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POI recommendation finds significant importance in various real-life applications, especially when meeting with location-based
services, e.g., check-ins social networks. In this paper, we propose to solve POI recommendation through a novel model of
dynamic tensor, which is among the first triumphs of its kind. In order to carry out timely recommendation, we predict POI by
utilizing a completion algorithm based on fast low-rank tensor. Particularly, the dynamic tensor structure is complemented by the
fast low-rank tensor completion algorithm so as to achieve prediction with better performance, where the parameter optimization
is achieved by a pigeon-inspired heuristic algorithm. In short, our POI recommendation via the dynamic tensor method can take
advantage of the intrinsic characteristics of check-ins data due to the multimode features such as current categories, subsequent
categories, and temporal information as well as seasons variations are all integrated into the model. Extensive experiment results
not only validate the superiority of our proposed method but also imply the application prospect in large-scale and real-time POI
recommendation environment.

1. Introduction

+e mobile recommendation system has played an in-
dispensable role in people’s daily life. For instance, people
naturally put up mobile phone to find the restaurants to eat,
stores to go, and amusement parks to spare the time. With
the proliferation of global positioning system (GPS),
location-based social networking services (LBSNs),
e.g., Foursquare, Facebook Places, Google Places, and so on,
tighten the relationships among people. +rough these
platforms, people can easily access the information of
popular points of interest (POI) which might well cater to
their preferences.+erefore, comprehensive analysis of POIs
via online check-ins data can make recommendation more
accurate and suitable for people’s need.

Accurate and prompt recommendation is the key
component of an ideal POI recommender system. For ex-
ample, when a user just leaves the train station at summer

night, hotels and restaurants, rather than bars and night-
spots, should be recommended due to the common sense
that searching for places to settle down is the priority even
though he or she is a king or queen of nightclub. +e sit-
uation can be briefly described in Figure 1. Subsequently,
after a short rest, bars or nightspots will appear in the user’s
recommendation list when he/she tries for another search.
Plus, if the user arrives at noon, the system should ac-
cordingly recommend dessert shop or cafe instead of
nightspots. Also, different seasons may lead to different
recommendation in the same situation, such as hot pot
restaurants in the freezing winter and cold drinks shops in
the scorching summer.

Credible POI recommendation heavily relies on user
check-ins data. In order to meet the real-time nature of the
task, conventional methods usually resort to matrix fac-
torization to solve the sparsity of user-POI matrices [1, 2].
However, intrinsically speaking, check-ins data contain
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multimode information, which is a feature overlooked by
existing methods. To put it in other words, the methods
based on matrix factorization suffers from the limitation
that the information of check-ins data is not fully made use
of and the usage mainly focuses on low-dimensional
patterns, thereby sacrificing the high-dimensional pat-
terns of data.

Intuitively, if a model handles data with higher di-
mensions, it can mine more information and the prediction
result can accordingly become more accurate and reliable [3].
It has been shown in recent studies that tensor, a matrix with
high-dimensional expansion, can better explain multimode
data in comparison to other structures [4]. Consequently, the
methods based on tensor are proposed to tackle POI rec-
ommendation problems. Since data are fixed in different di-
mensions, for instance, only users’ current location and next
location data are presented as a 2-way tensor, and the simi-
larity are calculated between users or between locations. Based
on the similarity, the model recommends the locations visited
by other users. Owing to higher number of appended di-
mensions, the prediction performance of tensor-based
methods overmatches the matrix-based methods [5].

Consequently, there are many methods based on tensor
factorization put forward to improve the performance.
Cheng et al. first added the successive time-stamp in the
POI recommendation. +ey put forward the next per-
sonalized POI recommendation problem; a check-in tensor
is constructed and factorizing personalized Markov chain
(FBMC) is harnessed [6] to restrict the movement. To
recommend to users the most possible successive POIs,
a spatial-temporal latent ranking model, which highlights
the significance of time, is put forward by Zhao et al. [7].
Nonetheless, previous methods neglect the personalized
factor and fail to combine the location information with
real-time situations. Li et al. [5] proposed time-aware
factorizing personalized Markov chain (TA-FBMC),
where they adopt a 4-dimension tensor to store spatial
and temporal characteristics of check-ins data. +e rele-
vance between two successive check-ins is explored, and
a time-decay factor is leveraged to weigh short-time in-
terval and long-time interval check-ins data in prediction.

Despite the superiority of TA-FBMC, there are at least
two shortcomings:

(i) Model Complexity. +e whole model is constructed
upon a static tensor, which means they put all check-
ins data in each calculation. Although TA-FBMC
contains the time-decay factor to decline the effect of
primal data, the computing complexity is the same
and the value of the factor is hard to decide.

(ii) Redundancy Caused by User Dimension. +e user is
regarded as an extra dimension, which not only
artificially expands the scale of data but also diverts
from the fact that people tend to seek for uniformity
in the big data background. Additionally, when
a new user enters the recommender system, the
personalized feature fails to yield promising
performance.

Consequently, a clear gap between existing research and
potential application can be identified.

In this article, we investigate to close the gap by de-
veloping a more accurate approach, namely, Prido (POI
recommendation via dynamic tensor), which makes full
advantage of multimode check-ins data so as to improve
the performance of POI recommendation. Specifically, in
accordance with the successful application of tensor in the
field of recommendation, we conceive a dynamic tensor
model for POI recommendation. On top of it, we also
develop a heuristic tensor completion method, which is on
the basis of low-rank tensor completion approach. In
contrast to existing approaches, Prido considers more
features—current category mode, next category mode,
month mode, and temporal mode—of check-ins data, and
leverages more advanced tensor completion algorithm with
effective optimization strategy, for higher accuracy and
efficiency. As to empirical assessment, we conduct exten-
sive experiments on real-world data and compare the
proposed method with a number of state-of-the-art
methods. +e empirical results prove that Prido re-
markably improves the overall performance in comparison
to the competitors.

1.1. Contributions. As a nutshell, the contributions of the
article can be summarized to four ingredients:

(a) We propose to model POI recommendation with
a dynamic tensor structure to exploit all available
feature aspects, which is, to our best knowledge,
among the first attempts

(b) A 4-dimension tensor is constructed to capture
users’ preference between two successive categories
in different seasons and different hours

(c) +e category information is recommended by
leveraging a fast low-rank tensor completion
method, equipped with pigeon-inspired algorithm to
optimize the parameters and

(d) +e proposed method is validated on real-world
check-ins datasets and demonstrated to offer re-
markable improvement over alternatives as far as
efficiency and accuracy are concerned

Summer 10pm

Where to go
next?

Figure 1: Sketch of POI recommendation problem.
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1.2. Organization. Section 2 overviews related works on
various recommendation methods in the domain of POI
recommendation. After necessary background knowledge,
the proposed method Prido is introduced in Section 3 in-
cluding specific model and algorithms. Experimental studies
are reported in Section 4, and the conclusion is elaborated in
Section 5.

2. Related Work

As a special form of item recommendation, POI recom-
mendation, which converts the online check-ins data into
physical behavior suggestions, helps both academic and
industrial development. +us, a large number of methods
are devoted to dealing with POI recommendation task.

Collaborative filtering (CF) was used to handle the POI
recommendations problem in [8], which then became
a widely used technique and was developed persistently. CF-
based systems can be roughly divided into two parts,
i.e., memory-based CF systems and model-based CF sys-
tems. In the former, there are also two subclasses, i.e., (1)
user-based systems, which calculated the similarity between
each pair of users [9] and (2) item-based systems, which
computed the similarity between each pair of items [10]. As
for model-based CF, it was developed in another direction,
in which data mining techniques were added into the system
so as to boost performance. Cheng et al. proposed a method
which fused matrix factorization with geographical and
social influence factors for POI recommendation [11].
Meanwhile, Gao et al. utilized the social network in-
formation to deal with the cold-start problems [12]. Note-
worthy is that these CF models could not reveal the
multifeatures of check-ins data. +erefore, the methods
failed to deal with the data sparsity issue.

Recently, people pay more attention to the expansion of
factors so as to enhance the explanatory power of the
model. Based on Bayesian network, Park et al. introduced
user profile to evaluate the matching between user profiles
and restaurant profiles and output recommendation results
in accordance to the matching scores [13]. +en, Ye et al.
took advantage of a power-law distribution, including
geographical influence, to achieve more accurate POI
recommendation [14]. A combination of kernel density
estimation and geographical influence was proposed by
Chow to model the check-in behavior [15]. Zhang and
Chow adopted a contrived gravity model to exploit the
spatiotemporal sequential influence on location recom-
mendations [16]. Yuan et al. incorporated the time factor
when computing the similarity between two users in terms
of the historical check-ins at the same time [17]. +e
significance of social impact on POI recommendation has
also been presented in previous studies, through which the
quality of long-term recommendation can somehow be
improved [18]. With geographical correlations, social
correlations, and categorical correlations among users and
POIs taken into consideration, Zhang and Chow in-
troduced a kernel estimation method to tackle POI rec-
ommendation [19]. Transforming the linear model into
a nonlinear model, Zhang et al. proposed a matrix

factorization method to learn the most potential in-
teractions among two or more attributes [20]. However,
previous models all transform the POI problems into
a geographical feature in traditional item recommendation
tasks, where the intrinsic relations of check-ins data are
neglected.

Despite the boom of neural networks and their suc-
cessful applications in many fields, there is little progress
in the POI recommendation domain, for the heterogeneity
nature of check-ins data, where the transformation of
input may increase the complexity of the model. Among
various neural networks, recurrent neural networks
(RNN) have been proved to outperform other methods in
modeling sequential data of arbitrary length with its re-
current calculation of hidden representation [21]. Chen
et al. proposed to detect users’ interests from their
location-based tweet and then established the mapping
between locations and user interests [22]. Liu et al.
modeled users’ check-ins data in a sequential manner and
then utilized RNN to solve the recommendation problem
[23]. In the mean time, Zhang et al. proposed nonlinear
transformation to extract the user-based and POI-based
spatial intents, respectively, to tackle the cold-start
problem [24]. Among others, graph-based approaches
[25] may also be applied to location-based social networks
but not yet in POI recommendation.

Over the recent years, tensor, the high-dimensional
expansion matrix, is proved to have prominent advantage
when compared with other methods in terms of explaining
data with multimode [3, 4], for instance, it has been suc-
cessfully applied to traffic flow prediction [26]. Illuminated
by traditional tensor completion methods, new solutions
such as CP, Tucker, tensor train [27], and tensor network
[28] were proposed to optimize the structure of tensor
methods. Undoubtedly, it is hard for a solution to overmatch
the others over all scenarios since different POI recom-
mendation tasks require different models to capture the core
of problem and the fittest models ought to deal with diverse
realistic demands. In order to fully exploit the latent patterns
of data, we proposed Prido in this paper, which is validated
to achieve promising outcomes.

3. Methodology

In this section, the dynamic tensor model is elaborated,
followed by the introduction of the tensor completion al-
gorithm for personalized tensor, followed by the pigeon-
inspired parameter optimization procedure.

3.1. Dynamic Tensor Model for Category Prediction. +e
fundamental knowledge of tensor is detailed at first, and the
dynamic tensor model designed for personalized recom-
mendation is then presented.

3.1.1. Tensor Basics. Tensor is a high-dimensional data
representation, the expression of which can be 1-mode
(vector) and 2-mode (matrix). A tensor with n-mode is
denoted as X ∈RI1×I2×...×In , where In represents mode n
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quantity, and the specific elements are x(I1 ,...,Ik), where
1≤ k≤ n. As for the matriculating operator, the target of
which is to unfold a tensor into a matrix is denoted as
unfold(X, n) � X(n) and the elements of the tensor
(I1, I2, . . . , In) is mapped to the matrix element (In, J), where

J � 􏽙
k−1

m�1,m≠n
Im. (1)

+e reverse of matriculation is represented by
fold(X(n), n) � X similarly.

Specifically, the primary task of tensor unfolding is di-
mension reduction, turning it into a matrix. Instead of
sampling eigenvalues simply from one order after another,
tensor unfolding samples them from different orders in an
alternating way to realize the transmission and the blending
among eigenvalues from different orders in a tensor. For
example, unfolding a tensor of 4 × 3 × 2 in the first di-
mension will get a 4 × 6 matrix, of which the six columns are
constituted from the second and the third orders’ eigen-
values alternately. As regards to tensor folding, it is the
inverse operation of unfolding.

+e product of two tensors with the same size
A,B ∈R(I1×I2×···×IN) is defined as the sum of the products of
their entries,

(A,B) � 􏽘
i1

􏽘
i2

. . . 􏽘
iN

a i1 ,i2 ,...,in( )b i1 ,i2 ,...,in( ). (2)

With regard to any 1≤ n≤N, the product between
matrix M ∈RJ×In and tensor A ∈R(I1×I2×···×IN) is denoted
as A× nM, which is further converted to the product of
matrices,

Y � A× nM⇔Y(n) � MA(n). (3)

+e Frobenius norm of a tensor is denoted by
||X||F �

������
(X,X)

􏽰
. Evidently, XF � ||X(k)||.

3.1.2. Tensor Stream. Tensor stream is represented by a se-
ries of tensors, denoted by (X1,X2, . . . ,XT), where each
Xt ∈R

(I1×I2×···×Im), with 1≤ t≤N. +e series is indexed by
time, which is presented in Figure 2. Dynamic tensor blocks
D(t) � (XT0

, . . . ,XTt
) with each XTt

∈RI1×I2×···×Im+1 are
denoted by means of the combination of tensors in tensor
stream from the initial one, as Figure 3 shows.

Since the Foursquare datasets possess temporal traits,
evidently the adjacent historical data are crucial for im-
proving overall performance. As a result, the prediction of
category recommendation can be transformed into tensor
structure completion task.

3.1.3. Dynamic Tensor. Our goal is to offer specific user POI
recommendations during the selected time period, on the
basis of the existing data. Considering that the category
dataset merely contains check-ins data, by comparing FBMC
[6], FBMC-LR [29], and TA-FBMC [5], we choose the
probability formula in TA-FBMC to perform data trans-
formation. Adopting the average of locations probability,
which reduces repetitive computation of categories,

TA-FBMC sharply saves the time cost and the equation is
formalized as

P c lt+1( ) C lt( )

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓 �
1

C lt( )
􏽘

c lt( )∈Clt

P c lt+1( ) c lt( )

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓. (4)

+e soundness was proved in [5].
P(c(lt+1) | c(lt)

) represents the probability of all users
leaving current category c(lt)

and entering next category c(lt+1)

at Tb. L � [l1, l2, . . . , ln] denotes the set of locations, and C

denotes the set of location categories, where C(lt)
represents

the set of categories lt might belong to. c(lt)
∈ C(lt)

means
the category of current location lt, and c(lt+1) ∈ C(lt+1) rep-
resents the category of current location lt+1. According to
real-life schedules, we divided 24 hours of a day into 6
intervals, before dawn (T1 � [2, 3, 4, 5]), forenoon
(T2 � [6, 7, 8, 9]), noon (T3 � [10, 11, 12, 13]), afternoon
(T4 � [14, 15, 16, 17]), evening (T5 � [18, 19, 20, 21]), and
night (T4 � [22, 23, 24, 1]).

A tensor with 4-way is utilized to construct the category
data, including current categories, next categories, months,
and time periods. +e whole structure accordingly is con-
verted to Bt ∈R

cc×nc×t×m, where cc and nc represent the
current categories and next categories, t denotes the day
intervals, and m is the number of historical months. +e
structure is further elaborated in Figure 4.

Furthermore, we elaborate the dynamic tensor as
follows. Existing category dataset with missing data con-
stitutes BTt

t , which is used for predicting BTt

t . +e trans-
formation can be expressed as

BTt

t � f BTt

t􏼒 􏼓. (5)

In the forecasting phase, the dynamic tensor updates
itself by refreshing BTt

t with the prediction result of BTt

t . +e
new BTt

t is defined as BTt+1
t , and the size of BTt+1

t is fixed in
(cc, nc, t, m). In other words, prediction data take the place
of the primary data.

T

T + 1

T + 2

T + 3

Figure 2: Sketch of tensor stream.
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After predicting the missing data, the current category
data integrity will be improved; the number and the length of
utilized data will also get enhanced.

In a nutshell, the overall algorithm concerning the
structure of dynamic tensor completion is encapsulated in
Algorithm 1.

Firstly, we input the existing sets Tt and target time t∗
into the model as the initial data and expected targets.
Dynamic tensor Bt, prediction sets Tt, and
at � (α1, α2, . . . , αn) are combined to ensure the processing
�ow. �en, with a0 initialized as (1/n, 1/n, . . . , 1/n), the
procedure of Prido starts. According to existing data BTt

t and
former parameters at−1, PIO can determine the current
optimal parameter at. Taking at as input, FALRTC
completes BTt

t and outputs current result BTt
t . In accordance

with the nature of dynamic tensor, we refresh the original
dataBTt

t with the predicted resultBTt
t as existing dataTt+1 for

the next round. �en, time t proceeds to t + 1. Prido will
repeat the operation until reaching the target time t∗. Finally,
the prediction in t∗, Tt∗ , can be obtained.

�us far, we have not explained the intrinsic charac-
teristics of PIO and FALRTC, which will be covered in the
following subsections.

3.2. Fast Incremental Tensor Completion. A tensor comple-
tion algorithm to realize fast dynamic tensor completion is
proposed so as to cope with POI recommendation task.

3.2.1. Optimization Formulation. Current heuristic methods
such as Tucker decomposition [4] and CP decomposition
[30] aim at transforming tensor into other kinds of data
structures. Especially, in CP decomposition, tensor
A ∈Rn1×n2×... nd is represented by a larger r as the linear
combination of r tensors (vectors) with rank-1:

A �∑
r

i�1
λiα

1
i ⊗ α

2
i ⊗ . . . α

d
i ,

min
X,α1...αn

: λi X− α
1
i ⊗ . . . α

n
i

����
����
2
F,

s.t. XΩ � DΩ.

(6)

As far as Tucker decomposition is concerned, tensor
A ∈Rn1×n2×... nd is decomposed into matrices
U(m) ∈R

Im×Jm(1≤m≤d) and one small core tensor
G ∈RJ1×J2×...×Jd :

A � G×1 U(1) ×2U(2) × . . .×d U(d),

min
X,G,U(1)...U(n)

:
1
2

X−G×1U(1) × . . .×n U(n)
∣∣∣∣

∣∣∣∣
∣∣∣∣

∣∣∣∣2F,

s.t. XΩ � DΩ.

(7)

�ese methods require data structure transformation.
But as this process goes, the error gradually accumulates
because of the accompanied inevitable distortion of the
original dataset.

……

……Tensor stream

Selected time X(t) X(3) X(2) X(1)

Dynamic
tensor blocks

Figure 3: Sketch of dynamic tensor blocks.
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Unlike traditional methods, we focus on dynamic tensor
completion, in which low computational costs, fast con-
vergence, and high accuracy are required. Consequently, the
fast low-rank tensor completion algorithm, namely,
FALRTC [31], is harnessed, which proves to be more effi-
cient compared with other approaches.

3.2.2. Algorithmic Solution. In order to improve conver-
gence speed and tackle the tensor trance normminimization
problem, FALRTC is put forward.

With regard to POI recommendation, Dt ∈R
J1×J2×J3×J4

for current category, next category, and seasons and interval
modes is considered as the basic element for computing.+e
specific task is to work out the optimization problem,
presented as follows:

min
X(t)

: f(X) ≔ 􏽘

4

i�1
αi X(i)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌∗,

s.t. XΩ � DΩ,

(8)

where αi is the constant satisfying αi ≥ 0 and 􏽐
​ n
i�1αi � 1. +e

difficulty of efficiently solving the optimization problem is
mainly caused by the nonsmooth terms in the equation.

+e convergence rate can be reduced to O(K−1/2) by
substituting gradient information with subgradient in-
formation, and K refers to the number of iterations [32].
However, this value for minimizing general functions is
O(K−2) [32]. In order to solve a nonsmooth optimization
problem [33], FALRTC aims to (1) transform the original
check-ins data into smooth data and (2) tackle the smooth
problem, and the solution is utilized to cope with the original
problem. Liu et al. [31] provides detailed introduction.

3.3. Parameter Optimization Procedure. +e optimization
algorithm applied to each dynamic completion parameter
optimization is developed in this section.

We mainly utilize the pigeon-inspired optimization
(PIO) to optimize the parameters of the dynamic tensor
completion method and pinpoint the patterns of each step.
As introduced in [34], PIO, which is a population-based
swarm intelligence algorithm, imitates pigeons’ navigation
homing behavior. In the algorithm, Duan and Qiao adopted
two operators to describe two stages of the homing
phenomenon.

3.3.1. Map and Compass Operators. In the first stage, pi-
geons can briefly picture the topographic map in the head by
means of magnetic sense. +ey take the height of the sun as
compass to modify flight path. After approaching the des-
tination, the dependence on the sun decreases.

3.3.2. Landmark Operator. In the second stage, when
approaching the destination, the pigeons take more atten-
tion on the landmark. When spotting the familiar building,
they will fly straightly to the goal. Otherwise, they will follow
leaders that are familiar with the landmark.

Similarly, in the beginning, PIO sets initial location Xi �

[xi1, xi2, . . . xin] and velocity Vi � [vi1, vi2, . . . vin] for these
pigeons. +en, the new location and velocity of each pigeon
is updated accordingly as follows:

V
t
i � V

t−1
i e
−R×t

+ rand Xgbest −X
t−1
i􏼐 􏼑,

X
t
i � X

t−1
i + V

t
i ,

(9)

where R ∈ [0, 1] denotes the map compass operator, rand
represents the random number values in [0, 1], t denotes the
current iterations, and Xgbest is the global optimum in t− 1
iterations. +e first stage operation will repeat until T1
iterations.

In the second stage, with landmark operator utilized,
pigeons compare the operator with destination. If marching
well, the pigeons fly straightly to the goal. After each iter-
ation, half of the pigeons which are far away from the
destination might be weeded out. Xcenter, which is the central
location of the remainder, will be set as the new landmark.
+e second stage operation will repeat until T2 iterations.
+e combined system is defined as follows:

X
t−1
center �

􏽐 Xt−1
i · F Xt−1

i( 􏼁

Nt−1
p 􏽐 F Xt−1

i( 􏼁
,

N
t
p �

Nt−1
p

2
,

Xi � X
t−1
i + rand X

t−1
center −X

t−1
i􏼐 􏼑,

(10)

where F() is the quality of the pigeon individual and defined
as follows:

F X
t−1
i􏼐 􏼑 �

1
fitness Xt−1

i( 􏼁 + ε
, for maximization,

fitness Xt−1
i( 􏼁, for minimization,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(11)

+ewhole two-stage operation is depicted in Algorithm 2.
With PIO applied to optimize the parameters of each

step in dynamic tensor, each block owns more explanatory
and typical power for the specific sampling month interval.
For example, when the model is utilized to recommend the
July location category, the parameters trained by PIO in the
block from Feb to July evidently outperform the one from
Jan to Jun.

4. Experiments and Results

In this section, the experimental results are reported, fol-
lowed by in-depth analysis.

4.1. Experiment Settings. We utilized Foursquare, https://
foursquare.com, the most widely used public check-ins
datasets, for POI recommendation.
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4.1.1. Data Sources. We utilized the check-ins data in New
York and Los Angeles from January 2010 to June 2011,
which contain the information of users, locations, categories,
and tips. +e statistics of the data are depicted in Table 1.

4.1.2. Evaluation Indices. Our target is to recommend
a suitable category to the user in need, and a list of Top-N
recommended categories is provided. Once the user se-
lects at least one item in the suggested list, the recom-
mendation will be reckoned as successful. Specifically, if
our recommended categories intersect with users’ real
Top-N lists, the prediction is deemed to be correct:

P@N �
the counts of correct predictions

the total number of recommendation rounds
.

(12)

4.2. Experiment Results. We experimentally compare our
tensor completion-based method with matrix factorization
modelsMF, PMF, and FBMC and tensor factorizationmodels

CD, TD TA-FBMC, and TAD-FMPC, and the details are
shown in Table 2. Furthermore, to validate the merit of the
structure based on dynamic tensor, the original completion
method, static-Prido, is applied in the experiment as well. In
short, eight methods are assessed in our work.

All experiments were implemented in MATLAB 2013a,
and all tests were performed on a PC with Intel Core 2
2.67GHz and 4GB RAM. Tables 3 and 4 provide the overall
results.

As Tables 3 and 4 and Figure 5 show, Prido outperforms
other methods, except TD in P@100. For the similar dis-
tribution of the result in two cities, we take New York City
into analysis.

Overall speaking, the various traditional matrix fac-
torization models perform relatively worse compared with
tensor factorization models. In terms of accuracy, even the
best method utilizing matrix factorization (FBMC) ach-
ieves half the value of the worst one harnessing tensor
factorization (TA-FBMC). +e reason can be attributed to
the fact that the matrix is 2-dimension tensor in essence,
which means at least two dimension information cannot

Input: dynamic tensor Bt, existing sets Tt, prediction sets Tt, target time t∗, parameter at � (α1, α2, . . . , αn);
Output: prediction Tt∗ .

1 initialize a0 � (1/n, 1/n, . . . , 1/n)

2 while t≠ t∗ do
3 at � PIO(BTt

t , at−1)

4 BTt

t � FALRTC(BTt

t , at)

5 Tt+1 � refresh(Tt,Tt)

6 t � t + 1
7 return Tt∗ ;

ALGORITHM 1: Prido.

Input: pigeon location Xi � [xi1, xi2, . . . xin], velocity Vi � [vi1, vi2, . . . vin], map compass operator R, max iterations T1, T2,
landmark Nt

p, existing data Tt, quality function F();
Output: optimal location a∗t ;

1 initialize Xi, Vi, Xgbest, Nt
p

2 while reach T1 do
3 Calculate the velocity of each pigeon
4 Update the location of each pigeon
5 t � t + 1
6 while reach T2 do
7 Calculate landmark Xt

center
8 Update Nt

p

9 Calculate the location
10 t � t + 1
11 a∗t � Xt(xt1, xt2, . . . , xtn)

12 return a∗t ;

ALGORITHM 2: +e procedure of PIO.

Table 1: +e data statistics.

City User Location Category Tip
New York 2,581 206,416 249 166,530
Los Angeles 1,604 215,614 249 109,526
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be involved in the structure, and no matter which fac-
torization methods is utilized, missing dimensions in-
evitably will restrict the latent accuracy. +us, the further
development of POI recommendation has to rely on
tensor factorization.

As for the comparisons among tensor factorization-
based methods, CD and TD, as the earliest solutions,
their practical arithmetical operations cost much more
running time and they also perform badly in the fine-grained
prediction task. Although TD obtains the best performance
in P@100 recommendation with the precision at 90.4%, the
expense of time reaches almost 2 days, whereas the last four
methods solely cost at most 3 hours. In terms of balancing
running time with prediction precision, these two con-
ventional methods are not the ideal choices.

Moreover, s-Prido outperforms TA-FBMC by ap-
proximately 3%, which reveals that our 4-dimensions
tensor structure is effective. Despite the fact that the user
factor matters in personalized recommendation, people

prefer to do popular things and consequently, the in-
troduction of users’ check-ins data is more reasonable than
separate analysis. With the month dimension added, the
influence of different seasons can be expressed in the
model. Nevertheless, TAD-FMPC defeats s-Prido across all
metrics since static structure cannot expose the weight of
diverse time, in which the premier data have the same
influence as recent data for recommendation. To tackle this
issue, TAD-FMPC adopts three different types of decay of
the probability over the time factor. Nevertheless, this
method neglects the variety of different seasons. Due to the
adjacency of seasons, the user’s behavior in autumn is
similar to summer, whereas it has little correlation with
spring. +erefore, the check-ins data in different seasons
should not be simply reflected in the same equation. Based
on the consideration, we propose Prido, in which adjacent
seasons data are put into one dynamic tensor block. As can
be seen from the table, Prido improves the result by 2%
when compared with TAD-FMPC.

Table 2: Models for comparison.

Model Scale Description
Matrix factorization (MF) |U| × |C| MF is widely used in CF and usually set as baseline.

Probabilistic matrix factorization (PMF) |U| × |C| × |C|
PMF is a conventional model in recommendation

domain.

Factorized personalized Markov chain (FBMC) |U| × |C| × |C|
FBMC formalizes the user’s preference as

a personalized Markov chain.

Tucker decomposition (TD) |U| × |T| × |C| × |C|
TD transforms the high-dimension tensor into a core
tensor with a relative matrix in each dimension.

Canonical polyadic decomposition (CD) |U| × |T| × |C| × |C|
CD transforms the high-dimension tensor into

a multiple equation of linear complexity.
Time-aware FBMC (TA-FBMC) |U| × |T| × |C| × |C| TA-FBMC equips the time factor with the FBMC.

Time-aware decay FBMC (TAD-FMPC) |U| × |T| × |C| × |C|
TAD-FMPC adds decay of the probability over time

in TA-FBMC.

Static prido (s-Prido) |U| × |T| × |C| × |C|
s-Prido removes the dynamic tensor structure from

Prido.

Table 3: Result comparison in New York.

Matrix factorization Tensor factorization
Metrics MF PMF FBMC CD TD TA-FBMC TAD-FMPC s-Prido Prido
P@1 0.0016 0.0060 0.0310 0.0767 0.0921 0.0747 0.1230 0.1022 0.1310
P@5 0.0197 0.0283 0.1063 0.2221 0.2642 0.2298 0.2996 0.2454 0.3201
P@10 0.0444 0.0571 0.1700 0.3249 0.3863 0.3397 0.4136 0.3768 0.4234
P@20 0.0822 0.1160 0.2699 0.4829 0.5357 0.4801 0.5615 0.5387 0.5911
P@50 0.2744 0.2843 0.4893 0.7195 0.7552 0.7130 0.7699 0.7488 0.7824
P@100 0.5053 0.5127 0.7280 0.8887 0.9040 0.8812 0.8965 0.8876 0.9010

Table 4: Result comparison in Los Angeles.

Matrix factorization Tensor factorization
Metrics MF PMF FBMC CD TD TA-FBMC TAD-FMPC s-Prido Prido
P@1 0.0433 0.0057 0.0477 0.0677 0.0964 0.0928 0.1519 0.1252 0.1672
P@5 0.1142 0.0336 0.1351 0.2270 0.2695 0.2580 0.3250 0.2742 0.3425
P@10 0.1734 0.0666 0.1992 0.3216 0.3957 0.3610 0.4382 0.3923 0.4594
P@20 0.2863 0.1305 0.3023 0.4920 0.5477 0.4974 0.5756 0.5523 0.6092
P@50 0.4486 0.2949 0.5088 0.7242 0.7588 0.7262 0.7753 0.7598 0.7973
P@100 0.5834 0.5389 0.7412 0.8920 0.9027 0.8839 0.8971 0.8856 0.8993
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5. Conclusion

In this paper, a novel dynamic heuristic tensor completion
approach on the basis of fast low-rank tensor completion
algorithm is proposed to solve the POI recommendation
task. Fast low-rank tensor completion (FALRTC) is lever-
aged as a supplement to the original dynamic tensor
structure, so as to improve the performance prediction.

Prido is able to capture the inner features of check-ins data
due to the multimode characteristics such as current cate-
gories, next categories, and temporal information as well as
seasons variations are all integrated in the model. Experi-
ment results not only validate the superiority of our pro-
posed method but also suggest that there is potential
application opportunity as for POI recommendation envi-
ronment in a large and dynamic scope.
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Figure 5: Sketch of category prediction. (a) New York. (b) Los Angeles.
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