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,e growing use of graph in many fields has sparked a broad interest in developing high-level graph analytics programs. Existing
GPU implementations have limited performance with compromising on productivity. HPGraph, our high-performance bulk-
synchronous graph analytics framework based on the GPU, provides an abstraction focused on mapping vertex programs to
generalized sparse matrix operations on GPU as the backend. HPGraph strikes a balance between performance and productivity
by coupling high-performance GPU computing primitives and optimization strategies with a high-level programming model for
users to implement various graph algorithms with relatively little effort. We evaluate the performance of HPGraph for four graph
primitives (BFS, SSSP, PageRank, and TC). Our experiments show that HPGraph matches or even exceeds the performance of
high-performance GPU graph libraries such as MapGraph, nvGraph, and Gunrock. HPGraph also runs significantly faster than
advanced CPU graph libraries.

1. Introduction

Graph computing has become critical for analyzing data
in many domains, such as in bioinformatics, social net-
working, web analysis, and traffic engineering. During the
past decade, in terms of dealing with large-scale graphs,
various parallel graph computing frameworks have been
proposed for leveraging modern massively parallel pro-
cessors, specifically graphics processing units (GPUs).
GPUs which have excellent peak throughput and energy
efficiency [1] have demonstrated very strong computational
performance with appropriate optimization. However, the
unpredictable control flows and memory divergence on
GPUs caused by the irregularity of graph topologies need
sophisticated strategies to ensure efficiency, making an
efficient implementation on GPUs a challenge. With graphs
getting larger and queries getting more complex, it is
imperative for high-level graph analysis frameworks to help
users extract the information they need with minimal
programming effort.

In order to bridge the gap between high performance and
productivity, we propose HPGraph, a high-level parallel
graph analytics framework on GPU. ,e key abstraction of
our framework is mapping vertex programs to generalized
sparse matrix vector multiplication (SPMV) operations by
CUDA kernels. Unlike other GPU graph computing models
which focus on sequencing the steps of computation [2], we
instead convert graph traversal to matrix operations so that
we can focus on manipulating on data structures and provide
high performance brought about by the optimized general-
ized SPMV. In addition, HPGraph encapsulates the com-
plexity of programming and achieves the high productivity by
hiding the underlying matrix primitives for users. Users with
limited knowledge of low-level GPU architectures are
therefore able to assemble complex graph primitives.

Our contributions to this field are as follows:

(1) We propose an efficient graph analytics frame-
work which maps vertex programs to generalized
sparse matrix operation on the GPU.,is abstraction,
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unlike the abstractions of pervious GPU graph pro-
cecssing libraries, is able to develop a wide range of
graph primitives while simultaneously delivering high
performance.

(2) HPGraph is productive for users. We hide some of
the more unsavory facts of how HPGraph is really
getting the job done, and provides a set of flexible
APIs to express several graph primitives at a high
level of abstraction.

(3) HPGraph integrates a variety of GPU-specific op-
timization strategies for data structures, graph tra-
versal, and memory access into its core to further
improve performance. In our experiments, our
graph primitives significantly outperform other
advanced CPU graph analytics frameworks and
achieve comparable or even superior performance to
other state-of-the-art GPU analytics libraries.

(4) We provide a detailed experimental evaluation of
our graph primitives including comparisons to the
performance of several advanced CPU and GPU
implementations.

,e remainder of this paper is organized as follows:
Section 2 presents the existing graph frameworks and the
motivations for our work. Section 3 describes our imple-
mentation and optimizations in detail. Section 4 discusses
the implementation details of the graph algorithms. Section
5 provides the results of measuring the performance of the
frameworks. In Section 6, we conclude the paper and discuss
potential areas for future research.

2. Related Work and Motivation

,is section will discuss the research landscape of large-scale
graph analytics frameworks, which differ both in terms of
programming models as well as the supported platforms.

Parallel graph analytics frameworks propose various
high-level programmable models, such as vertex pro-
gramming, matrix operations, tasks models, and declarative
programming. Among them, vertex programming is quite
widely applied and is generally productive for writing graph
programs. However, since it focuses on sequencing the steps
of computation and lacks a strong mathematical model, it is
difficult to analyze due to its long runtimes and high
memory consumption [3]. On the contrary, matrix models
are built with a solid mathematical background, e.g., graph
traversal computations are modeled as operations on a semi-
ring in CombBLAS [4] and nvGRAPH [5]. ,is is beneficial
in reasoning and performing optimizations, but it is con-
sidered difficult to program [6].

Single-node CPU-based systems are in common use for
graph computation. Giraph [7] uses an iterative vertex-
centric programming model similar to Google’s Pregel
[8], and it is based on Apache Hadoop’s MapReduce.
PowerGraph [9], designed for real-world graphs which have
a skewed power-law degree distribution, uses the more
flexible Gather-Apply-Scatter abstraction. ,ese methods
partition edges across nodes with a vertex-cut which exposes
greater parallelism in natural graphs. Galois [10–12] is one of

the highest performance graph systems for shared memory
adopting a task-based abstraction. CombBLAS [4] and
GraphMat [3] are two popular matrix programming models.
CombBLAS is an extensible distributed-memory parallel
graph library offering a small but powerful set of linear
algebra primitives specifically targeting graph analytics.
GraphMat, developed by Intel, is a single-node multicore
graph framework mapping Pregel-like vertex programs to
high-performance sparse matrix operations. Recent work [3]
and [13] have compared different graph frameworks on
CPUs. ,ese papers show that GraphMat significantly
outperforms many other frameworks in most cases.
Moreover, the capability of mapping many diverse graph
operations to a small set of matrix operations provides
considerable convenience for the backend of GraphMat to
maintain and extend itself, for example, to multiple nodes.

GPUs are power-efficient and able to carry out high-
memory-bandwidth processing.,ey can exploit parallelism
in computationally demanding applications. Most high-level
GPU programming models for analytics today mirror CPU
programming models. For instance, Zhong and He in-
troduced Medusa [14], a high-level GPU-based system for
parallel graph computing using Pregel’s message model [8].
VertexAPI2 [15], MapGraph [16], and CuSha [17, 18] adopt
PowerGraph’s GAS programming model [9]. Gunrock [2] is
a more recent library for developing graph algorithms on a
single GPU. Rather than designing an abstraction around
computation, Gunrock instead uses a GPU-specific data-
centric model centered on operations on a vertex or edge
frontier. Wang et al. [2] report that, compared to hardwired
GPU implementations, Gunrock has comparable perfor-
mance to the fastest GPU hardwired implementations and
achieves better performance than any other GPU high-level
graph library. nvGRAPH (nvGRAPH is available at https://
developer.nvidia.com/nvgraph) is a high-performance GPU
graph analytics library developed by NVIDIA. It harnesses
the power of GPUs for linear algebra and matrix compu-
tations to handle the large-scale graph analytics [5]. ,e core
functionality is using semi-ring SPMV operations to express
graph computation [2]. It currently supports three algo-
rithms: PageRank, SSSP, and Single-Source Widest Path.

Compared to CPU graph frameworks, existing high-
level GPU graph frameworks usually gain improved per-
formance due to their strengths in terms of hardware, the
generalized load balance strategies, and optimized GPU
primitives. Nevertheless, the unpredictable control flows and
memory divergence on GPUs caused by irregular graph
topologies need sophisticated strategies to ensure efficiency.
,is can result in relatively low productivity and high
memory consumption.

Somematrix-based frameworks on CPUs, e.g., CombBLAS
[4], GraphMat [3], and PEGASUS [19], have proven that a
vertex-based programming model on CPUs can be established
with a matrix backend for graph programming. Meanwhile,
GPUs have the potential to accelerate sparsematrix algebra due
to theirmemory-bound nature. A variety of optimizations have
been performed to improve the performance of SPMV [20],
one of the most important operations in high-performance
computing (HPC), on GPUs. However, as far as we know,
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existing matrix-based graph analytics on GPUs achieve no-
where near the same performance as these optimized libraries
[21, 22]. In this work, our goal is to achieve high performance
(optimized sparse matrix backend) for graph analytics as well
as the productivity of vertex programming (such as vertex
programming for users) for GPUs.

3. The HPGraph’s Abstraction
and Optimizations

3.1. HPGraph’s Abstraction. HPGraph is based on the idea
that traversals from a vertex can be expressed as an operation
which is similar to dot product, an element of SPMV
routines on the graph adjacency matrix (or its transpose).
Hence, HPGraph maps graph analytics using vertex pro-
gramming to generalized SPMV on the GPU to deliver high
performance. It targets graph operations which can be
expressed as iterative convergent processes. By “iterative,”
we refer to operations which may require running a series of
steps repeatedly, and the results of one iteration are used as
the starting point for the next iteration. By “convergent,” we
mean that the correct answer can be obtained with sufficient
accuracy by these iterations before terminating the process.

HPGraph uses a bulk-synchronous model (BSP) [23]. In
BSP, parallel programs are executed in synchronous phases,
known as supersteps. Such operations are sufficient for
portability and efficiency on the GPUs. Each iteration is a
superstep in HPGraph. Our abstraction differs from other
frameworks, particularly other GPU-based frameworks.
Rather than focusing on sequencing the steps of compu-
tation, we focus on mapping vertex programs to manipulate
data structures. ,e graph primitives we describe in this
paper mainly include three steps: PREPROCESS, SPMV, and
APPLY.

PREPROCESS: in the PREPROCESS phase, the graph is
converted to an adjacency matrix which is stored in the GPU
memory. Furthermore, according to the specific requirements
of graph algorithms, HPGraph generates different property
data for vertices and configures the framework parameters. In
terms of data structures, HPGraph represents all per-node data
as structure-of-array (SOA) data structures, which allow for
coalescedmemory accesses with minimal memory divergence.

SPMV: similar to Giraph [7], HPGraph marks some
vertices (or a single vertex) as having an “active” status. In
each iteration, each vertex only visits and interacts with its
“active” neighbors. Supposing that G is a M-by-N sparse
matrix storing the graph, x is a vector storing user-defined
node properties. In SPMV phase, graph traversal is completed
by generalized SPMV: y � G∗x (or y � GT ∗x).,e vector y
stores the promising new properties of each node, which will
be used in APPLY phase. ,e corresponding operations on
the sparse matrix are based on the idea that visiting the
adjacent vertices can be performed through a dot product
which is described as follows: If a vertex r visits one of its
“active” neighbors, l, along out-edges (r, l ∈ [0, M]), a
function named “gather” will be executed using x[l], G[r][l],
and the properties of these two vertices. Conversely, visiting
along in-edges requires us to perform a transposition firstly
and obtain matrix GT. ,erefore, x[l] and GT[r][l] can be

used directly. ,e “reduce” function will summarize a new
property using the results from “gather” operations and store
it in the resultant array y.,e above process can be substituted
by a dot product in generalized SPMV.

Figure 1 shows a simple example of calculating out-
degrees. A native SPMV operation, which uses an adja-
cency matrix converted from the graph and a vector of all
ones as an input, can produce the out-degrees of all vertices
stored in a vector. Concretely, a vertex visits along the out-
edges with multiplication (i.e., “gather” operation) and adds
(i.e., “reduce” operation) together to obtain its out-degree.

Our abstraction is sufficient to express a large number
of diverse graph algorithms efficiently. Compared to other
SPMV-based GPU graph libraries such as nvGraph,
HPGraph provides convenient expression to algorithms
like Triangle Counting with access to the properties of
vertices in SPMV. On the contrary, such an approach can
remove the need for some atomic operations in a parallel
implementation than other graph-centric abstractions such
as Gunrock and MapGraph. In other GPU programmable
graph frameworks, there could be multiple parallel writers
for the same vertex. ,is process needs atomic operations
to ensure mutual exclusion. In our abstraction, writing data
for an element in the output array is mapped to reduction
for a row using a thread or a segment. With this mapping in
place, HPGraph removes most of the contention, and the
graph traversal and computation are simple and intuitively
described. In general, HPGraph can achieve efficient
implementation using a high-performance approach for
SPMV.

APPLY: based on programmer-specified criteria, an
APPLY step uses the resultant array y from the generalized
SPMV to update the state of the vertices. Meanwhile, it sets
those vertices, whose status has been changed, as “active”
vertices and removes those redundant vertices. HPGraph
performs that operation in parallel across all elements. ,is
parallel scan is regular and well-suited to GPUs.

,e HPGraph computation pipeline is shown in Fig-
ure 2. HPGraph primitives are assembled from multiple
iterations including a sequence of SPMV and APPLY. ,ey
are mainly executed sequentially: one step completes all of its
operations before the next step begins. Typically, HPGraph
graph primitives run to convergence, which usually equates
to no state-changed vertices or no “active” vertices. Besides,
programmers can also specify the maximum number of
iterations. HPGraph will terminate when the number of
iterations reaches the predefined limit.

3.2. Optimizations. Due to our focus on manipulating some
data structures, such as the sparse matrix and vectors, it is
easy to allow for integrating optimizations into our
framework for giving more options to programmers. We
offer four examples.

Sparse Matrix Format: In the PREPROCESS phase, a
large number of graphs are converted into a sparse matrix.
Unlike most other frameworks of graph computing, which
use compressed sparse row (CSR) for graph storage or vertex
operations, we adopt the HYB [24] matrix format to store
the graph throughout the paper.
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For an M∗N matrix with a maximum of K nonzero
elements per row, ELL (ELLPACK format) [25] uses a dense
N∗K array data to store the nonzero values, where rows
with less than K nonzeros are zero-padded. Similarly, the
corresponding column in dices is stored in an index array,
again with zero for padding. It is appropriate for a matrix
with nonzero elements evenly distributed between rows.
COO (coordinate format), a notably simple storage scheme,
uses three arrays, row, col, and data, to store the row indices,
column indices, and values of the nonzero elements in a
matrix, respectively. In our implementation, the row array is
sorted, ensuring that entries with the same row indices are
stored contiguously.

�e ELL format is well-suited for vector architectures.
However, when the number of nonzeros per row varies
widely, there will be a larger number of zero elements which
should be �lled. �is can result in a rapid decline in e�-
ciency. Meanwhile, the required storage for the COO format
is always proportional to the number of nonzeros. Fur-
thermore, this characteristic (the similar properties) extends
to the cost of an SPMV using COO [26]. HYB, a hybrid ELL/
COO storage format, stores some discrete matrix entries in
COO and the majority entries using ELL. Given a sparse
matrix A, N is the number of rows in A and NNZ is the
number of nonzero values in A. De�ne a threshold K, and
the part exceeding K nonzeros in a row is extracted and
stored by COO. And, the remaining part is placed into ELL
in order to minimize zero-padding.�e sparse matrix can be
divided into two parts. One contains the rows with less than
K nonzeros, and the other contains the rows with more than
K nonzeros. �e �rst part is placed into ELL. For the second
part, only K nonzeros in front of those rows with more than

K nonzero elements are placed into ELL. �e remaining
entries of the second part are extracted for storage COO.
Assuming that K � 2, Figure 3 illustrates the HYB repre-
sentation of an example matrix. Bell et al. mentioned in [24]
that, based on empirical results, it is bene�cial to add Kth
column to the ELL if at least one-third of the matrix rows
contain K (or more) nonzeros. We adopt this idea to achieve
the optimal threshold K.

For many (but not all) large graphs, the nonzero values
of the graph adjacency matrix (or its transpose) are mostly
concentrated on a small area. �is is appropriate for HYB
format. At present, HYB has been implemented on GPUs
such as for the functions developed by NVIDIA CUDA
Sparse Matrix library (cuSPARSE) [27] and CUSP [28] for
SPMV, but it has not been implemented for graph analyses
on GPU platforms. Based on the SPMV functions for the
HYB-formatted matrix in the CUSP [28] library, we propose
two kernels, executing operations for two submatrices,
respectively.

Bottom-Up Traversal: Scott et al. [29] described a bottom-
up traversal for BFS on CPUs. Instead of each vertex in the
“active” frontier attempting to become the parent of all its
neighbors, each unvisited vertex attempts to �nd any parent
among its neighbors, which can reduce the total number of
edges examined.�is approach is bene�cial when the number
of unvisited vertices drops below the size of the visited
vertices. Furthermore, HPGraph adapts this and uses a dot
product to �nd these nodes’ predecessors. Speci�cally, in the
ith row of a transpose matrix AT storing a graph, a nonzero
value represents an edge pointing to node i. IfAT[i][j] is valid
and node j is a member of the visited set, node j can be a
parent of i, and we do not need to check the rest elements in
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Figure 1: A simple example for computing out-degree with a SPMV operation. (a) Logical representation. (b)�e adjacency matrix storage
graph. (c) Out-degree calculation using SPMV y � G∗ x. �e out-degrees are stored in the resulted y.
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Figure 2: HPGraph computation pipeline.
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the same row. Meanwhile, any operation for processing the
ith row can be skipped if vertex i has been already visited.
Currently, in HPGraph, this optimization is only applied to
BFS. In future, it could fit other graph algorithms as well.

Memory Access Optimization: in HPGraph, our strategy
for active-status-lookup incorporates a bitmask to reduce
the size of status data from a 32-bit label to a single bit per
vertex, which can reduce the overhead of inspecting a given
vertex’s visitation status [30]. We create two bitmasks,
named active bitmask and x bitmask, respectively. In
PREPROCESS phase, active bitmask is initialized to 0, while
x bitmask is initialized based on the algorithms used. In each
iteration, the SPMV kernels access the array x bitmask

through the texture cache for improving performance. SPMV
uses x bitmask to specify the states of vertices. Once any
vertices changed state, the array active bitmask is atomically
updated to ensure correctness. ,en, the APPLY step updates
x bitmask using active bitmask and resets active bitmasks

before next iteration.
Furthermore, CUDA devices have several kinds of ad-

dressable memory (i.e., registers, shared memory, constant
memory, texture memory, local memory, and global
memory). As illustrated in [24], SPMV operations on GPUs
are highly memory latency bound. ,e indirect memory
access pattern easily leads to statically unpredictable
memory access behavior which is dependent on the input
graphs. In view of this, we utilize the following methods to
optimize device memory access.

We propose to load the read-only data of the HYB-
formatted sparse matrix via the read-only cache on Kepler,
which can benefit the performance of kernels with limited
bandwidth. In terms of the input arrays of the SPMV phase,
which stores vertices states and some bitmasks, they are read-
only for the entire lifetime of SPMVkernels as well. Due to the
frequent and random access to these arrays in SPMV kernels,
we have decided to store them in the texture memory, which
can improve performance and reduce memory traffic.

In general, compared to other GPU computation-focused
abstractions, HPGraph has been an excellent fit for these
alternatives and optimizations, especially for SPMV.

3.3. Programming Interface. In order to facilitate the
implementation of a wide range of graph primitives,
HPGraph provides a series of simple and flexible application
programming interfaces (APIs) (Figure 4). A set of con-
figuration parameters, as the library calls for iteration
control and other functionalities, is initialized in the PRE-
PROCESS phase. ,e user-defined functions will then be
integrated into SPMV or APPLY kernels calls. In terms of
hiding any complexities concerning how these steps are
internally implemented, our proposed framework achieves
high programmability and productivity. Users need to write
only C++ code to use the framework.

4. Applications

One of the principal advantages of HPGraph’s abstraction is
that SPMV and APPLY can be composed to build various
graph primitives with minimal unnecessary work. We de-
scribe below how we express each primitive in HPGraph.

4.1. Breadth-First Search (BFS). BFS is one of the most
important graph algorithms and often used in conventional
searches, such as web crawling. It aims to explore all the
vertices connected from the source. It starts from a given
source and iteratively expands to find all the reachable
vertices. In HPGraph, the properties for each vertex include
“depth,” which shows the minimum number of edges that
need to be traversed from the source to a particular vertex
and “parent” which shows the predecessor vertex’s ID. One
can think of the algorithm as performing the following
computation once per vertex per iteration:

depth(i) � min
j|(j,i)∈E

depth(j) + 1. (1)

BFS initialized all depths to infinity, except the starting
vertex, which is set to 0. We implement a more efficient
“bottom-up” traversal mode (see Section 3.2 for details) for
reducing the concurrent discovery of child nodes. In BFS,
since any race condition between edges visiting a vertex is
benign, HPGraph only requires flags for visited and un-
visited vertices. When a vertex’s predecessor is discovered,
we set its predecessor ID in the SPMV phase and its depth in
the APPLY phase. Nodes are never revisited in a later it-
eration. So, by recording the vertices visited in every iter-
ation, it is easi to get the actual path finally.

4.2. Single-Source Shortest Path (SSSP). In a directed and
weighted graph with an appointed source vertex, SSSP
computes the shortest path and its lengths between source
and destination vertices. Many efficient solutions for this
problem have been put forward, while we use a method
which is a slight variation on the Bellman–Ford shortest path
algorithm used in the LonestarGPU graph library [31].
Compared to BFS, SSSP maintains distances, representing
the minimum edge weights needed to reach a vertex from
the source, rather than depth. If a new distance is updated,
this vertex may be revisited in a later iteration. ,erefore,
SSSP necessitates recording edge weights, the distances of
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Figure 3: An example of the HYB format (assuming K � 2).
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all nodes. Algorithm 1 describes in detail how it maps to
HPGraph’s abstraction. In our proposed abstraction, the
distance of the source vertex is initialized as having 0, while
all the other vertices are initialized to a∞ value. HPGraph
accesses all associated in-edges for each vertex and uses the
“active” ones (whose distances are changed in the last it-
eration) attached to those edges to relax the distance’s value
(if necessary). We use an atomic operation to retain a bit-
mask associated with the updated vertices to remove the
redundant vertices. �e same process repeats until con-
vergence is achieved.

4.3. PageRank (PR). PageRank is an algorithm which is used
to rank web pages according to their popularity for esti-
mating the importance of them. �is application iteratively
computes the page rank of every vertex in a directed graph.
�e ranks of the pages are recursively in§uenced through the
hyperlinks and are updated by the following equation in
each iteration until convergence is achieved:

PR(v) � d +(1− d)∗ ∑
u|(u,v)∈E

PR(u)
C(u)

, (2)

where E is the set of edges in a directed graph, PR(v) is the
page rank of page v, PR(u) is the page rank of page u which
links to page v, C(u) is the number of links on page u, and d
is a damping factor which can be set between 0 and 1.
Furthermore, we set the initial rank of every vertex to 1.0.
HPGraph computing the out-degree of each vertex in the
PREPROCESS phase. All vertices are initialized as “active” in
the graph. �e SPMV phase calculates the sum of the
weighted received across in-edges, and the remainder is
completed in APPLY phase. We use a bitmask array to
remove the vertices whose page ranks have already achieved
convergence.

4.4.TriangleCounting (TC). Triangle Counting in graphs is a
statistics algorithm which is frequently used in complex
network analysis, random graph models, and important
real-world applications such as spam detection, uncovering
the hidden thematic structures in the Web and link rec-
ommendation [32]. In HPGraph, we view TC problem as a
set intersection problem based on the idea that a triangle
exists when a vertex has two adjacent vertices that are

adjacent to each other [3]. We change the input graph to be
directed acyclic for TC. For a given directed graph with no
cycles, the size of the intersections gives the number of
triangles in the graph. Speci�cally, let the intersections
between the neighbor lists of u and v be (w1, w2, w3,
w4, . . . , wN, ), where N is the number of intersections. �en,
the number of triangles formed with e is N, where the three
edges of each triangle are (u, v), (wi, u), and (wi, v) (i ∈
[1, N]). In general, the TC algorithm in HPGraph has two
stages: �rstly, HPGraph forms neighbor lists for all vertices;
secondly, it computes the size of set intersections.

5. Experiments and Results

5.1. Experimental Setup. Experimental Platform: we ran all
experiments described this paper on a Linux workstation
with two Intel(R) Xeon(R) CPU E5-2620 CPUs, each with
6 cores running at 2.40GHZ. And, we conduct our GPU
experiments, complied with CUDA Toolkit 8.0, on a NVIDIA
Tesla K40m GPU. K40m is equipped with 2,880 stream cores,
12GB on-board memory, and memory bandwidth up to
288GB/sec. �e GraphMat was compiled using the Intel
ICPC 17.0.4 compiler. All tests were executed 10 times with
the average runtime used for results.We report the time taken
to run the graph algorithms after loading the graph into the
GPU or CPUmemory (excluding the time taken to allocating
resources or reading the graph from disk). Meanwhile, we
show the millions traversed edges per second (MTEPS) for
both BFS and SSSP.

Datasets: Table 1 provides the base characteristics of
the datasets used in our experiments. �e chosen datasets
include both real-world and generated graphs, and the to-
pology of these datasets spans from regular to scale-free.
Data on LiveJournal1, Youtube, Pokec, and Orkut are col-
lected from social networks; Kron_g500-logn21 is a gener-
ated R-MAT graph. �ey are all scale-free graphs with
diameters of less than 25 and unevenly distributed node
degrees, while roadNet-CA has relatively larger diameters
with small and evenly distributed node degrees [33].
MapGraph, nvGRAPH, and Galois have not done the work
for TC. And, although Gunrock has mentioned its experi-
ment for TC on [34], its open-source repository does not
include this part. So, we merely compare the HPGraph’s
performance of TC to that of GraphMat. �e edge weight

Parameters

Edges_type Visit along in-edges, out-edges, or all-edges

Max_iteration The max number of iterations to perform

Node_property The algorithm-specific property data of vertices

Functions

Gather Operations in SPMV phase for interacting with “active” neighbors

Reduce Operations in SPMV phase for producing a resulted vector 

Update Operations in APPLY phase for updating states of vertices 

Figure 4: HPGraph’s API set.
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values (used in SSSP) for each dataset are random values
between 1 and 64.

5.2. Performance Results

5.2.1. HPGraph vs. GPUGraph Libraries. For BFS, SSSP, and
PageRank, we compared the performance of HPGraph to
that of three state-of-the-art high-level GPU graph analytics
frameworks: MapGraph, Gunrock, and nvGRAPH. ,e
comparison results are shown in Table 2.

,e geometric mean values of HPGraph’s accelerations
over MapGraph on BFS, SSSP, and PageRank are 2.4, 2.8,
and 1.8, respectively. For Gunrock, they are 1.3, 1.1, and 6.4,
respectively. From Table 2, it is clear that HPGraph’s per-
formance is comparable or even superior to that of Map-
Graph and Gunrock on BFS and SSSP. However, we noticed

that for roadNet-CA, HPGraph is about 1.7x slower than
MapGraph and 3.0x slower than Gunrock.,is performance
inconsistency is due in part to the issue that BFS or SSSP on
the small-degree large-diameter graphs requires taking a lot
of iterations to finish with each iteration merely updating a
limited number of vertices. For example, we need over 500
iterations before reaching converged in roadNet-CA. As a
result, HPGraph, which has a relatively bigger per-iteration
overhead, performs poorly. In terms of PageRank, HPGraph
significantly outperforms MapGraph and Gunrock. In
general, HPGraph shows greater acceleration on PageRank,
which has dense computation and more regular frontier
structures [2] than traversal-based graph primitives (BFS
and SSSP).

For SSSP, nvGRAPH is slower than HPGraph on all
datasets (average of 4.3X). For PageRank, HPGraph ach-
ieves comparable performance with nvGRAPH (average of

(1) procedure PREPROCESS GT, P, active bitmask, root

(2) P.distance [1..GT.vertices]⟵∞
(3) P.distance[root]⟵ 0
(4) reset_vertex_active(1..GT.vertices)
(5) set_vertex_active(root, active_bitmask)

(6) end procedure
(7)
(8) procedure Generalized_SPMV GT, P, y, active_bitmask
(9) for v � 1⟶ GT.vertices do
(10) temp⟵ P.distance[v]

(11) for u � 1 in GT.columnv do
(12) if check_vertex_active(u, active_bitmask) then
(13) temp⟵ Gather(temp, P.distance[u], GT[u, v])

(14) end if
(15) end for
(16) y⟵ Reduce(P.distance[v], temp)

(17) end for
(18) end procedure
(19)
(20) procedure Gather temp, a, b
(21) return min(temp, a + b)

(22) end procedure
(23)
(24) procedure Reduce a, b
(25) return min(a, b)

(26) end procedure
(27)
(28) procedure APPLY P, y, active_bitmask
(29) for v � 1⟶ GT.vertices do
(30) reset_vertex_active(v, active_bitmask)

(31) if update(y,P. distance[v]) then
(32) P.distance[v] � y

(33) set_vertex_active(v, active_bitmask)

(34) end if
(35) end for
(36) end procedure
(37)
(38) procedure Update a, b
(39) return (a< b)

(40) end procedure

ALGORITHM 1: Single-Source Shortest Path, expressed in HPGraph’s abstraction (G is the graph and P is the properties of vertices).
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1.0X). Specifically, nvGRAPH is faster than HPGraph on
four datasets and slower on three (Youtube, Pokec, and
roadNet).

5.2.2. HPGraph vs. CPU Graph Libraries. We compared the
performance of HPGraph to that of two advanced CPU
graph libraries: Galois [10–12], a high-performance-task-
based framework; GraphMat [3], a high-performancematrix
programming framework. Both use the entire system (24
cores). As Figure 5 shows, HPGraph is significantly faster
than both Galois and GraphMat. Compared to Galois,
HPGraph’s performance is generally better in most of the
tested cases, and it achieves 4.1-6.3x speedup over the range
of algorithms and datasets. While against GraphMat,
HPGraph provides 4.6x speedup on all primitives (average
of 3.4x for BFS, 5.4x for SSSP, 5.1x for PageRank, and 3.2x
for TC).

5.3. Effect of Optimizations. Figure 6 shows the performance
effect of our optimizations (described in Section 3) for BFS

(running on LiveJournal) and PageRank (running on
Kron_g500-logn21). We use an implementation with CSR-
based generalized SPMV as the baseline naı̈ve version. ,e
first bar shows the baseline näıve implementation normal-
ized to 1. Adding bitmask arrays to mark “active” vertices
and memory access optimization provides few benefits as
shown in the second bar. ,is enables better parallel scal-
ability. ,e third bar indicates that the HYB-formatted
sparse matrix results in a further gain of 2.5x for BFS and
1.95x for Pagerank. ,e direction-optimal traversal strategy
(mentioned in Section 3.2) also works better for BFS. Similar
results were obtained for other algorithms and datasets as
well. In general, our flexible GPU-specific programming
model, which allows for integrating efficient optimizations,
including faster matrix operations and more effective graph
traversal, can make HPGraph productive without sacrificing
any performance.

5.4. Discussion of Performance. ,ese two GPU BFS-based
high-level-programming-model efforts (both MapGraph and
Gunrock) used for comparison adopt load-balancing

Table 1: Dataset descriptions.

Dataset Vertices (M) Edges (M) Max/avg. degree Diameter
LiveJournal Davis and Hu [35] 4.8 68.9 2.7 k/14 16
Youtube Leskovec and Krevl [36] 1.1 2.7 29 k/3 20
Pokec Leskovec and Krevl [36] 1.6 30 14.9 k/27 11
sx-stackoverflow Leskovec and Krevl [36] 2.6 63.4 38 k/48 9
Orkut Rossi and Ahmed [37] 3 106 27 k/70 9
Kron_g500-logn21 Davis and Hu [35] 2 91 214 k/86 6
roadNet-CA Davis and Hu [35] 2 5.5 12 k/2 849

Table 2: Performance comparison (runtime and edge throughput) between GPU implementations.

Alg. Dataset
Runtime (ms) (lower is better) Edge throughput (MTEPS) (higher is better)

MapGraph Gunrock HPGraph nvGRAPH MapGraph Gunrock HPGraph nvGRAPH

BFS

LiveJournal 111 63 68 622 1095 1015
Youtube 28 18 13 107 166 230
Pokec 35 32 30 875 957 1021

sx-stackoverflow 170 115 34 374 552 1868
Orkut 165 216 120 645 492 886

Kron_g500-logn21 133 18 27 685 5058 3372
roadNet-CA 180 69 173 31 80 32

SSSP

LiveJournal 280 71 122 348 246 972 566 198
Youtube 40 16 13 59 75 187 230 51
Pokec 128 39 45 165 239 785 681 186

sx-stackoverflow 280 131 58 180 227 485 1095 353
Orkut 540 230 135 920 197 462 788 116

Kron_g500-logn21 38 19 26 201 2396 4742 3502 379
roadNet-CA 110 64 186 351 50 86 30 12

PageRank

LiveJournal 52 55 28 20
Youtube 4 50 2 4
Pokec 34 60 13 14

sx-stackoverflow 63 63 23 18
Orkut 29 174 42 30

Kron_g500-logn21 61 165 34 20
roadNet-CA 5 7 4 5

All PageRank times are normalized to one iteration. Best results for each example are shown in bold.
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strategies from Merrill et al.’s BFS [38]. Without its optimi-
zation methods, we still expect HPGraph to show similar
performance on all graph primitives as these other frame-
works. With mapping the vertex programs to generalized

sparse matrix operations, HPGraph supports better sparse
matrix format, efficient graph traversal, and memory access
optimizations. All these reasons result in the superior per-
formance on average warp efficiency of HPGraph’s SPMV
kernels across all algorithms and datasets (shown in Table 3).
Average warp efficiency means the fraction of threads active
during computation, which is a good measure of load-
balancing quality.

On the contrary, nvGRAPH uses a similar matrix
backend as HPGraph, but HPGraph still outperforms
nvGRAPH especially in SSSP. ,e primary cause for this is
that we have heavily optimized our generalized SPMV
backend as described in Section 3. Since nvGRAPH is a
closed-source, a detailed comparison is infeasible. Fur-
thermore, as shown in [6], some graph computations, such
as Triangle Counting, are hard to express efficiently as a pure
matrix operation which leads to long runtimes and increased
memory consumption. ,at is probably the main reason
why nvGraph has not done the work for Triangle Counting.
With allowing the properties of vertices to be visited during
SPMV, HPGraph completes efficient implementation for
Triangle Counting and shows better productivity.
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Figure 5: Summary of the performance improvement of HPGraph over GraphMat and Galois on four algorithms. (a) BFS. (b) SSP.
(c) PageRank. (d) TC.

0

1

2

3

4

Naïve +Bitmask and
memory access

optimization

+HYB +Direction.
optimal

Cu
m

ul
at

iv
e s

pe
ed

up

BFS/LiveJournal1
PageRank/Kron_g500-logn21

Figure 6: ,e effect of optimizations performed on naive imple-
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strategy is only used for BFS).
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6. Conclusions

Graph analytics have been widely applied in many appli-
cations [39, 40]. In this paper, we have presented HPGraph,
a GPU graph analytics framework which maps a vertex
programming to an optimized matrix backend. Such a
model provides both high performance and produc-
tivity. Since the main computational method is based on
SPMV, HPGraph can achieve improved performance using
modified high-performance SPMV primitives. Furthermore,
HPGraph’s abstraction has allowed us to integrate various
optimization strategies including data structures, direction-
optimal traversal, and memory access. Meanwhile, the high-
level abstraction allows users to complete various graph
primitives with little effort. ,e experimental results on
large-scale graphs show that HPGraph runs significantly
faster than the advanced CPU library and can match or even
exceed the performance of other state-of-the-art pro-
grammable GPU graph libraries. Since the available GPU
memory is still the bottleneck for bigger datasets in
HPGraph, in future work, we expect the framework to scale
well from a single GPU version to multi-GPU clusters.
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