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With the increased usage of cloud computing in production environments, both for scientific workflows and industrial ap-
plications, the focus of application providers shifts towards service cost optimisation. One of the ways to achieve minimised
service execution cost is to optimise the placement of the service in the resource pool of the cloud data centres. An increasing
number of research approaches is focusing on using machine learning algorithms to deal with dynamic cloud workloads by
allocating resources to services in an adaptive way. Many of such solutions are intended for cloud infrastructure providers and deal
only with specific types of cloud services. In this paper, we present a model-based approach aimed at the providers of applications
hosted in the cloud, which is applicable in early phases of the service lifecycle and can be used for any cloud application service.
Using several machine learning methods, we create models to predict cloud service cost and response times of two cloud
applications. We also explore how to extract knowledge about the effect that the cloud application context has on both service cost
and quality of service so that the gained knowledge can be used in the service placement decision process.,e experimental results
demonstrate the ability of providing relevant information about the impact of cloud application context parameters on service cost
and quality of service. ,e results also indicate the relevance of our approach for applications in preproduction phase since
application providers can gain useful insights regarding service placement decision without acquiring extensive training datasets.

1. Introduction

In recent years, a significant number of application service
providers migrated their workloads to cloud environments
[1], offering their services to customers as software as a
service (SaaS) solutions. According to the current business
analysis projection [2], it is forecasted that 83% of enterprise
workloads will be in the cloud by the year 2020. Migration of
services to cloud environments enables reduction of service
cost by decreasing capital expenditure. However, often it is
not simple to choose the best infrastructure provider or
determine the right size of a virtual machine instance where
a service or its components will be deployed. Cloud com-
puting infrastructure providers are offering computing re-
sources (CPUs, network, memory, and storage resources) on

demand and charge them accordingly using various billing
models based on the consumption of resources [3]. A recent
survey [4] on the challenges related to cloud computing
paradigm adoption identified cost management as one of the
most prominent issues reported by mature cloud users. An
approach that can reduce resource waste and cloud service
cost should determine the optimised service placement in a
cloud environment, both in terms of infrastructure provider
selection and instance right-sizing. Finding such service
placement can be a complicated task for a SaaS provider, due
to a large number of cloud infrastructure providers and
pricing models on the market [5], as well as the potential
complexity of the service. Often it is not intuitive which
resources are predominantly consumed by the service and in
which amount, depending on the dynamic service load.
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In the field of machine learning, statistical techniques are
used for extracting knowledge from data without using
explicit instructions. Due to the growing awareness of the
potential value of collected data in various industry areas and
advancement of machine learning frameworks, there is an
increase of statistical and machine learning application in
multiple domains, including optimisation of cloud service
placement. Many of such solutions deal with the optimi-
sation of cloud resource allocation from the perspective of
the infrastructure providers. ,e approaches intended for
application providers are usually limited to a specific type of
application, or they try to optimise service placement on-
the-fly once the application has already been deployed in a
production environment.

In this work, we examine the possibility of using ma-
chine learning techniques to create models for predicting
the quality of service (QoS) and service execution cost and
evaluate the parameters that affect them the most, based on
the statistical models of observed services. In that way, the
parameters with the most significant influence can be
identified, and knowledge about them can be used to
minimise service execution cost and maintain service
quality. Also, service models can predict how the specific
infrastructure parameters (e.g., instance size and pricing)
will affect service performance and cost. ,is generalised
approach can be used by the application service providers
for any application in the predeployment process of
identifying the best service placement policy so the high
service execution cost and potential vendor lock-in can be
avoided.

With a significant number of scientific workflows exe-
cuting in cloud environments, we find such model-based
approach driven by application type significant in the
context of scientific computing as it is an interdisciplinary
field and covers a wide range of software task types. In this
paper, we use two service application types to demonstrate
the ways that the knowledge about services and their re-
source utilisation could be used in the process of optimi-
sation of their placement in the cloud. ,e experimental
results demonstrate that it is feasible to use machine learning
models and techniques to detect which parameters affect the
service execution cost and quality of service, as well as to
predict them. Such knowledge can be used by the providers
of applications hosted in cloud environments in the decision
process of determining optimised cloud service placement to
reduce the service cost.

,e remainder of the paper is organised as follows. We
summarise related work in the field of cloud cost optimi-
sation in Section 2. Section 3 presents the parameters of the
cloud application context, which will be considered as
features of the prediction models, followed by a description
of the use cases analysed in this paper in Section 4. Section 5
describes the data collection method and the mapping of the
model features to the measured data. ,e analysis of service
resource usage characteristics can be found in Section 6.
Section 7 contains information about methods we applied in
the implementation of cost and QoSmodels, model accuracy
metrics, and feature importance estimation. In Section 8, we
analyse implemented models and discuss the results,

followed by Section 9 in which we conclude the paper and
present the following steps in this research.

2. Related Work

As cloud computing paradigm is getting mature, various
cloud environments are increasingly used in production
environments, both for scientific workflows and industrial
applications. Several market analyses [1, 4] confirm that
cloud computing is getting more present in industrial set-
tings but with the limited knowledge about cost optimisation
of services deployed in a cloud [4].

A body of research is dealing with cost optimisation in
cloud environments, including different strategies for
achieving the goal of cost minimisation. Some of the most
common approaches include optimisation of load-balancing
[6] and service scaling algorithms [7], time scheduling of
task invocation and performing [8, 9], and the strategy of
optimising service placement for lowering its execution cost
[10, 11]. Various approaches to optimisation of cloud cost
are using techniques from operations research and in par-
ticular game theory [12] and metaheuristics [13, 14] with the
focus on genetic and other evolutionary algorithms [8, 15].
More recent solutions are focusing on the application of
machine learning algorithms to the problem of cost opti-
misation [11, 13, 16, 17], especially the approaches that aim
at allocating resources dynamically in a cloud environment,
thus often using machine learning techniques to realise
adaptivity. As an example, Zhang et al. [11] presented an
architecture of a resource management system for cloud
environments based on deep reinforcement learning. ,e
proposed architecture consisted of an intelligent resource
manager that continually monitors resource utilisation and
application QoS parameters, combines several optimising
algorithms, and maps the application to the resources in the
second system component—resource polls. As an optimi-
sation algorithm, the authors propose stacked autoencoder
Q-network (SAQN) algorithm and evaluate it against an-
other previously developed SmartYARN optimisation al-
gorithm based on reinforcement learning [17].

In addition to achieving optimisation by using different
techniques and strategies, the optimisation approaches differ
in terms of workloads they focus on, such as scientific
workflows [8, 18, 19], gaming [20], medical and health care
[16, 21], education [22, 23], and big data [24, 25] workflows.
We aim at providing a general approach based on service
resource utilisation suitable for any application type that can
be deployed as a SaaS service.

Research approaches in the area of cloud cost optimi-
sation are also divided by the perspective of optimisation. As
observed through literature review and several surveys
[6, 13, 14, 26–28], many resource scheduling solutions and
optimisation algorithms are intended for infrastructure
service providers, dealing with the optimisation of resource
allocation in data centres [29–32]. Fewer solutions are
provided for optimisation of services for SaaS providers, who
often need a way to evaluate if the placement of the service in
a cloud environment is optimal from the perspective of
execution cost and quality of service. An example of service
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placement optimisation for application providers is pre-
sented in [10]. Although this approach is considering the
perspective of an application service provider, the solution is
developed for the resource market that offers negotiated
prices and is not considering application-specific resource
demands that might significantly affect the service cost.

Two studies closest to the approach presented in this
paper are [33] and [34]. In [33], neural network and linear
regression are used to predict CPU utilisation related to an
e-commerce benchmark application using time-series data.
A similar approach is presented in [34], where a neural
network is used to predict the execution time of observed
tasks. However, this approach is focused on a specific task of
building code in an online repository. ,e input variables of
the presented model contain repository-specific information
such as programming language, and a model is created for
each of the considered repositories, which makes this so-
lution highly specific for the chosen use-case. ,e authors of
both works do not model the cost of the cloud service ex-
ecution in the public cloud infrastructure.,ey also focus on
predicting the resource utilisation and do not examine which
parameters affect the quality of service or service cost to the
greatest extent. In this work, we use interpretability tech-
niques to identify the predictors that have the most sig-
nificant impact on the model output prediction, which is
often not tackled in the available body of the literature.

Approaches that evaluate service placement strategies
before the choice of cloud infrastructure provider was made
enable further cost optimisation and avoidance of potential
vendor lock-in. Guided by this motivation, in this work, we
are aiming for an approach that would allow cloud appli-
cation providers to decide on the best cloud service place-
ment option based on application load, resource utilisation,
and other cloud application context parameters in order to
minimise service execution cost and maintain an appro-
priate QoS level. We describe the parameters of the cloud
application context in the following section. To demonstrate
our approach, we use examples of two cloud application
categories identified in [35] and described in Section 4.

3. Cloud Application Context

As we want to observe the effect of various parameters that
impact the execution of the cloud application on service cost
and QoS, we consider the parameters of the cloud appli-
cation context (Figure 1).

To create a holistic view of the cloud application context,
we define two planes. Application Plane consists of prop-
erties that are specific for application service itself, regardless
of where it is deployed. ,ese properties include application
resource usage profile, which defines the amount of com-
puting resources (CPU, RAM, storage, and network) needed
for the execution of the application service, or a specific
service task that is being analysed, under a defined load. ,e
load is generated by the application users, and it depends on
the number of concurrent users that send requests to the
cloud application, as well as the actions they are performing
while using the application service, often defined by the user
type. As an example, an e-learning platformmight have users

who upload course materials to the platform and edit lessons
webpages and those who consume the course content by
streaming video lessons. In the described case, the actions
performed by both user types will require different com-
puting resources. Another property usually specified for the
application is the Service Level Agreement (SLA), which
defines the QoS requirements, commonly through a set of
Service Level Objectives (SLOs), that will guarantee a level of
service quality delivered to the application end users. An
example of the SLO that could be a part of the application
SLA is the response time of the user request, which typically
should not exceed a certain time in a defined percentage of
total user requests made towards application service.

Each cloud application service is deployed on the cloud
infrastructure. Deployment Plane of the cloud application
context contains features that are related to the in-
frastructure where the application will be hosted, i.e., its
deployment environment. ,e deployment environment
chosen by the application provider defines the amount and
properties of each computing resource type. As an example,
cloud infrastructure provider might offer HDD and SSD
storage, a different number of virtual CPU cores, etc. ,e
amount of resources might be offered in predefined in-
stances or in the custom amounts requested by the appli-
cation provider, who is the customer of cloud infrastructure
provider. Each deployment environment has one or more
(in case of cloud federations) infrastructure providers. ,e
infrastructure provider defines pricing model according to
which the resources will be charged to the users of the cloud
infrastructure. Pricing model usually consists of prices of the
resources, predefined resource bundles, the decision on
which resources will be chargeable resources, and how their
consumption will be measured. As an example, in-
frastructure providers often offer free ingress network traffic
to attract application providers and decrease their initial cost
of the application service migration or deployment to their
environment. Some providers offer limited network traffic
for free (e.g., up to 10GB of ingress traffic might not be
charged on a monthly basis). ,e offers of various in-
frastructure providers also differ in terms of charging
granularity, which makes the cloud infrastructure pricing
schemes extremely heterogeneous and complex to evaluate
in terms of their effect on the cost of the application,
considering what might be a good option based on the
application load and resource type utilisation.

In our analysis, we aim to examine the effect of the
described cloud application context properties and to define
the approach that offers a generalised method of modelling
any application service deployable in cloud environments,
predicting its execution cost and QoS as well as gaining
knowledge of the most significant contributors to the cost
and QoS. We also want to examine if the appropriate level of
prediction accuracy can be achieved using the selected
properties as the model features.

In Section 5, we describe how the proposed cloud ap-
plication context properties are mapped on the measured
data that are going to be used as the training data for
implementation of the application service cost and QoS
models (Section 7).
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4. Use Cases

As various application types demand a different amount of
resources for execution of user requests, in this work, we
consider two services of different application types to ob-
serve the differences in the resource utilisation during their
execution and to examine which parameters will affect the
cost or QoS of each service to the highest degree.

As the first cloud application use case, we chose a
medical record system (MRS). In our analysis, we observe
the scenario of an MRS user performing a query for re-
trieving a medical record of a specific patient. For the
purpose of obtaining the data, we chose an open-source
implementation of the MRS system [36]. ,e MRS service
has three main components—user interface, application
logic, and a database storing the medical records. ,e
implementation of our measurement scenario consists of a
series of three user requests (Figure 2). ,e first request is
used for accessing the user interface of the MRS service,
followed by providing user credentials and finally sending
the request for retrieving the medical record of a defined
patient from the medical record database. For our mea-
surements, user requests were generated using load gener-
ator deployed on machines outside of the testbed cloud
environment. ,e response time was measured as the time
needed for the end user to perform the described sequence of
requests and retrieve the patient’s medical record.

As we want to examine the effect of service resource
utilisation and infrastructure parameters on the service
execution cost and QoS, we define the Service Level Ob-
jective (SLO) for the specification of the acceptable appli-
cation QoS level for the MRS service. We identify an SLO
violation as a number of user requests with response time

longer than 5 seconds. ,e number of such requests should
not exceed 95% of total user requests.

As the second cloud application use case, we chose a
video streaming service deployed in the cloud environment.
We used Nimble Streamer video streaming server [37] and a
scenario of video-on-demand access with users outside of
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Figure 1: Properties of the cloud application context related to the application (application plane) and cloud infrastructure (deployment
plane).
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Figure 2: UML sequence diagram of the OpenMRS use-case
scenario.
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cloud environment who generate the requests for short video
content (Figure 3). Video streaming is implemented using
HTTP protocol, transmitting streams of video data which
are divided into chunks. ,e response time in this context is
the time needed for transmission of the entire video file to
the end user. Considering the deployment of the service in
the cloud environment, the video server was deployed as a
single component on an Ubuntu virtual machine. ,e client
side consists of the end users outside of the cloud envi-
ronment who generate the requests for the video content.

,e observed QoS metric used for an SLO definition of a
video streaming service is, similar to the MRS service, a re-
sponse time of the user request. For the analysis purposes in the
next sections, we observe if there is more than 95% of response
time exceeding 10 seconds and define it as an SLO violation.

5. Data Collection

To create a service model based on resource utilisation, we
needed to collect the dataset that would allow us to observe
the relation between service load, request response time as
the chosen QoS metric, and average resources utilisation at
the certain number of concurrent user requests, and with a
certain amount of resources allocated to a service. For that
purpose, we set up a cloud-based measurement environment
where we have deployed both use-case services and gen-
erated load using a load generator tool which also collected
performance metrics, including request response times.

As a measurement environment, we used a private cloud
infrastructure deployed using OpenStack [38] platform
(Figure 4). ,e infrastructure consisted of three servers, one
used as a controller node and two as compute nodes (i.e.,
virtual machine hosts) with specifications available in
Table 1.

Both use case services were deployed on the measure-
ment environment using several instance sizes (Table 2)
through which different resource quantities were allocated to
the services so we can observe the effect of instance-sizing on
the QoS and cost.

,e MRS service web application, providing the appli-
cation logic and user interface, and the MRS database were
deployed on two separate instances. ,e video server was
deployed on a single virtual machine instance. User requests
for both use cases (Figures 2 and 3) were generated using
JMeter load testing tool [39] that was installed on PCs
outside the cloud environment (Figure 4).

We measured the consumption of resources defined by
the proposed cloud application context attributes (Figure 1),
which are listed in Table 3. Service resource usage data and
parameters relevant for the quality of service, such as request
response times, were collected each minute during the
measurement periods of 15 minutes. Each 15-minute sample
was gathered under constant load. ,e measurements were
performed with the number of concurrent users increasing
from 1 user up to 150, with the step of 10 concurrent users
for each following sample. We recorded values of measured
resources consumption for each sample.

After conducting performance measurements and col-
lecting resource utilisation data, we calculated the cost of

running both services for 24 hours using publicly available
price calculators of seven cloud infrastructure providers
[40–46] and a method of calculation described in our
previous work [47].

Table 3 brings a comparison of measured parameters and
properties of the cloud application context (Figure 1). For this
analysis, we do not consider different user types. We focus on
user requests for single application task described in scenarios in

User
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Video file request
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Loop

(Until all video
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Figure 3: UML sequence diagram of the video streaming use-case
scenario.
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the previous section. In the case of more complex services,
however, various user types should be included for a com-
prehensive picture of user-based aspects that might affect the
load. In this work, we observe the number of concurrent users, a
parameter that affects the application load directly. Similarly, we
calculate the cost solely based on infrastructure providers’
pricing offers available through the information and calculators
available publicly on the web, hence not including a broad
spectrum of different pricing models or pricing bundles
available to customers upon agreement with the infrastructure
service provider.

6. Service Resource Usage Analysis

To explore the data and prepare datasets for model training,
as well as to be able to interpret the results better, we ex-
amine relationships between observed parameters described
in the previous section. We also analyse the differences
between the two selected use-case applications in terms of
resource utilisation.

Figures 5 and 6 present the average resource utilisation
values for MRS and video streaming service, respectively.
Each diagram contains information about service resource
consumption depending on the service load, i.e., number of
concurrent users, and instance size the service was
deployed on (Table 2). To demonstrate the spread of the
data from the mean values, we present the standard de-
viation for the response time and CPU utilisation values. As
observed, a request response time for both services displays
linear growth in the investigated load range. MRS service
response times demonstrate similar values in case of me-
dium and large instances, but they get significantly longer
when the service is deployed on a small instance. Such
observation is useful in terms of service placement since a
very similar QoS level is achieved for different image sizes,
regardless of the higher CPU utilisation of the medium
instance. As QoS parameters, we observe the response time
and the number of SLO violations of the request response
time, which are significantly higher when MRS service is
deployed on a small instance. ,e difference between

Table 1: Specifications of hardware used for a measurement cloud environment.

Node role System CPU Memory Storage

Controller HP ProLiant BL460c Gen8 32× 2.00GHz 16×16.0GB
256.0GB total

2 drives
0.6 TB total

Compute HP ProLiant BL460c Gen8 32× 2.00GHz 16×16.0GB
256.0GB total

2 drives
0.6 TB total

Compute HP ProLiant DL 380 G6 16× 2.93GHz 8× 8.0GB
64.0GB total

1 drive
1.9 TB total

Table 2: Resources quantity specified by instance types used for measurements.

Instance type RAM (MB) CPU (virtual cores) Storage (GB)
Small 2048 1 20
Medium 4096 2 40
Large 8192 4 80

Table 3: Mapping of measured data and proposed cloud application context.

Parameter
ID

Parameter
domain Parameter name Unit of

measurement
Related cloud application context attribute

(Figure 1)
1 Application Average CPU utilisation % App. resource usage profile: CPU
2 Application Number of virtual CPU cores Integer App. resource usage profile: CPU

3 Application Network: average incoming byte
rate B/s App. resource usage profile: network

4 Application Network: ingress traffic GB App. resource usage profile: network

5 Application Network: average outgoing byte
rate B/s App. resource usage profile: network

6 Application Network: egress traffic GB App. resource usage profile: network
7 Application Average RAM used MB App. resource usage profile: RAM
8 Application Average disk read bytes rate B/s App. resource usage profile: storage
9 Application Average disk write bytes rate B/s App. resource usage profile: storage
10 Application Used storage GB App. resource usage profile: storage
11 Application Request response time ms SLA requirements
12 Application Number of parallel users Integer Service users: concurrent users
13 Deployment Instance vCPU cores Integer Resource properties: CPU
14 Deployment Instance RAM MB Resource properties: RAM
15 Deployment Instance storage GB Resource properties: storage
16 Deployment Providern Not applicable Infrastructure provider
17 Deployment Price USD Pricing model and resource price
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Figure 5: Continued.
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medium and large instance deployment in terms of per-
centage of SLO violations is less substantial. For example, if
the SLA allows for 5% response time SLO violations, the
medium instance will be able to serve up to 110 concurrent
users without violating the SLA, and the large instance will
be able to serve a maximum of 120 simultaneous users. For
comparison, in case of a small instance size, the limit of 5%
SLO violations would be reached below 50 concurrent
users. ,e observed number of maximum simultaneous
users indicates that the choice of an instance size oriented
towards cost minimisation should be based on the expected
service load and defined SLA.

As expected and observed for both services, CPU uti-
lisation increases with the allocation of smaller number of
vCPUs through instance sizes due to less available pro-
cessing power. RAM utilisation increases with the load and
instance size since it is possible to allocate more memory as
the number of requests increases.

Network utilisation of MRS service demonstrates similar
values for medium and large instances, with notable less
traffic and byte rates for small instance due to its limited user
request processing rate.

Other than previously commented differences in CPU
and RAM utilisation caused by the amount of resources
allocated to service, we also performed an analysis of the
resource utilisation for the video streaming service (Fig-
ure 6). It demonstrates there is no significant difference in
the network utilisation or quality of service delivered to the
end users for any observed instance size, which is expected,
taken into account the low level of CPU utilisations
(maximum 30% for small instance).

As a representative of disk-related metrics, we also
display average disk write rate. Since neither of the services is
data-intensive in terms of reading or writing data, the in-
crease in the disk write rate is mainly related to the appli-
cation logging.

When the two services are compared based on resource
usage, it can be noticed that the MRS service utilises more
CPU and RAM for the same number of concurrent users.
,e network ingress traffic amount is similar for both
services since it is in both cases consisting of simple HTTP
requests. As expected, video streaming service has signifi-
cantly higher egress traffic compared to the MRS service as
its egress traffic is generated due to streaming of a video file.
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Figure 5: Analysis of resource usage for MRS service: (a) average response time, (b) average CPU utilisation, (c) average RAM used,
(d) number of SLO violations, (e) network ingress traffic, (f ) network egress traffic, (g) network incoming byte rate, (h) network outgoing
byte rate, and (i) average disk write rate.

8 Scientific Programming



0
2000
4000
6000
8000

10000
12000
14000

1 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

Re
sp

on
se

 ti
m

e (
m

s)

Concurrent users

Small instance
Medium instance
Large instance

(a)

0
5

10
15
20
25
30
35

1 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

CP
U

 u
til

iz
at

io
n 

(%
)

Concurrent users

Small instance
Medium instance
Large instance

(b)

0
200
400
600
800

1000
1200
1400
1600
1800

1 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

M
B

Concurrent users

Small instance
Medium instance
Large instance

(c)

0
5

10
15
20
25
30
35

1 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

Re
qu

es
ts 

(%
)

Concurrent users

Small instance
Medium instance
Large instance

(d)

0.0
0.0
0.0
0.1
0.1
0.1
0.1
0.1
0.2
0.2
0.2

1 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

G
B

Concurrent users

Small instance
Medium instance
Large instance

(e)

0.0
2.0
4.0
6.0
8.0

10.0
12.0
14.0

1 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

G
B

Concurrent users

Small instance
Medium instance
Large instance

(f )

Figure 6: Continued.
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To gain a better understanding of the dependency be-
tween the instance size, number of concurrent users, and the
response time of a user request, we further examine em-
pirical cumulative distribution function (ECDF) of response
times under different load (marked by concurrent users) for
both services deployed on small, medium, and large instance
sizes (Figures 7–12).

Empirical CDF describes the probability that a random
variable, in this case, the response time, will have the value less
or equal to x. ,e ECDF plots of the MRS service
(Figures 7–9) indicate significant differences in the response
times, depending on the size of the instance and the number
of concurrent users. ,e cumulative distribution functions of
response times for observed simultaneous users demonstrate
that the response time is growing rapidly with the load in all
three examined instance sizes. When comparing Figures 7–9,
it can be observed that the response times are increasing more
slowly for any concurrent user number as the amount of
resources allocated to the service increases with the instance
size, which is consistent with Figures 5(a) and 5(d).

,e ECDF plots of the video streaming service
(Figures 10–12) show denser cumulative distribution
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functions; they are less differentiated and display less in-
crease of response times with load when compared to the
MRS service. ,ere are almost no observable differences
between ECDFs related to the video streaming service
deployed on medium and large instance size, indicating that
deploying the service on the large size instance would be
overcapacitating for the observed range of concurrent users.
Certain difference is visible when comparing the small in-
stance deployment (Figure 10) with medium (Figure 11) and
large (Figure 12) instance deployments of video streaming

service. ,e small instance has steeper ECDFs indicating
more rapid growth of response time with the higher number
of concurrent users (more than 130 parallel users). However,
medium and large instances have approximately the same
ECDFs, which is also shown in Figure 6. Such observation
cannot be made in the case of the MRS service where re-
sponse time is decreasing as service gains more available
resources through different instance sizes. To illustrate, the
maximal response time for 150 concurrent users of the MRS
service is 83027ms when deployed on a small instance,

0

20

40

60

80

100

Pe
rc

en
t

0 5000 10000 15000
Response time (ms)

20000

Users
40
50
60
70

80
90
100
110

120
130
140
150

1
10
20
30

Figure 8: ECDF plot of response time—MRS service, medium
instance.
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Figure 10: ECDF plot of response time—video service, small
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21901ms for a medium instance, and 11703ms for a large
instance. As expected, differences for the video streaming
service are not that considerable—maximal response time
for 150 concurrent users reaches 127420ms for a small
instance, 71229ms for a medium instance, and 79906ms for
a large instance deployment.

7. Prediction and Feature Importance

To gain a better understanding of service execution cost and
QoS, our goal was to create cost and response time models
for the two described use cases, in order to accurately predict
the model outputs and use such models as a base for
extracting the knowledge about model features that signif-
icantly affect cost and QoS. In this section, we describe
methods used to implement models and analyse the feature
importance. We also describe metrics used for evaluation of
model prediction accuracy.

Our choice of algorithms for model implementation was
based on the size of the collected datasets, predictive nature
of the model, and the goal of enabling cloud application
providers an easy approach for evaluation of the best in-
frastructure provider and service placement options that
would require obtaining only smaller experimental datasets.
Since we wanted to explore the possibilities of predictive
models, we performed analysis using regression techniques,
including linear regression, regularisation regression tech-
niques, and neural networks.

7.1. Linear Regression. Linear regression [48] is used to
determine the equation of a line that best fits the observed
data and models the relationship between input and output
variables. A most commonly used form of linear regression
is multiple linear regression which uses more independent
variables and one continuous dependent variable.

,e relation betweenmodel input variables and output is
defined by (1) where 􏽢y is predicted output value, β0 is a
model intercept, and xi is a model input variable with its
coefficient βi:

􏽢y � β0 + β1x1
+ . . . + βixi

. (1)

,e regression coefficients βi are determined by mini-
mising the residual sum of squares denoted by RSS and given
by

RSS � 􏽘
n

i�1
yi − 􏽢yi( 􏼁

2
, (2)

where yi is the i
th observation and 􏽢yi is the predicted value of

ith observation calculated according to (1).

7.2. Least Absolute Shrinkage and Selection Operator (Lasso).
Least absolute shrinkage and selection operator (Lasso)
regression [49] uses regularisation technique that can deal
with multicollinearity in the data by penalising the absolute
size of the coefficients in the regression model. ,is method
will generalise the model and hence avoid overfitting that
might otherwise occur due to complex relationships between
variables. ,e Lasso method uses the absolute value of the
regression coefficient as a penalty term in the loss function,
according to the following equation:

Llasso � 􏽘
n

i�1
yi − 􏽢yi( 􏼁

2
+ λ􏽘

m

j�1

􏽢βj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, (3)

where λ is the regularisation penalty parameter, 􏽢β is the
vector of regression coefficients, m is the number of input
variables, yi is the i

th observation out of n observations, and
􏽢yi is the predicted value of ith observation.

7.3. Least Angle Regression (LARS). ,e Least Angle Re-
gression (LARS) [49] provides a method for piecewise
construction of the linear path to efficiently solve the Lasso
regression described previously. ,e LARS method is based
on forward stepwise regression, meaning that it will add
standardised predictors one by one as the model is being
constructed. In each step of the LARS method, the best
variable for inclusion is selected based on its absolute
correlation with the residual, and the penalisation of co-
efficients is, similar to Lasso method, performed using the
regularisation penalty parameter λ. ,e entire method ap-
plied to solve the Lasso problem can be found in [50].

7.4. Multivariate Adaptive Regression Splines (MARS).
Multivariate Adaptive Regression Splines (MARS) [51] is a
nonparametric adaptive regression method commonly used
for problems with a large number of inputs and potential
nonlinearities in the data. MARS implements the strategy of
forward model building similar to stepwise linear regression
with the difference of using base functions instead of using
input variables xi directly. ,e model is defined in the
following form:
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Figure 12: ECDF plot of response time—video service, large
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􏽢y � β0 + 􏽘
m

i�1
βihi(X), (4)

where 􏽢y is the predicted output value, β0 is themodel intercept,
hi is a basis function, and βi is the coefficient of the basis
function hi. Similar to the linear regression, βi coefficients are
estimated by minimising the residual sum of squares (2), and
the best subset of basis functions hi included in the model is
selected based on generalised cross validation [51].

7.5. Neural Network. Artificial Neural Network (ANN) [48]
can model the dependent variable of the regression model as
a nonlinear function using linear combinations of model
input variables. ANNs consist of several layers—an input
layer, one or more hidden layers, and an output layer. ,e
connections of neurons in different layers have weights that
are determined during the ANN training process.

,e training is performed by feeding observations to the
network input layer. ,e initialisation method is applied to
assign the initial values of the weights, followed by calcu-
lation of activations at each network layer and eventually
generating predicted output. After obtaining the predicted
output value, backpropagation is used to update the network
weights in order to minimise the loss function. ,e pa-
rameter that determines the rate of the weights update is
called the learning rate. After the weights have been updated,
another iteration, called an epoch, of calculating activations
and updating network parameters can be started, until a
specific termination condition has been reached, e.g., a small
enough prediction error.

7.6. Model Evaluation Metrics. To evaluate model accuracy,
as well as to compare modes implemented using different
machine learning methods, we use several metrics: mean
absolute error (MAE) [52], mean absolute percentage error
(MAPE) [52], root mean square error (RMSE) [53], and
coefficient of determination (R2) [48].

Mean absolute error (MAE) is a measure of average
absolute difference between the predicted and observed
values of a variable defined by (5), where n is the number of
observations in the dataset, m is the measured (observed)
value, and p is the predicted value:

MAE �
1
n

􏽘

n

i�1
|m − p|. (5)

Mean absolute percentage error (MAPE) is defined
according to (6), where n is the number of observations in
the dataset, m is the measured (observed) value, and p is the
predicted value. Lower values of the MAPE metric indicate
better model accuracy:

MAPE �
1
n

􏽘

n

i�1

|m − p|

|m|
⎛⎝ ⎞⎠ · 100%. (6)

Root mean square error is defined by the following
formula:

RMSE �

������������

􏽐
n
i�1 (p − m)2

n
,

􏽳

(7)

where n is the number of observations in the dataset,m is the
measured (observed) value, and p is the predicted value. Due
to its definition, RMSE values will always be positive, with
lower RMSE indicating a better model fit.

Coefficient of determination, also known as R2, is an
accuracy statistic for assessing the percentage of dependent
variable variance explained by the model predictors. Used
for comparison of models, the higher value of R2 is usually
an indicator of a better result. R2 is defined by the following
formula:

R
2

� 1 −
􏽐

n
i�1(p − m)2

􏽐
n
i�1(p − m)

, (8)

where n is the number of observations in the dataset,m is the
measured (observed) value, m is the mean of the observed
values, and p is the predicted value. In case of multiple linear
regression, adjusted form of R2 is used to penalise the ad-
dition of input variables that do not contribute to the
variance of the predicted variable. ,e adjusted form of the
R2 is calculated according to the following formula:

R
2
adj � 1 −

1 − R2( 􏼁(n − 1)

n − k − 1
, (9)

where n is the number of observations, k is the number of
independent variables used in the model, and R2 is the co-
efficient of determination value calculated according to (8).

7.7. Permutation Importance. Recent approaches in ma-
chine learning research include the ability to interpret and
explain the results of sophisticated but often complex
machine learning and deep learning algorithms. To inspect
the importance of model features, we used the permutation
importance method. Permutation importance was in-
troduced by Breiman in [54]. In this work, we use per-
mutation importance analysis on the regularised regression
models.

Permutation importance is calculated after the model
has been fitted. ,e algorithm uses permutations of single
feature values in the validation data and measures the effect
that the permutations had on the accuracy of predictions.
,e concept behind the permutation method is based on the
fact that the feature with the biggest impact on the predicted
output data, i.e., the one that the model depends on ex-
tensively for predictions, will cause the most significant
accuracy decline when permuted randomly. ,e method
output value is the increase in prediction error in the case of
single predictor values permuted compared to the prediction
error with all variables in their intact state. Hence, as the
permutation importance measures how much each feature
contributes to the model, we examine the features with the
highest positive permutation importance values that indicate
the most significant effect on the variable predicted by the
model.
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8. Model Implementation and Result Analysis

In this section, we describe the models’ implementation and
evaluate the accuracy of models using the evaluation metrics
specified in the previous section. After the report on the
accuracy of the models, we present feature importance
analysis based on permutation importance technique.

8.1. Model Implementation. After examining the data, we
implement models for predicting the dependent variables of
our interest. As we want to explore the effects of model
features on service cost and QoS and predict them, we create
two models for each service, using the cost and the request
end-to-end response time as the predicted values. We apply
a set of machine learning algorithms on both use-case
datasets to observe which algorithm will provide the best
result and how much the results differ between the two use
cases, as well as between dependent variables. We also
analyse which features have the most impact on model
output. As potential model features, we consider input
variables presented in Table 3, from which highly correlated
features were removed from the feature set. All input var-
iables were standardised and normalised as a part of the data
preparation procedure. After feature selection was per-
formed, the following predictors were selected for both
models: network egress (GB), average RAM usage (MB),
average CPU utilisation (%), and used storage (GB). In ad-
dition to the common set of predictors, in the case of QoS
models, the number of parallel users was used as a predictor
as well. ,e cost models had information about the in-
frastructure provider as an additional model input variable.

To create models, we used machine learning algorithms
described in the previous section implemented in the Py-
thon-based environment (source code available at https://
github.com/cloudSPO/cloudappcontext). ,e data collec-
tion process, described in Section 5, resulted in 336 samples
of cost calculations and response time measurements. For all
the models in this paper, we use 70% of the obtained data for
training, and the remainder is used for validation of the
model. As a baseline, we started with the simplest option of
linear regression with the goal of creating cost and QoS
models for both use cases. We used an open-source machine
learning Python-based framework scikit-learn [55] for
implementation of linear regression, Lasso, and LARS
models, in addition with py-earth library [56] for MARS
models. Since the development of regression models using
the scikit-learn library is well documented and straight
forward, we briefly report on essential parameters used in
the models. ,e regularisation penalty parameter (λ) values
used in the Lasso and LARS models, which demonstrated
minimal model loss (Figure 13), are listed in Table 4. In the
MARS model, we used two as the maximum degree of terms
generated by the model forward pass and 1.0 as the penalty
parameter used for the generalised cross validation.

In addition to regression models, we also deployed a
neural network model for each of the observed dependent
variables to examine if it could be possible to obtain better
prediction results. For the neural network implementation,

we used the open-source Python-based library Keras [57],
which enables the development and evaluation of neural
network models. We use the multilayer backpropagation
neural network architecture, consisting of an input layer,
three hidden layers, and an output with a single neuron used
for predicting response time or cost.

,e learning rate parameter was set to 0.01. Plots of the
model loss values over epochs indicate this value was a good
learning rate choice for each of the ANN models. As an
example, we show the model loss over the training epoch
number for ANN predicting the cost of the MRS service
(Figure 14).

As pointed out in Section 2, the authors of [34] base their
choice of neural network model parameters on literature
review and suggest using hyperbolic tangent activation
function (tanh) [58] as an activation function together with
the Xavier [59] weight initialisation algorithm. Since we
address the similar problem of utilisation prediction, we
experimented with the suggested parameters in our model.
In our experiments, better results were obtained using
rectified linear unit (relu) activation function [60] and
Xavier initialisation function, apart from the ANN pre-
dicting the cost of the video streaming service which
demonstrated better results using the tanh activation

Table 4: Regularisation penalty parameter (λ) values used in Lasso
and LARS models.

Model λLasso λLARS
MRS cost 10.08 3.506
Video streaming cost 8.687 0.3955
MRS response time 0.021 1.481
Video streaming response time 0.020 0.007
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function. ,e comparison of results for ANN models when
using different activation functions, with a fixed learning
rate (0.01) and the number of training epochs (500), can be
seen in Table 5. Due to the stochastic nature of the
implemented neural network models, we report the average
metric values based on 50 model runs.

As it can be seen from Table 5, ANN models using tanh
activation function and Xavier initialisation algorithm
performed somewhat worse for the same number of epochs
and learning rate compared to ANN models using relu as
activation function, except for the cost model of the MRS
service. We select the best results for each ANN model and
report them in the next section.

8.2. Model Accuracy. In this section, we report the model
accuracy of the implemented models and compare them
based on the error estimation metrics specified in Section 7.6
section—MAE, MAPE, RMSE, and adjusted R2. We report
values of the error metrics in Table 6.

It can be noticed that the best accuracy is in almost all
cases achieved with the MARS models. As an example, we
present the prediction error of the response time model for
the MRS service implemented using the MARS method in
Figure 15. ,e ANN cost models of both use cases have
somewhat lower model accuracy, compared to the QoS
models, which can be explained by the different prices and
pricing models offered by cloud infrastructure providers that
affect service execution cost. Various pricing schemes could
make it harder to produce patterns for cost prediction,
especially when not using an extensive dataset. Contrary to
our expectations and the results presented in [34], the ANN
models demonstrated less accurate results compared to the
regularisation regression techniques. It is likely that the
accuracy of the ANN models would improve with the larger
sample size. Although one might argue that we use a small
dataset, according to [61], the number of samples used for
this analysis is sufficient, taking into account the techniques
we used to implement our models and the number of input

variables. ,e obtained results demonstrate the ability of the
regularised regression techniques to produce the accurate
models even with the relatively small sample size which
would prove especially useful in the prototyping and early
preproduction phases of the cloud service development.

8.3.Permutation Importance. In addition tomodel accuracy,
we observe the importance of features used for predicting
cost and response time for both use cases so we can gain
knowledge about the factors that affect the service execution
cost and QoS to the greatest extent. To assess the importance
of observed features, we calculated the permutation im-
portance using Python-based library Eli5 [62]. As a base for
the permutation importance method, we chose models with
the best accuracy results (Table 6). We report the results for
MARS models since they demonstrated the best accuracy for
bothmodels of the two use cases. For all models, we used 150

Table 5: Comparison of ANN model accuracy using relu and tanh
activation functions.

Activation function MAE MAPE RMSE Adj. R2

Response time, MRS
relu 221.05 6.24 363.62 0.9953
tanh 362.35 8.75 523.66 0.9899

Response time, video streaming
relu 144.96 7.23 218.15 0.9867
tanh 196.03 9.17 263.05 0.9860

Cost, MRS
relu 169.51 16.37 248.86 0.9954
tanh 124.91 10.66 192.71 0.9979

Cost, video streaming
relu 531.55 17.26 719.94 0.9738
tanh 553.18 19.71 782.90 0.9750

Table 6: Comparison of model accuracy.

Metric Linear regression Lasso LARS MARS ANN
Response time, MRS

MAE 243.39 476.62 181.11 181.47 221.05
MAPE (%) 9.33 19.82 5.79 5.61 6.24
RMSE 368.56 653.35 263.47 270.47 363.62
Adj. R2 0.9942 0.9817 0.9968 0.9969 0.9953

Cost, MRS
MAE 142.98 113.68 99.00 106.25 124.91
MAPE (%) 22.82 13.47 6.33 15.19 10.66
RMSE 270.99 257.48 212.86 200.94 202.71
Adj. R2 0.9963 0.9967 0.9977 0.9980 0.9979

Response time, video streaming
MAE 266.80 287.26 168.65 104.87 221.05
MAPE (%) 10.54 20.50 11.98 5.09 6.24
RMSE 495.25 401.45 226.01 149.86 363.62
Adj. R2 0.9588 0.9729 0.9914 0.9962 0.9867

Cost, video streaming
MAE 331.24 234.18 123.59 72.77 531.55
MAPE (%) 10.98 5.88 3.84 2.02 17.26
RMSE 463.54 333.45 209.41 186.87 719.94
Adj. R2 0.9982 0.9991 0.9996 0.9997 0.9750
Best values for each model and metric are marked in bold.
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Figure 14: Model loss over number of ANN training epochs—MRS
service cost model, relu activation function.
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iterations to obtain the permutation importance values for
the variables. Weight values indicate the effect that each
variable had on the prediction accuracy, i.e., higher positive
values indicate the more significant impact of the feature on
the predicted variable. Negative values, not present in our
results, would suggest that the permutation of the feature
values resulted in the increased model accuracy, hence
making such features dispensable in their initial intact state.
,e absence of negative values is a good indicator that the
relevant set of features was selected to build our models. We
report the top four features for each model. ,e higher
feature weight value rank indicates the higher importance of
the feature in comparison to other predictors.

We first examine cost models for both services. ,e
permutation importance ranks of the top four features for
the model of video streaming service cost can be seen in
Table 7. ,e feature with the highest importance for video
streaming cost model was the amount of egress network
traffic, which can be explained by the heavy network load
generated by transferring video files. Since the egress traffic
is charged on a pay-per-use basis, its amount directly affects
the overall service execution cost.,e highest ranked feature
in case of MRS cost model (Table 8) is also the amount of
network egress traffic. However, the weight value of the
network egress traffic is lower than the weight of the same
feature in the video streaming cost model, indicating less
impact on the execution cost amount due to the less gen-
erated egress traffic in theMRS service for the same load.,e
network egress feature is followed by variables marking a
provider of the cloud infrastructure, similar to the video
streaming service cost model with the infrastructure service
providers ordered differently. Such rank might indicate that
the prices of the resources relevant for observed task exe-
cution offered by the provider with the highest weight value
in the feature list resulted in the highest service execution
cost. Although the ranks differ somewhat in MRS and video

streaming service, infrastructure providers 1 and 2 in both
cases have similar permutation importance weight values,
and infrastructure provider 3’s weight value is lower for both
services, demonstrating consistency regarding the effect that
the prices and pricing models have on the overall application
service execution cost.

,e rank of the features for both cost models provides
directions to the application provider in terms of service
placement optimisation with the goal of reducing the service
cost. Based on results for two observed services in our
analysis, good options for cost reduction, in terms of service
placement, would include cloud infrastructure providers
that offer lower network egress prices, since this is the feature
that had the most impact on the execution cost. Another
option might be to optimise the content that the service
sends over the network to reduce the overall amount of the
generated egress traffic, if possible.

In addition to cost, we observe what features affect the
response time the most. ,e permutation importance results
for QoS model of video streaming (Table 9) and MRS service
(Table 10) demonstrate the same feature that has the most
impact on the prediction of the response time—the number
of parallel users. ,is is an expected result since the number
of parallel user requests affects the resource utilisation and
the ability to process request efficiently. Since we are in-
terested in identifying a feature impactful enough to re-
sponse time in terms of service placement, we additionally
observe features that ranked highest after the number of
concurrent users. In the case of video streaming service, the
feature ranked second is network egress traffic, indicating
that the streaming chunks of video data had an impact on the
response times due to the limited bandwidth. Other features
seem to have little or no effect on the response time of the
video streaming service. After the number of concurrent
user requests, the MRS service response times depended
mainly on the used RAM, meaning that the processing of the
user requests had a more significant impact on the MRS
service response times than the bandwidth consumption, as
compared with the video streaming service.,is observation
can be used by the application provider to identify the re-
sources crucial for achieving adequate service QoS level.

Table 7: Permutation importance feature rank for the cost model of
video streaming service.

Weight Feature
1.6223± 0.4371 NW egress (GB)
0.9892± 0.4441 Service provider 1
0.8785± 0.4269 Service provider 2
0.6277± 0.2374 Service provider 3

Table 8: Permutation importance feature rank for the cost model of
MRS service.

Weight Feature
1.0311± 0.5252 NW egress (GB)
0.9498± 0.5958 Service provider 2
0.8550± 0.5181 Service provider 1
0.6938± 0.3571 Service provider 3
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Figure 15: Prediction error of the response time model for the
MRS service (method: MARS).
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Considering the feature importance rank for the video
streaming service, the application provider should, when
choosing the service placement, prioritise network band-
width and network ports offering greater throughput to
avoid bottleneck for achieving adequate service quality. ,e
application owner of the MRS service should prioritise the
placement of the service using the instances that provide
enough RAM to process user requests efficiently.

9. Conclusion

Cloud computing enables cloud application providers, i.e.,
SaaS providers, to host their applications in the cloud en-
vironments and to be charged for the used computing re-
sources in a pay-per-use manner. Renting public cloud
infrastructure will undoubtedly cut down capital in-
vestments, but it can still be a very complex task for the SaaS
providers to determine what is the optimal service place-
ment and how to choose the cloud infrastructure provider to
minimise the service cost while maintaining the appropriate
QoS levels.

In this paper, we propose an approach that allows SaaS
providers to predict service execution cost and observed QoS
parameters for a cloud application and to extract knowledge
about the features of the cloud application context that affect
the cost and QoS to the greatest extent. For our experiments,
we used two applications as cloud service use cases—a
medical record system and a video streaming service. We
propose a set of features used to implement service models.
,e features we use are chosen to be applicable for any
application that can be deployed as a SaaS service, unlike
many solutions available in the literature that implement
service models using features specific for a particular type of
application. In that way, the proposed approach can be
applied to a broad spectrum of applications hosted in cloud
environments.

In our approach, we use various machine learning
methods fit for the size of our acquired dataset—linear re-
gression, regularisation regressions, and neural network. To
evaluate models, we use several error metrics for the purpose
of comparing the implemented models. ,e results

demonstrate the ability of regression models to accurately
predict the cost and QoS parameters of applications deployed
in the cloud. ,e proposed method can be applied even when
an extensive dataset is not available for the analysis, compared
with many solutions available in the literature that require
service already deployed in a production environment. We
consider this especially relevant for services that are still in the
early operational phase when there is no possibility to acquire
large datasets, but the decision on the production environ-
ment and cloud infrastructure providers has not yet been
made. We further demonstrate the ability to extract the
knowledge about the main contributors to the observed
predicted variables, using the permutation importance
method that can be applied even on the models implemented
using sophisticated techniques such as neural networks. ,is
property of the permutation importance method enables the
applicability of our approach to a wide range of models,
allowing the analysis of the effect of the cloud application
context on application’s cost and QoS even in the case of
complex cloud services.

To summarise, the results presented in this paper
demonstrate that it is possible to achieve high model ac-
curacy by using generalised features related to cloud ap-
plication and infrastructure, which can be applied to any
application service deployed in a cloud environment. Also,
we show that the permutation importance method can be
used to extract knowledge about the impact of cloud ap-
plication context parameters to the service cost and QoS.
Lastly, we demonstrate that the proposed approach can be
performed without acquiring large datasets, which makes it
beneficial for usage in the preproduction phase of the service
lifecycle.

,e main aim of our future work is to utilise the
knowledge about cloud application context parameters that
have the most significant impact on service cost and QoS in
the optimisation of the cloud application service placement.
Information on the effect of predictors can be used as an
input for an algorithm dealing with decision making on the
cost-minimising service placement in cloud environments,
which will at the same time fulfil the requirements on the
service quality. ,e application owners can obtain this
knowledge before deploying service in its production en-
vironment, and the model-based approach enables pre-
diction of various service placement outcomes. We believe
that such approach can be valuable to the cloud application
service providers, especially in the context of scientific ap-
plications that include a broad spectrum of various appli-
cation types.

Data Availability

,e data used to support the findings of this study are
available from the corresponding author upon request.
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Table 9: Permutation importance feature rank for QoS model of
video streaming service.

Weight Feature
2.2935± 0.7169 Users
0.0299± 0.0147 NW egress (GB)
0.0001± 0.0001 Avg. RAM used (MB)
0± 0.0000 Disk read bytes

Table 10: Permutation importance feature rank for QoS model of
MRS service.

Weight Feature
2.0382± 0.3191 Users
0.8644± 0.1578 Avg. RAM used (MB)
0.4996± 0.1399 Disk read bytes
0.4075± 0.1038 NW egress (GB)
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