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Mutation testing is a technique for evaluating the quality of a test suite. However, the costly computation from a large number of
mutants affects the practical application of mutation testing, and reducing the number of mutants is reasonably an efficient way for
mutation testing. We propose a new method for reducing mutants by analyzing dominance between statements in the program
under test. )e proposed method only selects the mutants generated from the nondominated statements, and the mutants
generated from the dominated statements are reduced. After applying the proposed method to nine programs, the experimental
results show that our method reduces over 75% mutants and well maintains the mutation adequacy.

1. Introduction

Mutation testing is a fault-oriented testing technique first
proposed by Hamlet [1] and DeMillo et al. [2]. In mutation
testing, the program under test is mutated according to the
given syntax rules (mutation operators), and each mutated
version is a mutant. When a mutant differs from its original
program in their outputs after executing against the same
test case, the mutant is said killed by the test case. Specially,
the mutants that function equal to its original program and
cannot be killed by any test case are equivalent. Mutation
score which evaluates the adequacy of a given test suite is
calculated by the ratio of the number of killed mutants to the
number of nonequivalent ones.

It has been demonstrated empirically that mutants can
reflect real faults in the program [3–5]. Generally, mutation
testing is used to evaluate the quality of a test suite [6] or
aided to generate test suites with high ability of fault de-
tection [7]. However, a large number of mutants are gen-
erated from the program under test result in a high cost,
which hinders the mutation testing from wide application.
And according to a recent survey [8], a large number of
mutants, still today, are considered as one of the most
important problems of mutation testing.

Practically, most faults in programs tend to locate in a
few statements instead of all the statements. It seems that
performing mutation operators on all the statements is
unnecessary. For a given test suite, studies have shown that
the more times the mutated statement is executed, the higher
likelihood of killing the corresponding mutants [9, 10].
Inspired by this, we only focus on some statements (instead
of all the statements) in the program and only select the
mutants generated from these statements, thus reducing the
cost of mutation testing.

In view of this, we hope to identify a subset of statements
that the test suite that covers the ones will cover all the
statements in the program. Consequently, we propose a new
method for identifying the nondominated statements in the
program. )e proposed method only selects the mutants
generated from the nondominated statements, and the other
mutants will be reduced. )e experimental results from nine
programs suggest that our method can reduce a large
number of mutants without significant loss in mutation
adequacy.

)e rest of this article is organized as follows: Section 2
summarizes the related work; the proposed method will be
detailedly described in Section 3, including the definitions
for identifying the nondominated statements and an
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example for preliminary illustration; Section 4 evaluates our
method through a series of experimental studies; and finally,
Section 5 concludes our contributions.

2. Related Work

Focusing on saving the cost in mutation testing, in this
section, we first state the existing methods for mutant re-
duction, and then the methods for optimizing mutation
testing are discussed; since our method is based on corre-
lation analysis, we finally summarize correlation analysis,
especially in mutation testing.

2.1. Mutant Reduction. Reducing the number of mutants
can save the cost in mutation testing. As summarized in the
survey of Jia and Harman [11], the classical methods of
mutant reduction including mutant sampling and selective
mutation testing are very simple and practical, but they
cannot achieve a high reduction rate while maintaining a
high mutation adequacy; although high-order mutants
(HOMs) can both reduce the number of mutants and
represent complex real faults, the cost for generating HOMs
is very expensive. Second-order mutants (SOMs), which
reduce about half number of mutants, can be a compromise
substitution for HOMs. Kintis et al. proposed strategies for
combining SOMs based on the control relations among
nodes in the control flow graph (CFG) of a program [12]. It is
noticeable that many SOMs are not necessary to be gen-
erated since they are easy to kill.

It is possible to save some cost by eliminating the
equivalent mutants. Yao et al. revealed the distribution
features of equivalent mutants and stubborn mutants by
manual analysis [13], and their work is beneficial for de-
signing mutation operators to avoid generating the equiv-
alent mutants. To tackle the problem of detecting equivalent
mutants and generating test data to kill the nonequivalent
ones in narrow spaces, Harman et al. analyzed the de-
pendence relations between nodes and variables [14].
Hierons et al. applied program slicing to simplify the pro-
grams, thus reducing the effort in detecting equivalent
mutants [15]. Compared with their methods, we only
consider the nondominated statements (nodes), and it seems
that the grain of our method is coarser than that of [14] but
finer than that of [15]. However, it is reported that the
percentage of equivalent mutants is only 10%–40% [16, 17].

We explore new method for reducing mutants, and our
method only selects a small proportion of mutants generated
from a subset of statements in the program.

2.2. Optimization of Mutation Testing. A mutant is weakly
killed if its state immediately differs from the original
program after executing the mutant. Although weak mu-
tation testing seems less effective than strong mutation
testing, according to the survey [8], weak mutation can save
much execution time by not executing the code after the
mutated statements.

To speed up weak mutation testing, Durelli et al. con-
structed virtual machine-integrated environment for mutation

testing [18]. By using the high speed of noninterpretive system,
Kim et al. developed a Java mutation system to save the cost in
weakmutation testing [19]. Papadakis andMalevris proposed a
transformation method for further improving weak mutation
testing [20]. In their method, they transformed mutants into
mutant branches and integrated all the mutant branches into
the original program to form a new program, and covering the
mutant branches indicates killing the corresponding mutants
in weakmutation testing. However, a lot of mutant branches in
the new program add its complexity. Moreover, they generate
test cases to kill mutants by selecting paths to cover [7]. And
many mutants cause a very large search space, thus increasing
the cost in generating test cases.

For given test cases, Zhang et al. found that the more
times amutated statement executes, the higher probability of
the corresponding mutants being killed [9]. According the
observation, Zhang et al. prioritized test cases so as to earlier
execute the test cases that are more likely to kill mutants [10].
And their method saves about half cost of mutation testing.
Inspired by the above observation, we select mutants
according to the original statements, and we expect that the
selected ones can well maintain the mutation adequacy.

2.3.CorrelationAnalysis. Correlation analysis is very helpful
for mutation testing. Shan et al. combined compound
mutants according to the correlations among mutated
statements of the same statement and generated test cases to
kill the compound mutants [21]. )eir method reduces the
number of mutants and generates less number of test cases.
Xu analyzed correlations among the mutants generated from
the conditional statements and reduced about 20% mutants
based on the control and equivalent relations between these
mutants [22].

Subsumption was found between nodes by Kintis et al.,
when analyzing correlations among nodes in the CFG [12].
Kaminski et al. demonstrated that three mutation rules of
RORmutation operators subsume other four mutation rules
of ROR [23]. Ammann et al. identified the redundant
mutants by analyzing dynamic subsumption between mu-
tants after executing the mutants against a given test suite
[24]. Kurtz et al. further defined the subsumption as true
subsumption, dynamic subsumption, and static sub-
sumption, and described subsumption between mutants
with a mutant subsumption graph (MSG) [25]. In the MSG,
the root nodes subsume other nodes; that is, the test cases
that kill the mutants corresponding to the root nodes can kill
the subsumed mutants. Kurtz et al. automatically con-
structed the static MSG and generated test cases to kill the
mutants corresponding to the root nodes [26], so as to save
the cost in generating test cases.

In our previous research [27], we transformed the
mutants into the mutant branches to reflect whether the
corresponding mutants are weakly killed or not, and formed
a new program by inserting all the mutant branches into the
original program; and the nondominated ones, corre-
sponding to the mutants after reduction, were obtained after
analyzing the dominance relations among the mutant
branches. Our previous method can further improve the
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weak mutation testing by only covering the nondominated
mutant branches, and the generated test cases can cover all
the mutant branches, that is, weakly kill all the mutants.

Inspired by above researches, we only select the mutants
generated from the nondominated statements in the pro-
gram. )e proposed method and our previous research have
some similar features as follows: (1) they are based on
dominance analysis among statements (mutant branches),
(2) the nondominated statements (mutant branches) cor-
respond to the mutants after reduction, and (3) the domi-
nance relation graph is used to describe the dominance
relations.

Moreover, the proposed method has some specific
features as follows: (1) It is not necessary to construct the
mutant branches or form a new program. (2))e dominance
relations are analyzed among the statements in the original
program instead of among the mutant branches in the
formed program. Since the number of the original state-
ments is significantly less than the number of mutant
branches, it will be more efficient to analyze dominance
relations among the original statements. (3) )ere may exist
dominance relations among the selected mutants in our
method. In our previous research, there is no dominance
relation among mutants after reduction. (4) A node in the
dominance relation graph represents an original statement
and an edge is a dominance relation between statements.
Differently, in our previous research, a node in the domi-
nance relation graph is a mutant branch and an edge in-
dicates a dominance relation between a pair of mutant
branches.

3. The Proposed Method

For the purpose of reducing mutants, we first analyze the
dominance relation between statements in the program, and
the nondominated statements are obtained; then, we select
the mutants according to the nondominated statements;
finally, an example is presented as a preliminary illustrating.

3.1. Dominance Relation. Suppose that the program under
test is P, and the set of statements that can be mutated in P is
S. Applying the mutation operators to si ∈ S, i � 1, 2, . . . , |S|,
the set of mutants is denoted as Mi. Since the mutants in Mi

are generated from si, si and the mutated statements of Mi

have the same reachability, that is, for any test case t ∈ T, if t
execute si in P, then t must execute all the mutated state-
ments in Mi.

As known, reachability is the first condition of killing a
mutant, and the others are necessity and sufficiency. For
si, sj ∈ S and si ≠ sj, the generatedmutant sets are Mi andMj

respectively. If si and sj have the same reachability in P, the
reachability of killing the mutants in Mi and Mj are the
same. )erefore, the reachability conditions can be de-
termined by the corresponding original statements.

Emphatically, correlations exist among the reachability
conditions of statements in the program. As shown in Figure 1,
if statement “c> b” (line 4) is executed, then “a> b” (line 3)
must be executed. Similarly, if “mid � c” (line 6) is executed,

statements “a> b” (line 3), “c> b” (line 4), and “c> a” (line 5)
must be executed. )is relation is called dominance relation,
and its definition is as follows.

Definition 1 (dominance relation). Suppose that si, sj ∈ S

are statements in P. For any t ∈ T, if si is executed, then sj

must be executed, we say that si dominates sj, denoted as
si ≻ sj. In this case, si is the dominating statement and sj is
the dominated statement.

)e set of all the dominance relations between state-
ments in S is called the dominance relation set, denoted as
Dom. It should be noted that the concept of dominance
relation has been previously defined for reducing the
number of targets needed to cover [28]. Here, we use
dominance relations to assist in selecting mutants.

Accordingly, if si ≻ sj, the probability of executing sj is
not less than that of executing si. )e reasons are as follows:
the test cases that execute si must also execute sj, and other
tests that cannot execute si may also execute sj. And in
consequence, the probability of executing the mutated
statements of mutants in Mj is not less than that in Mi.
Although satisfying the reachability does not indicate killing
a mutant, we have a basic intuition that the more times the
mutated statement is executed, the higher probability of
killing the corresponding mutant.

3.2. Nondominated Statement. )e code in Figure 1 has 12
mutable statements, denoted as S � s1, s2, . . . , s12􏼈 􏼉. And the
dominance relations between these statements are obtained
by manual analysis, as listed in Table 1.

Since the execution probability of a dominated statement
is not less than its dominating statement, based on the
intuition in the previous section, it is intuitive that the
mutants generated from a dominated statement can more
probably be killed than that from its dominating statement.

In addition, a statement can be a dominating or a
dominated one. We aim to find the statements that are not
dominated by any statements, and such a statement is
nondominated. )e definition of nondominated statement
can be given as follows.

Definition 2 (nondominated statement). Suppose si ∈ S is a
statement in P. If ¬∃sj ∈ S, sj ≠ si, such that sj ≻ si, si is a
nondominated statement.

)e set of all the nondominated statement is denoted as
Snd. )ere is an interesting phenomenon: for si, sj ∈ S and
si ≠ sj, si ≻ sj, and meanwhile sj ≻ si. In this circumstance, we
only reserve one of them, and the other will be removed. And
as a common rule, we reserve si ≻ sj and remove sj ≻ si, if
i< j. As shown in Table 1, s12 ≻ s1 will be removed since
s1 ≻ s12.

3.3.DeterminingNondominated Statements. )e dominance
relations between statements can be described in the
dominance relation graph, and its definition is as follows.
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Definition 3 (dominance relation graph). Dominance re-
lation graph is a directional graph, denoted as
DG(S) � (V(S), E(Dom)), where V(S) is the vertex set of
the statements in P and E(Dom) is the set of directional
edges. For si, sj ∈ V(S), there is an directional edge
< si, sj > ∈ E(Dom) if and only if si ≻ sj.

According to Definition 3, si ∈ S if and only if si ∈ V(S),
and si ≻ sj ∈ Dom if and only if < si, sj > ∈ E(Dom). In
DG(S), the in-degree of vertex si indicates the number of
statements that dominate si, and the out-degree of si reflects
the number of statements that are dominated by si. A vertex
si with zero in-degree means that there is no sj ∈ S to make
sj ≻ si hold. )erefore, the vertices with zero in-degree in the
dominance relation graph correspond to the nondominated
statements.

Figure 2 is the dominance relation graph of the program
in Figure 1. From Definition 3 and Figure 2, the set of
nondominated statement of the program in Figure 1 is
Snd � s4, s5, s6, s9, s10, s11􏼈 􏼉. For a test set T, if Tcan execute all
the statements in Snd, T will execute all the statements in S.
)e corresponding mutant sets of s4, s5, s6, s9, s10, and s11 are
M4, M5, M6, M9, M10, and M11, respectively. For T, if si ≻ sj,
the execution times of the mutated statements in Mi are not
more than that of themutated statements inMj. Accordingly,
we only select the mutants generated from the statements
corresponding to the vertices with zero in-degree.

After performing all the traditional (Method-level)
mutation operators of MuClipse on the program in
Figure 1, 115 mutants are generated, as listed in Table 2,
including eighteen equivalent ones (the italic values in
Table 2). Among the mutants in Table 2, 36 mutants
generated from the nondominated statements will be
selected to perform mutation testing.

3.4. Illustrative Example. Whether the selected mutants can
well maintain the mutation adequacy will be preliminarily
illustrated by an example.

)e given test set T including eleven test cases, as listed in
Table 3, and each test case is programmed in the form of JUnit
assertion, assert XXX(expected, real). )e parameter expected
of the assertion is the expected value by executing the program
against a given input, and real is the real value of the program
by executing the same input. If the real value equals to the
expected value, the assertion returns true. For example,
assert Equals(9,Mid.getMid(9, 9, 2)) (t1 in Table 3), the ex-
pected value by input (9, 9, 2) is 9, and the real value is
Mid.getMid(9, 9, 2).

Moreover, the killed mutants by eleven test cases are
listed in Table 3. From Table 3, we have following obser-
vations. (1) 24 mutants are killed by the given test cases, and
the twelve mutants alive are equivalent (listed in Table 3). (2)
)e effective test set for the selected mutants is T′ � t1, t2,􏼈

t3, t4, t5, t10}. Consequently, the mutation score of T is
24/(36 − 12)∗ 100% � 100%; that is, T kills all the non-
equivalent ones of the selected mutants.

Importantly, what we more care about is whether the
selected mutants can be as adequate as all the mutants in
evaluating a given test set, that is, how many mutants will be
killed by the effective test cases of the selected mutants.
Furthermore, we execute 115 mutants against T′, and the
killed mutant are listed in Table 4. As shown in Table 4, T′
kills 94 nonequivalent mutants, and three nonequivalent
ones alive are AOIS_14, LOI_6 and ROR_10. )e mutation
score can be calculated as 94/(115 − 18)∗ 100% � 96.91%.

)e above example preliminarily illustrated that our
method reduces a large number of mutants (115 − 36 � 79
mutants), and the selected mutants (the mutants after re-
duction) can well maintain the mutation adequacy (with
3.09% loss in mutation score). )e next section will conduct
a serial of experiments to further evaluate the proposed
method.

Figure 1: )e program code of Mid.

Table 1: )e dominance relations between the statements.

si Statement Line Dominated statement

s1 a> b 3 s12
s2 c> b 4 s1, s12
s3 c> a 5 s1, s2, s12
s4 mid � c 6 s1, s2, s3, s12
s5 mid � a 8 s1, s2, s3, s12
s6 mid � b 11 s1, s12
s7 b> c 14 s1, s12
s8 a> c 15 s1, s7, s12
s9 mid � a 16 s1, s7, s8, s12
s10 mid � c 18 s1, s7, s12
s11 mid � b 21 s1, s7, s12
s12 mid 24 s1
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4. Experiment and Analysis

To evaluate our method, this section �rst puts forward the
questions needed to answer; then, the programs are given for
experiment, and the experimental process is described; �-
nally, the experimental results are listed and analyzed.

4.1. Research Questions. �e aim of identifying the non-
dominated statements is to select mutants, thus reducing the

cost in mutation testing. In view of this, the following
questions need to be answered:

(1) Can the proposed method reduce the number of
mutants? To answer this question, we �rst identify
the nondominated statements after analyzing
dominance relations among statements in the pro-
gram. �en, the mutants generated from the non-
dominated statements are selected. Finally, the
reduction rate is calculated by the ratio of the
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Figure 2: �e dominance relation graph of the program in Figure 1.

Table 2: �e generated mutants.

si Generated mutants Total

s1

AOIS_1, AOIS_2, AOIS_3, AOIS_4, AOIS_5,
AOIS_6, AOIS_7, AOIS_8, ROR_1, ROR_2, ROR_3,

ROR_4, ROR_5, COI_1, LOI_1, LOI_2
16

s2

AOIS_9, AOIS_10, AOIS_11, AOIS_12, AOIS_13,
AOIS_14, AOIS_15, AOIS_16, ROR_6, ROR_7,
ROR_8, ROR_9, ROR_10, COI_2, LOI_3, LOI_4

16

s3
AOIS_17, AOIS_18, AOIS_19, AOIS_20, AOIS_21,
AOIS_22, AOIS_23, AOIS_24, COI_3, LOI_5, LOI_6 11

s4
AOIU_1,, AOIS_25, AOIS_26, AOIS_27, AOIS_28,

LOI_7 6

s5
AOIU_2, AOIS_29, AOIS_30, AOIS_31, AOIS_32,

LOI_8 6

s6
AOIU_3, AOIS_33, AOIS_34, AOIS_35, AOIS_36,

LOI_9 6

s7

AOIS_37, AOIS_38, AOIS_39, AOIS_40, AOIS_41,
AOIS_42, AOIS_43, AOIS_44, ROR_11, ROR_12,
ROR_13, ROR_14, ROR_15, COI_4, LOI_10, LOI_11

16

s8

OIS_45, AOIS_46, AOIS_47, AOIS_48, AOIS_49,
AOIS_50, AOIS_51, AOIS_52, ROR_16, ROR_17,
ROR_18, ROR_19, ROR_20, COI_5, LOI_12, LOI_13

16

s9
AOIU_4, AOIS_53, AOIS_54, AOIS_55, AOIS_56,

LOI_14 6

s10
AOIU_5, AOIS_57, AOIS_58, AOIS_59, AOIS_60,

LOI_15 6

s11
AOIU_6, AOIS_61, AOIS_62, AOIS_63, AOIS_64,

LOI_16 6

s12 AOIU_7, AOIS_65, AOIS_66, LOI_17 4
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number of reduced mutants to the number of total
mutants.

(2) Can the selected mutants well maintain the mutation
adequacy? To answer this question, we first execute
all the mutants against the given test cases and
calculate the mutation score. )en, we execute the
selected mutants against the same test cases. Finally,

we execute all the mutants against the effective test
cases of the selected mutants and investigate the
changes in mutation scores so as to analyze whether
the selected mutants can well maintain the mutation
adequacy.

(3) Is the proposed method more effective than the mutant
sampling method? To answer this question, we first

Table 5: )e programs under test.

ID Program LOCs Classes
Methods

Mutants Description
Total Tested

J1 Trash and take out 30 1 2 2 111 Not reported
J2 Triangle 36 1 1 1 325 Return a triangle type with three integer inputs
J3 Cal 50 1 2 2 315 Calculate the days between two dates in the same year
J4 Math 1233 3 25 5 1506 org.apache.commons.lang3.math
J5 Digest 1038 9 101 24 1401 org.apache.commons.codec.digest
J6 Text 3040 11 320 6 629 org.apache.commons.lang3.text
J7 Cli 2665 23 208 2 264 org.apache.commons.cli
J8 lang3 9344 29 778 37 3494 org.apache.commons.lang3
J9 Linear 12416 67 942 22 5153 org.apache.commons.math3.linear
Total 29852 145 2379 101 13198

Table 4: Executing all the mutants against the effective test cases of the selected mutants.

ti Test case Killed mutants Total

t1 assertEquals (9, Mid.getMid (9, 9, 2))

AOIS_2, AOIS_3, AOIS_4, AOIS_45, AOIS_46,
AOIS_47, AOIS_48, AOIS_53, AOIS_54, AOIS_6,
AOIU_4, AOIU_7, COI_5, LOI_12, LOI_14, LOI_17,

ROR_17, ROR_18, ROR_19

19

t2 assertEquals (5, Mid.getMid (5, 4, 7))

AOIS_1, AOIS_21, AOIS_22, AOIS_23, AOIS_24,
AOIS_29, AOIS_30, AOIU_2, COI_1, COI_2,
COI_3, LOI_1, LOI_3, LOI_5, LOI_8, ROR_2,

ROR_3, ROR_4, ROR_7, ROR_8, ROR_9

21

t3 assertEquals (3, Mid.getMid (2, 3, 8))

AOIS_37, AOIS_38, AOIS_39, AOIS_40, AOIS_5,
AOIS_61, AOIS_62, AOIS_7, AOIS_8, AOIU_6,

COI_4, LOI_11, LOI_16, LOI_2, ROR_12, ROR_13,
ROR_15, ROR_5

18

t4 assertEquals (-8, Mid.getMid (− 4,− 8,− 8)) AOIS_13, AOIS_15, AOIS_16, AOIS_33, AOIS_34,
AOIS_9, AOIU_3, LOI_9 8

t5 assertEquals (− 7, Mid.getMid (1,− 8,− 7))
AOIS_10, AOIS_11, AOIS_12, AOIS_17, AOIS_18,
AOIS_19, AOIS_20, AOIS_25, AOIS_26, AOIU_1,

LOI_4, LOI_7
12

t10 assertEquals (6, Mid.getMid (3, 7, 6))

AOIS_41, AOIS_42, AOIS_43, AOIS_44, AOIS_49,
AOIS_50, AOIS_51, AOIS_52, AOIS_57, AOIS_58,

AOIU_5, LOI_10, LOI_13, LOI_15, ROR_14,
ROR_20

16

Table 3: Executing the selected mutants on the given test cases.

ti Test case Killed mutants Total

t1 assertEquals (9, Mid.getMid (9, 9, 2)) AOIS_53, AOIS_54, AOIU_4, LOI_14 4
t2 assertEquals (5, Mid.getMid (5, 4, 7)) AOIS_29, AOIS_30, AOIU_2, LOI_8 4
t3 assertEquals (3, Mid.getMid (2, 3, 8)) AOIS_61, AOIS_62, AOIU_6, LOI_16 4
t4 assertEquals (− 8, Mid.getMid (− 4, − 8, − 8)) AOIS_33, AOIS_34, AOIU_3, LOI_9 4
t5 assertEquals (− 7, Mid.getMid (1, − 8, − 7)) AOIS_25, AOIS_26, AOIU_1, LOI_7 4
t6 assertEquals (7, Mid.getMid (8, 7, 6)) — 0
t7 assertEquals (6, Mid.getMid (7, − 6, 6)) — 0
t8 assertEquals (7, Mid.getMid (7, 1, 7)) — 0
t9 assertEquals (− 1, Mid.getMid (− 5, − 1, − 1)) — 0
t10 assertEquals (6, Mid.getMid (3, 7, 6)) AOIS_57, AOIS_58, AOIU_5, LOI_15 4
t11 assertEquals (5, Mid.getMid (5, 7, 5)) — 0
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detect the equivalent mutants from the selected mu-
tants.)en, for each program, we randomly sample the
same number of nonequivalent mutants according to
the number of nonequivalent selected mutants and
execute the sampled mutants against the given test
cases. Finally, we execute all the mutants against the
effective test cases of the sampled mutants and in-
vestigate the changes in mutation scores between
random sampling method and our method.

4.2. Experimental Programs. Nine programs (packages) in
Table 5 are selected for the experiments. Among these
programs, J1–J3 are commonly used in mutation testing and
the detailed information can be obtained from [20]. J4–J9 are
from the open source projects of Apache (http://commons.
apache.org), wherein J4 extends java.math and provides
business mathematical functionality (http://commons.
apache.org/proper/commons-lang/javadocs/api-release/index.
html); J5 simplifies common MessageDigest tasks and
provides a compatible crypt method that supports MD5,
SHA-256, and SHA-512 (http://commons.apache.org/
proper/commons-codec/apidocs/index.html); J6 provides
classes for handling and manipulating text (http://commons.
apache.org/proper/commons-lang/javadocs/api-release/index.
html); J7 provides an API for parsing command line options
passed to programs (http://commons.apache.org/proper/
commons-cli/); J8 provides highly reusable static utility
methods, chiefly concerned with adding value to the jav-
a.lang classes (http://commons.apache.org/proper/
commons-lang/javadocs/api-release/index.html); J9 pro-
vides linear algebra support, such as calculating the LUP-
decomposition of a square matrix (http://commons.apache.
org/proper/commons-math/javadocs/api-3.0/index.html).

)e total LOC (lines of code) of the programs in Table 5
is 29852. )ese programs include 145 classes and 2379
methods, and 101 methods are tested. )e methods that are
not tested have one of the following features: (1) simple
methods like getXXX() or setXXX(), (2) small methods with
several or ten lines of code, and (3) the methods that only
generate tens or dozens of mutants.

In our experiments, the mutants are generated and
executed automatically by using MuClipse. MuClipse is a
MuJava plugin for Eclipse, and it provides fifteen traditional
mutation operators. After applying all the traditional mu-
tation operators to nine programs, 13198 mutants are
generated as listed in Table 5. Among these programs, the
largest number of mutants is 5153 from J9 and the least
number of mutants is 111 from J1.

4.3. Experimental Process. )e experiments are conducted
under following environment: Intel(R) Core(TM) i5-4590
CPU @ 3.30GHz 3.30GHz, 16.0GB ROM, Microsoft
Windows 7 Service Pack 1 operating system, and Eclipse
SDK 4.2.2 with MuClipse 1.3 plugin. MuClipse can provide
the state (killed or alive) of each mutant after executing
against the given test cases and compare a mutant with the
original program in the view of “Mutants and Results.” All

the test cases are programmed in the form of JUnit
assertions.

For each program in Table 5, we first analyze the
dominance relations between the statements. )en, we build
the dominance relation graph and search the nondominated
statements according to the corresponding vertices with zero
in-degree. Finally, the mutants generated from the non-
dominated statements are selected, and these mutants are
the ones after reduction.

Dominance identification is of critical importance in our
method. We identify the dominance relations among the
statements by manual analysis, since it is very difficult to
establish the semantic rules for automatic identification. It
seems that the dominance relations among statements can
be approximately identified by executing the program
against test cases; however, the obtained dominance re-
lations are not semantically accurate so that the selected
mutants will be of poor quality. In view of that the precision
of identifying dominance relations may be affected by some
factors, such as the testers’ skills and familiarity with the
programs, we always check the results (the nondominated
statements) one or more times by means of walkthrough and
inspection.

Test cases are needed to execute the mutants before and
after reduction, so as to evaluate the effectiveness of our
method in maintaining the mutation adequacy. In our ex-
periments, the test cases of program J1-J3 are genera (Cted
by Randoop in Eclipse). Randoop can automatically generate
JUnit test cases for Java classes by setting the number of test
cases or the time limitation. And the numbers of generated
test cases for J1–J3 are listed in Table 6 (Column “Test
cases”). )e test cases of J4–J9 are provided along with the
corresponding open source projects, and the test cases for a
method are selected according to the corresponding test
class(es) and test method(s). Sometimes, considering that a
test method in a test class includes several test cases, we
divided the test method into several test methods, and each
test method includes a test case.

Although some programs in Table 5 usually appear in
previous studies, these programs are coded in various lan-
guages or mutated by different mutation tools. As a result,
before calculating the mutation scores, the equivalent mu-
tants of all the programs in Table 5 should be detected. And
for this, the mutants of each program are executed against
the given test cases, and the mutants alive are manually
analyzed in the “Compare Mutants” panel. When a mutant
alive is semantically different from its original program, the
mutant alive is equivalent. And the numbers of detected
equivalent mutants of all the programs are listed in Table 6.

4.4. Experimental Results and Analysis

4.4.1. Mutant Reduction. )e proposed method is applied to
the programs in Table 5, and the mutant reduction rates are
listed in Table 7. And Table 6 also lists the numbers of state-
ments andmutants before and after reduction. FromTable 7, we
have the following observations: (1) the number of mutable
statements of all the programs is 1776, and these statements
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generate 13198 mutants; (2) after applying our method to the
nine programs, 384 nondominated statements are obtained, and
these nondominated ones generate 2820 mutants.

Obviously, the nondominated statements account for
only 21.62% (384/1776) of all the mutable statements.
Among all the programs, the lowest ratio of the non-
dominated statements is 15.50% (95/613) from J9, and the
highest is 33.71% (30/89) from J6. “Reduction rate” in
Table 7, calculated by the ratio of the number of reduced
mutants to the number of all the mutants, reflects the
effectiveness of the proposed method. After dominance
analysis, our method reduces 10378 (13198–2820) mutants
and achieves an average reduction rate of 76.34%.

Table 7 suggests that many mutants are reduced, and the
mutant reduction rates range from 64.92% (from J2) to
84.09% (from J7). )e reason of the high mutant reduction
rate is that nearly 80% mutable statements are dominated
and the generated mutants are reduced. However, for a
program, the number of mutants relates not only to the
number of statements but also to other factors such as the
variables that the statements have and the mutation oper-
ators can be performed. Conclusively, our method can re-
duce a large number of mutants by only selecting the
mutants generated from the nondominated statements.

4.4.2. Effectiveness of the SelectedMutants. In order to check
whether the selected mutants (the mutants after reduction)
can represent all the mutants to evaluate the given test
cases, we conduct the experiments as following steps: (1)
We first execute all the mutants against the given test cases

to calculate the mutation score as listed in Table 6. (2) )e
effective test cases are obtained (in Table 8) after executing
the selected mutants against the given test cases. (3) All the
mutants are executed against the effective test cases ob-
tained in Step (2) to check whether the effective test cases in
Table 8 can be effective for all the mutants.

)e experiment results are listed in Tables 6 and 8, and
from Table 6, we have three observations: (1) all the pro-
grams generate 13198 mutants including 1105 equivalent
ones (account for 8.37%), and the number of nonequivalent
mutants is 12093 (13198 − 1105). (2) )e number of the
given test cases is 1493. (3) All the test cases kill 11420
mutants, and the average mutation score is 93.01%. Among
these programs, the highest mutation score is 100% from J1,
and the lowest is 85.30% from J6. “Effective test cases” in
Table 6 are the ones that kill mutants. Although the number
of given test cases is 1493, the effective ones are only 540.
)is illustrates that many test cases in the given test cases are
redundant.

Table 8 shows the effectiveness of the selected mutants.
From Table 8, we have four observations: (1) )e number of
selected mutants is 2820 including 308 equivalent ones
(account for 10.92%), and the number of the nonequivalent
mutants after reduction is 2512 (2820 − 308). (2) )e given
test cases (1493 test cases or 540 effective test cases in Table 6)
kill 2336 selected mutants, and the average mutation score is
91.73%. Among these programs, the highest mutation score
is 99.12% from J9 and the lowest is 85.48% from J4. (3) )e
number of effective test cases of the selected mutants is 384,
which is 151 (540 − 384) less than the number of effective
test cases in Table 6. (4) 384 effective test cases kill 11199

Table 7: )e mutant reduction.

ID
Before reduction After reduction

Reduction rate (%)
Statements Mutants Nondominated statements Mutants

J1 9 111 2 25 77.48
J2 20 325 6 114 64.92
J3 24 315 8 104 66.98
J4 175 1506 43 361 76.03
J5 221 1401 36 230 83.58
J6 89 629 30 148 76.47
J7 28 264 7 42 84.09
J8 597 3494 157 825 76.39
J9 613 5153 95 971 81.16
Total 1776 13198 384 2820 Avg.� 76.34

Table 6: )e mutation testing of the mutants before reduction.

ID Test cases Mutants Equivalent mutants Killed mutants Mutation score (%) Effective test cases
J1 7 111 29 82 100 4
J2 300 325 40 276 96.84 28
J3 100 315 43 248 91.18 11
J4 146 1506 178 1160 87.35 76
J5 41 1401 195 1178 97.68 19
J6 104 629 71 476 85.30 49
J7 13 264 32 206 88.79 9
J8 653 3494 287 2908 90.68 265
J9 129 5153 230 4886 99.25 79
Total 1493 13198 1105 11420 Avg.� 93.01 540
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mutants after executing all the mutants against the effective
test cases of the selected mutants, and the average mutation
score is 90.66%.

)e results from Tables 6 and 8 suggest that (1) the given
test cases achieve 93.01% mutation score after executing all
the mutants, as shown in Table 6; (2) and the effective test
cases of the selected mutants achieve 90.66% mutation score
after executing all the mutants. )erefore, the mutation
adequacy drops 2.35% when adopting the selected mutants
to evaluating the given test cases instead of all the mutants.
)e drop of 2.35% in mutation score indicates that a few
valuable mutants are omitted by only selecting the mutants
generated from the nondominated statements. And com-
pared with the 76.34% mutant reduction rate, the drop in
mutation score seems subtle.

It should be noted that our manual tasks may make
mistakes when analyzing dominance relations between
statements, and the influences of the mistakes are as follows:
(1) If the nondominated statements are mistaken as dom-
inated ones, we will obtain a higher reduction rate but a
lower mutation adequacy since more mutants (including
some valuable mutants) are reduced. (2) If the dominated
statements are mistakenly determined as nondominated
ones, a lower reduction rate will be obtained without further
losing mutation adequacy.

4.4.3. Comparison with Mutant Sampling Method.
Mutant sampling is a very simple and practical method for
reducing mutants, which randomly samples a percentage of
mutants to execute mutation testing, and the sampled
mutants are the ones after reduction. Our method and
mutant sampling share following similar features: (1) they
are for all the traditional mutation operators of MuClipse
instead of some mutation operators; (2) they sample (select)
a subset of mutants to execute mutation testing. Moreover,
our method still has following specific features: (1) we select
mutants according to the nondominated statements instead
of randomly sampling; (2) the reduction rate of our method
cannot be predetermined. Given this, we compare our
method with mutant sampling method.

Considering that the randomness of mutant sampling
cannot ensure the same number of equivalent mutants in the
sampled mutants as our method, we eliminate this influence
by only sampling the nonequivalent mutants. Consequently,

we first randomly sample the same number of nonequivalent
mutants according to Table 8; then the sampled mutants are
executed against the given test cases; finally, all the mutants
are executed against the effective test case of the sampled
mutants. Table 9 lists the results of above experiments.

From Table 9, we have following observations: (1) the
same number (2512) of nonequivalent mutants are sampled
by the mutant sampling method; (2) 2188 mutants are killed
after executing these sampled mutants against the given test
cases (1493 test cases), and the average mutation score is
85.24%; (3) the number of effective test cases for the sampled
mutants in Table 9 is 342; and (4) these effective test cases kill
10764 mutants, and the mutation score is 85.22%.

)e comparison between our method and mutant
sampling suggests that (1) the same test cases achieve dif-
ferent mutation scores after executing the sampled (selected)
mutants. In detail, the mutation score in Table 9 is 85.24%,
which is 6.49% less than that in Table 8. (2) )e number of
effective test cases in Table 9 is 342, and these test cases
achieve 85.22% mutation score after executing all the mu-
tants (5.44% less than that in Table 8, 7.79% less than that in
Table 6). )is further illustrates that much more valuable
mutants have been reduced by the mutant sampling method.

4.4.4. Hypothesis Test of the Experimental Results. We
conduct Wilcoxon (Mann–Whitney) test to scientifically
reflect whether there is a significant difference between the
mutation scores before and after mutant reduction at 0.05
significance level, and the test results are listed in Table 10.

In Table 10, the P value of the Wilcoxon test between the
mutation scores after mutant reduction by our method and
before mutant reduction is 0.289. It means there is no
significant difference since 0.289> 0.05, and we mark “− ” in
the column “Analysis result.” However, the P value between
the mutation scores after mutant reduction by mutant
sampling and before mutant reduction is 0.024
(0.024< 0.05), indicating there is a significant difference (see
the mark “+” in Table 10). )erefore, our method can well
maintain the mutation adequacy.

From the above results, we can draw conclusions as
follows: our method can reduce a large number of mutants
without significant loss in the mutation adequacy. However,
with the same reduction rate as our method, mutant sam-
pling has a significant loss in the mutation score.

Table 8: )e effectiveness of the mutants after reduction.

ID Selected Equivalent Killed Mutation Effective Mutation testing of all the mutants
Mutants Mutants Mutants Score (%) Test cases Killed mutants Mutation score (%)

J1 25 4 18 85.71 3 77 93.90
J2 114 25 84 94.38 19 265 92.98
J3 104 16 84 95.45 9 240 88.24
J4 361 51 265 85.48 62 1139 85.77
J5 230 40 179 94.21 13 1166 96.68
J6 148 32 107 92.24 34 466 83.51
J7 42 10 29 90.63 9 206 88.79
J8 825 73 664 88.30 194 2843 88.65
J9 971 57 906 99.12 194 2843 88.65
Total 2820 308 2336 Avg.� 91.73 384 11199 Avg.� 90.66
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5. Conclusion

)e high cost in mutation testing resulting from a large
number of mutants, which seriously impacts the practical
application of mutation testing, can be saved by reducing
mutants.

A new method for mutant reduction is proposed by
analyzing the dominance relations between statements in the
program. And the main contributions of this article are as
follows: (1) A dominance based method is proposed for
reducing mutants. )e proposed method first analyzes the
dominance relations between statements; the dominance
relation graph is built for aiding to determine the non-
dominated statements. Finally, we only select the mutants
generated from the nondominated statements for mutation
testing. (2) )e effectiveness of the proposed method is
preliminary illustrated by an example. And after applying
the proposed method to nine programs, the experimental
results suggest that our method can significantly reduce the
number of mutants, and the mutants after reduction can
maintain a high mutation adequacy. Additionally, we also
compare our method with mutant sampling, and the results
suggest that our method is more effective.

In our method, the nondominated statements are
manually detected. Manual analysis is quite accurate but
time consuming. We will develop tools to effectively analyze
the dominance relations and determine the nondominated
statements, thus enhancing the practicability of our method.
And the redundant ones amongmutants before or even after
mutant reduction by our method, as pointed out by
Papadakis [8], inflate the mutation score; therefore, it is
necessary and promising for us to design a trustable mu-
tation tool to generate mutants without redundant ones.

Data Availability

Additionally, our original experimental resources include
many programs and excels.)ese files are sophisticated to be

transformed into CIF; therefore, we send the source files as
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