) 1 −
X(t)

K
􏼢 􏼣 − qUX(t), t> S. (5)

Equation (5) gives the change in resource capacity due to
initiation of resource scaling. After some rearrangement, the
overall change in resource capacity of the datacenter will
represent the logistic resource scaling model as

X′ �

RX 1 −
X

K
􏼒 􏼓, for t≤ S,

RX 1 −
X

K
−

qU

R
􏼒 􏼓, for t> S.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(6)

)e solution to equation (5) will be denoted as X1(t) or
X2(t) for t≤ S and t> S, respectively. It is convenient to
express the initial resource population as a fraction of the
carrying capacity of the datacenter. Hence, we write
X(0) � K/N, where N> 1.

Solving (5) for X1(t), we have

X1(t) �
K

1 +(N − 1)e− Rt
. (7)

Equation (4) is a time separable first-order differential
equation and can be easily integrated. In the next section, we
classify the resource scaling situation.

4.2. Classification of Scaling.)e fulfilment of resource
demand from user depends on the availability of resource at
the datacenter.)e case when the size of resource demand is
within the average range of available resource capacity of the
datacenter, we name it as stable condition, and if the demand
is beyond and below the average range of resource avail-
ability, it is the case of unstable condition.)e presence of
stable conditions is termed sustainable scaling, whereas the
presence of demand fluctuation between stable and unstable

Initialize a population of
chromosomes randomly

Start

Evaluate each chromosome’s
fitness in the population

Select a good chromosomes
the population

Stopping
criteria satisfied?

calculate fitness of all individual
solution (fp) the population

Create new individuals
of population

Optimum
condition satisfied?

Calculate fitness of all
individual solution (fc)

fp < fc

New

Create new population of
chromosomes

Find best
individual

End

No

No

Yes

Yes

Yes

No

Figure 3: Flowchart of GA-DE algorithm.

Scientific Programming 5

conditions is termed seasonal scaling. In the next section, we
elaborate sustainable and seasonal scaling in detail.

4.2.1. Sustainable Scaling. In this section, we mostly for-
mulate the static resource population size under sustainable
scaling. When scaling starts, the aim is to increase the
number of jobs such that resource scaling is sustainable. We
must have a stable scaling; when t> S, the steady solution
X2(t) of equation (5) is required. To achieve this steady state,
X2(t) is chosen to satisfy

1 −
X2(t)

K
−

qU

R
� 0, (8)

which yields the following solution:

X2(t) � 1 −
qU

R
􏼒 􏼓K. (9)

If scaling starts at time S> 0, the resource population
X(t) satisfies (4) for t< S, and for t> S, we insist that
X(t) � X2(t). Of course, X(t) must be continuous at t� S;
therefore,

X1(s) �
K

1 +(N − 1)e− RS
� X2(s) � 1 −

qU

R
􏼒 􏼓K. (10)

Isolating the exponential gives

e
− RS

�
1

(N − 1)

R

R − qU
− 1􏼠 􏼡, (11)

and taking the logarithm of both sides and solving for S
yields

S �
1
R
ln (N − 1)

R

qU
− 1􏼠 􏼡􏼢 􏼣, (12)

which gives S as a function of the job per resource size U.
)is formula for S indicates when scaling should be resumed.
In the next section, we will try to formulate a model for
maximum sustainable scaling.

(1) Maximizing Sustainable Scaling. In order to determine
the maximum limit cycle of resource scaling, here we are
using the concepts of Hopf oscillation. We are now trying to
formulate the maximum resource scaling approximation for
sustainable scaling in this section. In order to find the
maximal sustainable scaling from the analysis presented
above, a static resource population with a constant number
of job per resource is given by expression (9) as

X2(t) � 1 −
qU

R
􏼒 􏼓K. (13)

)e scaling associated with this population level is

H(U) � qX2(t)U � qUK 1 −
qU

R
􏼒 􏼓, (14)

and we wish to choose U such that H (U) becomes maximal.
To this end, just compute the derivatives

H′(U) � qK −
2q2KU

R
, (15)

and solve the equation H′(U) � 0. As a result, U∗ � R/2q,
which determines the optimal amount of job.)e equilib-
rium population X2 is then X2(t) � K/2, and the maximum
sustainable scaling is

H U
∗

(􏼁 �
RK

4
. (16)

4.2.2. Seasonal Scaling. In this section, we will assume the
case of seasonal scaling and try to formulate the mechanism
for optimal resource scaling size.

)ere is a period (typically when demand is high in a
year) where the resources can grow undistributed, and then
there is a (usually rather low demand) seasonal scaling. Here,
we present a very elementary method to analyze such sce-
narios. Let Xn be the resource population in the nth time. In
the absence of scaling, the discrete model under consider-
ation is of the type

Xn � Xn− 1 + RXn− 1 1 −
Xn− 1

K
􏼒 􏼓, (17)

where Xn− 1 is the size of the resource population from the
previous scaling and the latter half of the equation represents
the scaling of the population using the logistic resource
scaling model given in (4). Note that we are now talking
about scaling rather than scaling rates as in the differential
equation (4) via the standard Euler approximation where we
take

R1 � RΔ t. (18)

It can be observed that the discrete dynamical system
(17) is, therefore, quite a rough approximation of the logistic
resource scaling model. However, it offers an acceptable
estimation of the next season’s population. It is an esti-
mation which can be used to predict maximal sustainable
scaling, the optimal distribution of job per resource, etc.

Our objective is again to maintain a resource population,
which may be scaled with an optimal job from time to time;
therefore, to maximize the sustainable scaling, it is necessary
to consider the scaling portion of the model.)e sustainable
scaling will be maximized for a population X for which the
scaling term is maximized. Hence, we solve

d
dX

R1X 1 −
X

K
􏼒 􏼓􏼔 􏼕

􏼌􏼌􏼌􏼌􏼌􏼌􏼌X∗
� 0, (19)

which occurs when X∗ � K/2.)is is identical to the pop-
ulation X2 defined in equation (9).)e maximal possible

Table 1: Variables and parameters.
Variables
X (t)� the population of available resources at time t.
B (t)� amount of job per resource operational at time t.
H(t) � the resource scaling (units of resource scaled per unit time).
Parameters
p� the reservation rate per unit of resource.
w �wage per broker per unit of time.
n� the mean number of broker per resource.
CB � the overhead cost of allocating one job per unit of time.

6 Scientific Programming

scaling is then determined by substituting X∗ back into the
scaling model:

R1X
∗ 1 −

X∗

K
􏼠 􏼡 �

R1K

2
1 −

1
2

􏼒 􏼓 �
R1K

4
. (20)

)is gives the identical result to the exact one from the
previous calculation, except that R has been replaced by R1.

Now, it seems natural to expect that the size of the
optimal load required to scale the maximal sustainable
scaling is R1/2q1, consistent with the result obtained from
the differential equation model. However, this is not quite
accurate because of a subtle point that we have so far ig-
nored.)e point is that we have not yet defined whether Xn
is the resource population before and after the allocation
season.)e two will not be the same. Assuming that the peak
scaling season is relatively short for the closure period, the
difference between the two will just equal the scaling.

Let us agree that Xn is the resource population in time n
after the peak scaling season. We write the complete model,
including running scaling as

X∗n � Xn− 1 + R1Xn− 1 1 −
Xn− 1

K
􏼒 􏼓,

Xn � X∗n − q1UX∗n .

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

(21)

Here, the constant q1 should be thought of as q1 � qΔt.
X∗ is the resource population in time n before scaling, and
Xn is the population after scaling. In particular, if
0<Xn− 1 <K, then X∗n >Xn− 1.)is implies that the resource
population is not steady and workload has to take this into
account.

Substituting X∗ � K/2 for Xn and Xn− 1 and equating
q1[X∗ + R1X

∗(1 − (X∗/K))]U � R1X
∗(1 − (X∗/K)) yields

U
∗

�
R1

q1 2 + R1(􏼁
. (22)

Next, we have to compare this with the optimal re-
source scaling’s size predicted by sustainable scaling. Note
that the argument in this analysis depends on only three
inputs: the available allocated resource population at the
same point in time, the carrying capacity of the resource,
and the constant intrinsic rate of allocation. All three can
be estimated from current or previous scaling statistics. In
the following section, we discuss the profit maximization
of resource provider by including the complexity of
economical parameters like incentive rate per resource
type, maintenance cost, and overhead cost, which gives
optimal resource scaling size for maximum profit and
maximum sustainable profit.

5. Maximizing the Profit

We now include the additional complexity of economic
parameters such as maintenance costs, overhead costs, and
interest rates. First, we will set up an objective function
which will represent the sustainable profit. Profit is revenue
minus total cost.)e revenue per unit time, denoted as
Prev(t), is the profit per unit scaling:

Prev(t) � pH(t). (23)

)e total cost per resource, C, is the sum of overhead cost
and wage per unit time of a mean number of the broker,
given as

C � CB + nw, (24)

and the cost of job per unit time, Cb(t), is

Cb(t) � CB + nwb(t). (25)

)is gives the profit per unit time, denoted as P(t), as

P(t) � pH(t) − Cb(t). (26)

Let us include an interest (discount) rate δ > 0, which is
assumed to be constant. Using equation (26), the present
value of the expected profit E(P(t)) at some time t is given
by

E(P(t)) � e
− δt

[pH(t) − Cb(t)]. (27)

Integrating E(P(t)), the true return or total profit rate in
present unit cost, denoted as J, is expressed as

J � 􏽚 e
− δt

[pH(t) − Cb(t)]dt. (28)

)is is the sustainable profit function to be maximized.
)e main weakness of this model is that the interest rate δ is
assumed to apply to everything, yetCB, p, and w are assumed
to be constant. In reality, p will probably grow with or even
faster than general inflation, and CB is influenced by factors
such as technological advancements, union negotiations,
government policies, and tax rates (all come under SLAs). It
is possible to include stochastic fluctuations in numerical
simulation to arrive at more realistic predictions. However,
for a first analysis, we will proceed with the given unrealistic
assumptions.

Function (28) becomes

J(b) � 􏽚
∞

0
e

− δt
b(t)[pqX(t) − C]dt, (29)

which is a function of resource pool size b � b(t). It is easy to
include a modification where the reservation price of the
resource and the cost per job, p and C, both increase with
time. Suppose, for example, that they both grow at the same
rate ∝ such that

p � P(t) � P0e
∝t

, (30)

C � C(t) � C0e
∝t

. (31)

We then obtain an objective function

J(b) � 􏽚
∞

0
e

(∝− δ)t
b(t) P0qX(t) − C0􏼂 􏼃dt, (32)

which is well defined if δ > ∝ (if δ ≤ ∝ the function will in
general no longer be finite). Now, when both p and C grow
with time, we can replace δ by δ − ∝ so that we can
conclude at what time, t� S> 0, a workload of constant size
b(t) � U should resume scaling such that J(b) is maximized.

Scientific Programming 7

5.1. Optimal Resource Scaling Pool Size. In this section, we
explain how to find the resource scaling pool size for a
maximum profit. Having found a formula for S in equation
(12) (the time when scaling should start) as a function of U,
the profit function (which in equation (28) is a function of
b(·), i.e., of U and S) is a function of U alone.

Substituting X1(t) � X2(t) from equation (9) and S as
given in equation (12) reduces equation (28) to

J(U) � U 􏽚
∞

S(U)
e

− δt
pqK 1 −

qU

R
􏼒 􏼓 − C􏼔 􏼕dt, (33)

where for a given resource pool sizeU, everything except the
exponent is constant. Integration gives

J(U) � U pqK 1 −
qU

R
􏼒 􏼓 − C􏼔 􏼕

e− δS(U)

δ
, (34)

and after making the substitution β � C/pqK, this becomes

J(U) �
pqKU

δ
1 −

qU

R
− β􏼒 􏼓e

− δS(U)
. (35)

)is profit function will be negative if 1 − (qU/R) − β< .
)is indicates the condition under which it is no longer
profitable to scale.)e profit function J(U) will be maxi-
mized at the point U∗ such that

U
∗

�
R

4q
3 − β +

δ
R

−

����������������

1 + β −
δ
R

􏼠 􏼡

2

+
8βδ
R

􏽶
􏽴

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (36)

Scaling should resume at the time S∗ � S(U∗) to max-
imize the profit.

5.2. Maximal Sustainable Profit. To calculate the maximal
sustainable profit, we have to maximize the profit per unit
time given by equation (26) in an equilibrium situation. In
this case, we take b(t) � U (constant), and substituting the
value of H(t) then the rate of profit P(t) will be
U[pqx(t) − c], with value of X(t) at equilibrium from the
equation (9) becomes the following simple function:

J(U) � U pqK 1 −
qU

R
􏼒 􏼓 − C􏼔 􏼕, (37)

which is maximized for U∗ � (R(1 − β))/2q, with
β � C/pqK, as shown in Section 4 earlier.)e associated
equilibrium resource population is then

Xeq �
K

2
(1 + β). (38)

)e scaling rate H∗ and sustainable profit P∗ become

H
∗

� qXeqU
∗

�
RK

4
1 − β2􏼐 􏼑, (39)

P
∗

� U
∗

pqXeq − C􏼐 􏼑 �
pRK

4
1 − β2􏼐 􏼑. (40)

Next, we develop two algorithms on the above formu-
lated logistic scaling-based predator-prey model. In sus-
tainable and seasonal scaling algorithm (SSSA), we try to
find the scaling rate of each allocated resources and check the

condition for sustainable and seasonal scaling. We also
check the condition to obtain the optimal resource scaling
size. Next, in the maximum profit scaling algorithm
(MPSA), we evaluate profit per scaling and profit to achieve
maximum sustainable scaling and optimum resource scaling
size with maximum profit.

5.3. Proposed Algorithm. Now both Algorithms 1 and 2
proposed earlier can be defined as follows.

6. Experimental Setup

To test the proposed model, we first numerically verified
this model using the Runge–Kutta fourth order (RK4)
approximation method and Adams–Moulton method for
parameter estimation. Based on two cases of predator-
prey population variation, we analyzed the stability
condition. Two cases of parameter variations are as
follows:

(i) Job completion rate is higher than job arrival rates
(q>R)

(ii))e job arrival rate is higher than the job completion
rate (R> q)

)e RK4 method produces sets of the approximate
solutions by dividing the solution domain into a set of
discrete points. We start the initial data at time t � 0 and
then estimate the approximation at time t � i∗h, where
i � 1, 2, 3, . . ., n.)e step size h is chosen suitably. In each
step i, it generates a different solution. By using this dif-
ferent solution, we are evaluating our algorithm for sus-
tainable and seasonable scaling criteria. Under each case,
we are evaluating the cost and profitability scaling ap-
proximation. We examine the behavior of logistic scaling
models with several sets of the parameter’s value given in
Table 2.

Figure 4 shows the behavior of resource availability, job
arrival, and corresponding maximum possible scaling
under the sustainable condition for two sets of parameter
variation.

We again verified our proposed algorithm for maximum
performance of the datacenter by reducing the total exe-
cution time (makespan) of the job and maximizing the
profits of the datacenter.)e proposed scheme is developed
using Java programming language-based simulation tools
NetBeans 8.1 and CloudSim 4.0. In construction of a cloud
datacenter environment, the servers had 240 times MIPS of
any VM, 16384 MB RAM, 1 GB storage, quad and dual core
processors, and 10000 kbps bandwidth configuration. Also,
virtual machines have been configured by assigning their
basic entities and parameters such as 100 MIPS, 128MB the
size of RAM, 100 kbps bandwidth, 1GB storage, and single-
core processor. Each datacenter consists of two hosts.)e
CloudSim initialized and constructed the datacenter on the
basis of the assigned configuration for the user's job. All jobs
have been submitted dynamically. In almost every simula-
tion, the jobs are dynamically submitted within a time frame,
which is 1000ms.)e cloudlets for each simulation have

8 Scientific Programming

been submitted in three batches.)e initial batch of VM and
cloudlets are identical for each simulation to have a fair
comparison.

7. Result and Discussion

Our end goal of the numerical method was to perform a
phase plane analysis on the proposed logistic scaling model.
)e first step in this direction was to find the nullclines of
the system by equating equations (4) and (5) to zero. For
phase analysis, we denoted equation (4) as F(X, U) and
equation (5) as G(X, U). So, F-nullclines are either X � 0 or
X �K and G-nullclines are either X � 0 or
U � (R/q)(1 − (X/K)). Next, we found the steady-state
condition which was obtained by finding the intersection of
F-nullclines with G-nullclines.)us, the steady states are

(X1, Y1)� (0, 0), (X2, Y2) � (0, R/q), and (X3, Y3) � (K, 0). To
find stability around each steady state, we found the Ja-
cobian of the system. Hence, a stability condition was
obtained around points (X1, Y1) and (X2, Y2) when R, q< 0
at each point, whereas for point (X3, Y3), same was obtained
when K>R/q and Rq< 0.)e result shows that the stability
of the model does not depend on the population of either
resource or job.)e scaling amount and direction of the
scaling curve at each steady state were determined by the
eigenvalues and corresponding eigenvectors, respectively.
)erefore, in the same way, we obtained (X1, Y1), (X2, Y2),
and (X3, Y3) as saddle points.)erefore, the scaling
function H(t) is directly proportional to the resource
population X(t), thus implying that the resource should be
scaled up as long as the resource carrying capacity shows
better resource utilization.

(1) Input: population of allocated resources� X(t),
Resource scaling’s size�U
Resource selection rate� q
Resource allocation rate�R
Carrying capacity of datacenter�K

Output: optimal resource scaling size, maximum sustainable, and seasonal scaling.
(2) Initialize the allocated resource population using equation (7).
(3) Find the scaling of the resource using H(t) � qUX(t)

If the population of allocated resources, X(t) � K(1 − (qU/R)), then sustainable scaling is possible
Scaling of resource H(U) � qUK(1 − (qU/R))

If H(U) � RK/4, then sustainable scaling is maximized
If scaling’s size U � R/2q, then resource scaling’s size is optimal, i.e., (U∗ � U).

else
Update R and q for the seasonal demand period using the following equation R1 � [R(n + h) − R(n)] and

q1 � [q(n + h) − q(n)]

Update allocated resource population (i.e., X(t)) for nth time period using equation (17).
If (H(U) � (Xn − X∗n)), then seasonal scaling is maximized, and if U � R1/(q(2 + R1)), then resource scaling size is optimal.

ALGORITHM 1: Sustainable and seasonal scaling algorithm (SSSA).

(1) Input: CB, p, n, w.
Output: maximum profit, optimal allocation level, sustainable scaling rate, and sustainable profit rate.

(2) Calculate scaling rate H(t).
(3) Calculate the total cost per resource C and the cost per unit workload.
(4) Calculate the profit per unit workload using equation (26).
(5) Calculate the total profit rate (J) using equation (28).
(6) If p and C are increasing and δ > ∝ , then update p and C using equations (30) and (31).
(7) Calculate the total profit rate using equation (32).
(8) Calculate the profitable scaling capacity per resource (U∗) using equation (36) and profitable scaling time as S(U∗)

(9) If (U∗ � (R(1 − β))/2q) where β � C/pqK, then maximum sustainable profitable scaling capacity is obtained.
(10))e sustainable scaling rate in equilibrium resource population (38) can be calculated using equation (39) and profit rate by using

equation (40).

ALGORITHM 2: Maximum profit scaling algorithm (MPSA)

Table 2: Sets of parameter value.

Q R xo yo H
Case 1 6.0 1.0 [1.0.0.3, 0.4] [6.5, 7.5, 0.4] [0.01, 0.1, 0.25, 0.5, 1, 4, 5, 10]
Case 2 [0.2, 1.2] [1.0, 2.0] [0.1, 0.4] [0.2, 0.4] [0.01, 0.1, 0.25, 0.5, 1, 4, 5, 10]

Scientific Programming 9

Figure 5 shows the result of analytical RK4 method for
resource fluctuation.)e X-axis and Y-axis represent the
time variation and the resource population, respectively.
)is depicts the behavior of resource availability in the cloud
at a particular time.

It can be seen in Figure 6 that it is the case of under-
provisioning as the size of job b(t) always exceeds the
available resource capacity. We may conclude that in this
case, seasonal scaling will solve the issue.

Figure 7 shows the results of a numerical method for the
approximation of resource scaling. It confirms that the
growth of scaling is directly proportional to the available
resource capacity monotonically.

Figure 8 shows the results for maximum sustainable
scaling of available resource X(t) in terms of H(t), whereas
Figure 9 shows the result of instability as wemove away from
the saddle point (7, 52). Here also we proceed with seasonal
scaling approach.

)e comparative performance evaluation of the two
proposed approaches is depicted in Figure 10. In
Figure 10(a), we see that SSSA-MPSA performs better than
GA-DE. Here, X-axis represents the number of batch and Y-
axis the average completion time, i.e., throughput of tasks. In
batch 1, SSSA-MPSA took 200 s while GA-DE 1100 s.)us,
we can say that SSSA-MPSA performs 9 times faster than
GA-DE. Similar results can be observed in the case of batch 2
and batch 3 where SSSA-MPSA is 9 times faster than GA-
DE.

A graph, in Figure 10(a), is drawn between the number
of batches on X-axis and the completion time on the Y-axis.
It shows that the efficiency of the resource scaling of the
proposed algorithm in a datacenter. In Figure 10(b), a graph
is drawn between the number of tasks and the makespan,
which are represented by the X-axis and Y-axis, respectively.
It depicts the improved execution time of the proposed
model compared with GA-DE algorithm. In the figure, the
result shows that SSSA-MPSA performs 2 times faster than
GA-DE algorithm for 60 tasks and 72 tasks while GA-DE

performs 2 times faster than SSSA-MPSA for 150 tasks.
Another chart, in Figure 10(c), is plotted between the
number of batches on X-axis and the cost of expenses on Y-
axis, and it illustrates that the SLA violations are minimized
and profit is maximized. Here also we find the SSSA-MPSA
performs better than GA-DE.

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9

Re
so

ur
ce

 p
op

ul
at

io
n

Time->

Case 1 (q > R)

x (t)
b (t)
h (t)

(a)

x (t)
b (t)
h (t)

0
10
20
30
40
50
60
70
80
90

1 2 3 4 5 6 7 8 9

Re
so

ur
ce

 p
op

ul
at

io
n

Time

Case 2 (q < R)

(b)

Figure 4:)e behavior of logistic scaling model with different sets of parameter.

0.385
0.39

0.395
0.4

0.405
0.41

0.415
0.42

0.425
0.43

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Re
so

ur
ce

 p
op

ul
at

io
n

Time

Figure 5: Fluctuation of resource availability.

–10

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9

Re
so

ur
ce

 p
op

ul
at

io
n

Time
x (t)
b (t)

h (t)
H (u)

Figure 6: Unstable resource demand.

10 Scientific Programming

8. Conclusion and Future Work

In resource provisioning, autoscaling is one of the major
issues for the cloud environment at VM level scheduling.
Mathematical models based on the predator-prey method
was developed and tested to implement the vertical scaling of
the task for optimal resource provisioning. Here, we tried
not only to find the mechanism for maximizing sustainable
and seasonal scaling but also to maximize the profit by

considering the optimal resource pool size and incentives
per resource for users. Logistic scaling for resource pop-
ulation is one of the realistic approaches rather than ex-
ponential as per the environmental carrying capacity
limitation.)rough phase plane analysis, we discovered
three steady states and their stability, which was de-
pendent not on the resource population or the number of
jobs but instead on the parameters of the intrinsic rate of
increase in resource availability, the resource scaling rate,

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9

Re
so

ur
ce

 ca
pa

ci
ty

Time
x (t)
h (t)

Figure 8: Maximum sustainable scaling of resource.

65.9

65.95

66

66.05

66.1

66.15

66.2

66.25

1 2 3 4 5 6 7 8 9

Re
so

ur
ce

Time

x (t)

x (t)

(a)

h (t)

39540
39560
39580
39600
39620
39640
39660
39680
39700
39720
39740

1 2 3 4 5 6 7 8 9

Re
so

ur
ce

 sc
al

in
g

Time

h (t)

(b)

Figure 7: Approximate resource scaling.

–50
0

50
100
150
200
250
300
350

1 2 3 4 5 6 7 8 9

Re
so

ur
ce

 ca
pa

ci
ty

Time

x (t)
b (t)

Figure 9: Unstable condition suitable for seasonal scaling.

Scientific Programming 11

and the maximum datacenter resource capacity.)e
behavior of the model is to predict the population scaling
of the resource and jobs to reach an equilibrium position.
)is model introduced sustainable and seasonal scaling
algorithm (SSSA) and maximum sustainable profit scaling
algorithm (MPSA). It tried to find the approximation of
resource scaling under the sustainable and seasonal
scaling and also found the optimal cost per reservation
and maximum sustainable profit.)e logistic scaling-
based predator-prey algorithm provided a comparable
result with the metaheuristic method based on genetic
algorithm (GA) with differential evolution (DE) algo-
rithm for execution time, average completion time, and
cost of expenses incurred by the datacenter. For future
extension, this work can be used for efficient utilization of
energy consumption and minimization of energy ex-
penditure of the datacenter.

Data Availability

)e data used to support the findings of this study are in-
cluded within the supplementary information.

Conflicts of Interest

)e authors declare that they have no conflicts of interest.

Supplementary Materials

)is file contains the sample dataset of our experiment on
which we have tested our two algorithms: SSSA-MPSA and
GA with DE. (Supplementary Materials)

References

[1] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic,
“Cloud computing and emerging IT platforms: vision, hype,
and reality for delivering computing as the 5th utility,” Future
Generation Computer Systems, vol. 25, no. 6, pp. 599–616,
2009.

[2] M. Armburst, I. Stoica, M. Zaharia et al., “A view of cloud
computing,” Communication of the ACM, vol. 53, no. 4,
pp. 50–58, 2010.

[3] Y. Zhang, Y. Li, and W. Zheng, “Automatic software de-
ployment using user-level virtualization for cloud-comput-
ing,” Future Generation Computer Systems, vol. 29, no. 1,
pp. 323–329, 2013.

[4] M. H. Fedrus, M Murshed, R. N. Calheiros, and R. Buyya,
“Network-aware virtual machine placement and migration in
cloud data centers,” in Emerging Research in Cloud Distributed
Computing Systems, S. Bagchi, Ed., pp. 42–91, IGI Global,
Hershey, PA, USA, 2015.

[5] M. Masdari, S. S. Nabavi, and V. Ahmadi, “An overview of
virtual machine placement schemes in cloud computing,”
Journal of Network and Computer Applications, vol. 66,
pp. 106–127, 2016.

(a) (b)

(c)

Figure 10: Comparative performance evaluation of SSSA-MPSA with GA-DE.

12 Scientific Programming

http://downloads.hindawi.com/journals/sp/2019/7457938.f1.xlsx

[6] V. V. Vinothina, R. Sridaran, and P. Ganapathi, “A survey on
resource allocation strategies in cloud computing,” In-
ternational Journal of Advanced Computer Science and Ap-
plications, vol. 3, no. 6, 2012.

[7] K. Leonard, Queuing System Volume II: Computer Applica-
tion, Wiley, Hoboken, NJ, USA, 2014.

[8] S. Chaisiri, B.-S. Lee, and D. Niyato, “Optimization of re-
source provisioning cost in cloud computing,” IEEE Trans-
action on Services Computing, vol. 5, no. 2, pp. 164–177, 2012.

[9] B. Goswami, J Sarkar, S. Saha, S. Kar, and P. Sarkar, “ALVEC:
allocation by Lotka Volterra elastic cloud: a QoS aware non
linear dynamical allocation model,” Simulation Modelling
Practice and "eory, vol. 93, pp. 262–292, 2019.

[10] C. Qu, “Auto-scaling and deployment of web applications in
distributed computing clouds,” Ph D. thesis, Department of
Computing and Information Systems,)e University of
Melbourne, Melbourne, Australia, 2016.

[11] J. O. Kephart and D. M. Chess, “)e Vision of autonomic
computing,” Computer, vol. 36, no. 1, pp. 41–50, 2003.

[12] R. Illner, C. S. Bohun, S. McCollum, and T. V. Roode,
Mathematical Modelling: A Case Studies Approach, American
Mathematical Society, Providence, RI, USA, vol. 27 of Student
Mathematical Library, 2011.

[13] J. N. Kapur, Mathematical Modelling, New Age International
Pvt. Ltd., Bengaluru, India, 2000.

[14] F. R. Giordano, W. P. Fox, S. B. Horton, and M. D. Weir, A
First Course in Mathematical Modelling,)omson Learning
Academic Resource Centre, Belmont, CA, USA, 3rd edition,
2003.

[15] A. Warren, “Math modelling for undergraduates, a major
qualifying project,” Worcester Polytechnic Institute,
Worcester, MA, USA, B.Sc project, 2012.

[16] P. E. F. Sommer, “Analysis of the rosenzweig-macArtur model
with bifurcation structures and stochastic processes,” M.S.
thesis, Faculty of Sciences of the University of Lisbon, Lisbon,
Portugal, 2016.

[17] A. Mosa and N. W. Paton, “Optimizing virtual machine
placement for energy and SLA in clouds using utility func-
tions,” Journal of Cloud Computing, vol. 5, no. 1, p. 17, 2016.

[18] M. Mao, Cloud auto-scaling with deadline and budget con-
straints, Ph.D. thesis, School of Engineering and Applied
Science, University of Virginia, Charlottesville, VA, USA,
2012.

[19] M. A. S. Mosleh, G. Radhamani, M. A. G. Hazber, and
S. H. Hasan, “Adaptive cost-based task scheduling in cloud
environment,” Scientific Programming, vol. 2016, Article ID
8239239, 9 pages, 2016.

[20] R. Kohavi and R. Longbotham, “Online experiments: lessons
learned,” Computer, vol. 40, no. 9, pp. 103–105, 2007.

[21] S. Islam, J. Keung, K. Lee, and A. Liu, “Empirical prediction
models for adaptive resource provisioning in the cloud,”
Future Generation Computer Systems, vol. 28, no. 1,
pp. 155–162, 2012.

[22] W. Ai, K. Li, S. Lan et al., “On elasticity measurement in cloud
computing,” Scientific Programming, vol. 2016, Article ID
7519507, 13 pages, 2016.

[23] Z. Wang, X. Zhu, and S. Singhal, “Utilization and SLO-based
control for dynamic sizing of resource partitions,” in Ambient
Networks, J. Schonwalder and J. Serrat, Eds., No. 3775 in
Lecture Notes in Computer Science, pp. 133–144, Springer,
Berlin, Germany, 2005.

[24] Y. Lu, J. Panneerselvam, L. Liu, and Y. Wu, “RVLBPNN: a
workload forecasting model for smart cloud computing,”

Scientific Programming, vol. 2016, Article ID 5635673, 9 pages,
2016.

[25] N. Roy, A. Dubey, and A. Gokhale, “Efficient autoscaling in
the cloud using predictive models for workload forecasting,”
in Proceedings of the 2011 IEEE 4th International Conference
on Cloud Computing (CLOUD), pp. 500–507, Washington,
DC, USA, July 2011.

[26] D. Huang, B. He, and C. Miao, “A survey of resource
management in multi-tier web applications,” IEEE Commu-
nications Surveys & Tutorials, vol. 16, no. 3, pp. 1574–1590,
2014.

[27] W. Iqbal, M. N. Dailey, D. Carrera, and P. Janecek, “Adaptive
resource provisioning for read intensive multi-tier applica-
tions in the cloud,” Future Generation Computer Systems,
vol. 27, no. 6, pp. 871–879, 2011.

[28] R. Han, M. M. Ghanem, L. Guo, Y. Guo, and M. Osmond,
“Enabling cost-aware and adaptive elasticity of multi-tier
cloud applications,” Future Generation Computer Systems,
vol. 32, pp. 82–98, 2014.

[29] J. Bi, Z. Zhu, R. Tian, and Q. Wang, “Dynamic provisioning
modelling for virtualized multi-tier applications in cloud data
center,” in Proceedings of the 2010 IEEE 3rd International
Conference on Cloud Computing, pp. 370–377, Miami, FL,
USA, July 2010.

[30] X. Wu, “Data sets replicas placements strategy from cost-
effective view in the cloud,” Scientific Programming, vol. 2016,
Article ID 1496714, 13 pages, 2016.

[31] X. Zhu, M. Uysal, Z. Wang et al., “What does control theory
bring to systems research?,” ACM SIGOPS Operating Systems
Review, vol. 43, no. 1, pp. 62–69, 2009.

[32] M. Maggio, H. Hoffmann, M. D. Santambrogio, A. Agarwal,
and A. Leva, “Decision making in autonomic computing
systems: comparison of approaches and techniques,” in
Proceedings of the 8th ACM International Conference on
Autonomic Computing, ICAC’11, pp. 201–204, Karlsruhe,
Germany, June 2011.

[33] P. Padala, K. G. Shin, X. Zhu et al., “Adaptive control of
virtualized resources in utility computing environments,”
ACM SIGOPS Operating Systems Review, vol. 41, no. 3,
pp. 289–302, 2007.

[34] A. Kamra, V. Misra, and E. Nahum, “Yaksha: a self-tuning
controller for managing the performance of 3-tiered web
sites,” in Proceedings of the Twelfth IEEE International
Workshop on Quality of Service-IWQOS 2004, pp. 47–56,
Montreal, Canada, June 2004.

[35] X. Liu, J. Heo, L. Sha, and X. Zhu, “Adaptive control of multi-
tiered web applications using queueing predictor,” in Pro-
ceedings of the Network Operations and Management Sym-
posium (NOMS 2006), pp. 106–114, Vancouver, Canada, April
2006.

[36] E. Kalyvianaki, T. Charalambous, and S. Hand, “Self-adaptive
and self-configured CPU resource provisioning for virtualized
servers using Kalman filters,” in Proceedings of the 6th in-
ternational conference on Autonomic computing-ICAC’09,
pp. 117–126, Barcelona, Spain, June 2009.

[37] Y. Diao, J. L. Hellerstein, S. Parekh, R. Griffith, G. Kaiser, and
D. Phung, “Self-managing systems: a control theory foun-
dation,” in Proceedings of the 12th IEEE International Con-
ference and Workshops on the Engineering of Computer-Based
Systems (ECBS’05), pp. 441–448, Greenbelt, MD, USA, April.
2005.

[38] R. Storn and K. Price, “Differential evolution-a simple and
efficient heuristic for global optimization over continuous

Scientific Programming 13

spaces,” Journal of Global Optimization, vol. 11, no. 4,
pp. 341–359, 1997.

[39] B. Goswami and S. Saha, “Resource allocation modelling in
abstraction using predator-prey dynamics: a qualitative
analysis,” International Journal of Computer Application,
vol. 61, no. 6, pp. 6–13, 2013.

14 Scientific Programming

Computer Games
 Technology

International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

 Journal ofEngineering
Volume 2018

Advances in

Fuzzy
Systems

Hindawi
www.hindawi.com

Volume 2018

International Journal of

Reconfigurable
Computing

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

 Artificial
Intelligence

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Civil Engineering
Advances in

Hindawi
www.hindawi.com Volume 2018

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi
www.hindawi.com Volume 2018

Hindawi

www.hindawi.com Volume 2018

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Engineering
 Mathematics

International Journal of

Robotics
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Computational Intelligence
and Neuroscience

Hindawi
www.hindawi.com Volume 2018

Mathematical Problems
in Engineering

Modelling &
Simulation
in Engineering
Hindawi
www.hindawi.com Volume 2018

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific
World Journal

Volume 2018

Hindawi
www.hindawi.com Volume 2018

Human-Computer
Interaction

Advances in

Hindawi
www.hindawi.com Volume 2018

 Scienti�c
Programming

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/ijcgt/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/afs/
https://www.hindawi.com/journals/ijrc/
https://www.hindawi.com/journals/acisc/
https://www.hindawi.com/journals/aai/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/jcnc/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/journals/ijbi/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/cin/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ahci/
https://www.hindawi.com/journals/sp/
https://www.hindawi.com/
https://www.hindawi.com/

