
Research Article
Multiobjective Glowworm Swarm Optimization-Based Dynamic
Replication Algorithm for Real-Time Distributed Databases

Saadi Hamad Thalij 1 and Veli Hakkoymaz 2

1PhD Student, Yildiz Technical University, Dept. of Computer Engineering, Istanbul, Turkey
2Assoc. Prof., Yildiz Technical University, Dept. of Computer Engineering, Istanbul, Turkey

Correspondence should be addressed to Saadi Hamad �alij; saadi.hamad@yahoo.com

Received 24 July 2018; Revised 30 October 2018; Accepted 18 November 2018; Published 4 December 2018

Academic Editor: Autilia Vitiello

Copyright © 2018 Saadi Hamad �alij and Veli Hakkoymaz. �is is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Distributed systems offer resources to be accessed geographically for large-scale data requests of different users. In many cases,
replication of the vital data files and storing their replica in multiple locations accessible to the requesting clients is vital in
improving the data availability, reliability, security, and reduction of the execution time. It is important that real-time distributed
databases maintain the consistency constraints and also guarantee the time constraints required by the client requests. However,
when the size of the distributed system increases, the user access time also tends to increase, which in turn increases the vitality of
the replica placement. �us, the primary issues that emerge are deciding upon an optimal replication number and identifying
perfect locations to store the replicated data. �ese open challenges have been considered in this study, which turns to develop a
dynamic data replication algorithm for real-time distributed databases using a multiobjective glowworm swarm optimization
(MGSO) strategy.�e proposed algorithm adapts the random patterns of the read-write requests and employs a dynamic window
mechanism for replication. It also models the replica number and placement problem as a multiobjective optimization problem
and utilizes MGSO for resolving it. �e cost models are presented to ensure the time constraint satisfaction in servicing user
requests. �e performance of the MGSO dynamic data replication algorithm has been studied using competitive analysis, and the
results show the efficiency of the proposed algorithm for the distributed databases.

1. Introduction

A distributed system is a group of independent computers
that appear to the clients of the system as a solitary PC [1].
In these systems, data objects are placed onto servers which
are situated at geologically distant locations. In the recent
past, distributed databases have turned into a vital piece of
business processing. Maintaining data authentically and
offering precise and convenient processing of database
queries and updating over numerous locales have been a
critical factor in empowering organizations to use data in a
range of various locations on a worldwide scale [2].
Standardisation of query languages, and of the relational
and object models, has helped in the coordination of
various database systems to frame systems of integrated

data services [3]. �e issues such as guaranteeing the in-
tegrity of data, which updates are opportune, and clients get
a uniform rate of response regardless of their position in
the system they have become real difficulties to database
vendors and clients [4].

Replication [5] is the procedure of sharing information in
order to guarantee consistency between redundant resources,
such as software or hardware components, in order to en-
hance dependability, fault tolerance, or accessibility. It could
either be data replication if similar data are stored on various
storage devices or computation replication if a similar task is
executed ordinarily. It is the procedure of consequently
dispersing duplicates of data and database objects among SQL
server instances and keeping the distributed information
synchronized [6, 7]. �e data replication issue is an extension

Hindawi
Scientific Programming
Volume 2018, Article ID 2724692, 16 pages
https://doi.org/10.1155/2018/2724692

mailto:saadi.hamad@yahoo.com
http://orcid.org/0000-0001-8566-5164
http://orcid.org/0000-0002-3245-4440
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2018/2724692

of the classical file allocation issue. �e protected sharing
of information in this sort of condition is an unpredictable
issue. �e proprietors of the diverse data sources often have
distinctive approaches on access and the dissemination of the
data that they hold [8]. �ere are two principle sorts of
replication conventions: dynamic replication, in which all
replicas form simultaneously all input messages, and passive
replication, in which only one of the replica forms all input
messages and occasionally transmits its present state to
alternate replicas so as to maintain consistency [9]. �e
principle goal of data replication in distributed systems is to
expand dependability and to enhance execution of the entire
system. �e important concern in data replication is the
number of replicas that ought to be made and their posi-
tioning in order to meet a specific performance goal, which is
termed as total operation cost (TOC).

Data distribution and replication offer chances for en-
hancing execution through parallel query execution, load
adjusting, and also through expansion of accessibility of data
[10]. In a distributed database system, data are frequently
replicated to enhance reliability and availability, thus
expanding its dependability. Likewise, data are additionally
stored on PCs, where it is most often possibly required in
order to minimize the cost of expensive remote access [11].
Decision-making includes handling or applying informa-
tion and knowledge, and the appropriate information/
knowledge mix relies upon the attributes of the decision-
making setting [12, 13]. �e replication or relocation of
shared data get obstructed at subjective areas on chip which
require the utilization of the index or broadcast-based
mechanisms for query and intelligence authorization, as
each piece is likely going to have diverse placement re-
quirements [14, 15]. Replicating the stock and client-related
data at these diverse areas is desirable since it gives quick
access to the nearby replica and survive disaster cases where
all machines of a physical area crash [16]. In any case, the
current systems for replication of distributed databases do
not give anticipated outcomes due to the failure in choosing
the number of replica and the best location for the replica
placement [17]. �ese issues form the basic motivation for
this proposed model. In order to tackle these challenges,
multiobjective glowworm swarm optimization- (MGSO-)
based dynamic data replication algorithm for distributed
database systems has been proposed in this study. �e re-
mainder of this article is organized as follows. Section 2
provides the literature review of some of the related works.
Section 3 describes the CAP theorem and its limitations.
Section 4 explains the proposed replication algorithms, while
Section 5 provides the simulation results of thismodel. Section
6 presents the conclusion related to the proposed algorithm.

2. Related Works

Replication is an important part in all distributed systems.
�e two widely used replication procedures include the
following: static replication [18] and dynamic replication
[19]. Various researchers have developed replication strat-
egies based on these two procedures. �e number of replicas
for each file is fixed manually in static replication which is

preselected, while in dynamic replication it is determined by
an automatic decision system that decides on the number
during execution. �ese decision modules decide on the
replica number with consideration of the system infra-
structure and also the environments and client’s access
strategies. In general cloud applications, the dynamic
strategies are much preferred as it suits the flexible re-
quirements of the clients.

Khanli et al. [20] developed the predictive hierarchical
fast spread (PHFS) model for dynamic replication which
decreases the latency in the multitier grid systems. �is
model is an enhanced version of the previously utilized fast
spread [21] and aims at flexibly utilizing the spatial positions
[21, 22] of the hosts to serve the user requirements. �ough
this model reduces the delay and increases the performance
in locality access patterns, this model does not consider
storage constraints during priority evaluation. Also this
model has low adaptability in determining suitable
thresholds and time interval for feature varying applications.
Previously, Kunszt et al. [23] presented a file-based repli-
cation management system that incorporates features re-
quired for an application programmer and an end user
effectively. However, similar to [20], this model is also aimed
at serving multilevel grids with much higher storage, and
hence, its suitability to storage constrained systems is very
low. Lin et al. [24] introduced eStor, data center storage for
ensuring energy-efficient data replication. �is model en-
abled the underutilized storage servers to power off for
limiting the energy wastage during the idle state. However,
this model did not accompany the predictability evaluation
function, and hence, the future clients’ requests may face
extended delay. Chang et al. [25] developed a dynamic data
replication mechanism named latest access largest weight
(LALW) suitable for the grid cluster systems. �is mecha-
nism selects a popular file from the database and replicates it
to suitable number of systems or grids to ensure effective
data access. �is model also enhances the load balancing or
replicas with a registration process that selects the weights
based on the time of the requests. �e major limitation in
this model is the high job execution time as the time interval
is short and not suitable selection of based of exponential
decay causing single point of failure. Dong et al. [26] in-
troduced a replication strategy over multiple data centers to
limit power utilization in the backbone network. However,
this work focuses around replicationmethodologies between
various data centers, albeit not inside data centers.

Ping et al. [27] developed the optimal data replication
model that operates along the data centers to limit the data
access delay in the client side. �is model utilized weighted
k-means clustering of user locations to determine the
optimal replica. However, this model does not utilize the
concept of adapting to the varying applications and its
storage constraints. Li et al. [28] developed a novel cost-
effective dynamic data replication strategy based on the
incremental replication method. �is strategy reduces the
storage cost along with satisfying the data reliability re-
quirements. However, this strategy is efficient only when
the data reliability is low and the storage unit aging pro-
cess is very critical. Also the trade-off between cost and

2 Scientific Programming

performance is not satisfactory. Perez et al. [11] introduced
a replication technique known as the Branch Replication
Scheme (BRS) for heterogeneous grid systems. �is BRS
provides optimized storage usage, increased data access
performance, and ability to modify the replicas. �ese
advantages enable the operations like reading or updating a
replica in a more efficient manner and reduce the overhead
in data access processing. However, BRS is suitable only for
the complex applications with dedicated storage space for
each branch which is highly unlikely in real-time grids.
Similar to BRS, CDRM (cost-effective dynamic replication
management) has been proposed for heterogeneous cloud
systems in [29]. �is model analyses the relationship be-
tween availability and replica number and then determines
the minimal replica number for given availability. �is
model is also flexible in adjusting the replica number and
location based on the varying workload conditions and
node capacities. However, this model has the limitation of
delay in analysing the relationship function. Qu and Xiong
[30] developed the resilient, fault tolerant, and high effi-
cient (RFH) replication algorithm resolving the flash crowd
problem in distributed systems. However, this model has
less consistency maintenance which reduces the reliability
of its performance.

Lin et al. [31] proposed another approach of utilizing the
priority list-based concept of optimal replica placement.�is
strategy resolved the issues of users’ limited authority in
resource access, satisfying the spatial requirements during
placement stage. �is model places the replica in the optical
manner such that the workload is balanced through de-
termination of the minimum replica number when the
workload capacity is maximized. However, this model has
the limitations of resolving the replica placement problem
for general graphs and planar graphs. Similarly, Andronikou
et al. [32] developed a dynamic QoS-aware replication
strategy that utilizes the concept of data importance to select
the replica locations. �is model analysed the complete
lifecycle of the replication, and then, the new replica and
generated to migrate the old replica from their current lo-
cation. �is model utilized a set of interoperable novel file
replication algorithms to analyse and determine the in-
frastructure constraints to simplify the replication process
based on data popularity. However, this model does not
consider all the QoS factors of both service provider and
client-related requirements in the market-related con-
straints. Bonvin et al. [33] introduced a self-organized, fault
tolerant, and scalable replication scheme which operates
based on the multiple differentiated availability guarantees
of the replica to each application. �is scheme employed a
virtual economy model as a game-theoretical model to
determine the optimizer for data partition and mitigate the
replica to their respective locations. However, this model
suffers from the limitation of data size, i.e., it is much suitable
only for smaller data applications. Boru et al. [34] developed
an energy efficient data replication strategy by considering
both energy consumption and bandwidth consumption.
�is model reduces the energy bottleneck problem and also
reduces the network delays and bandwidth wastage.�e only
shortcoming of this model is the practical difficulties in

implementing it in real-world applications. Mansouri et al.
[35] presented a cost optimization model for ensuring dy-
namic replication and subsequent migration in cloud. �is
model utilized an optimal offline algorithm of dynamic and
linear programming to analyse the workload of the system.
�en, two online algorithms are introduced to minimize
trade-off between the storage and migration costs followed
by the dynamic selection of storage classes. �is model
reduces the time complexity of the offline algorithms, but the
major drawback is its inability to tackle the availability is-
sues. Nagarajan andMohamed [36] introduced a prediction-
based dynamic replication strategy utilizing multiple pa-
rameters of the neighboring sites. �e parameters consid-
ered are storage capacity, bandwidth, and communication
cost for selecting and placing the replica. �is model also
used modified a priori algorithm for predicting the future
needs in the grids, but it does not focus on effective
scheduling strategies which is highly not recommended. Pan
et al. [37] proposed a dynamic replication management
strategy based on the load balance condition of the distri-
bution system. �is approach improved the replica man-
agement, although it considers only the load balance state
while ignoring the scheduling of waiting jobs. �ough there
has been extensive research providing numerous replication
strategies, there still exists issues such as optimal selection of
replica number and location to store them still continue to
remain challenging. �is study provides an approach that
resolves these issues perfectly thanmost existing approaches.

3. CAP Theorem

CAP theorem has been displayed in the context of a web
service, presented as trade-off between consistency, avail-
ability, and partition tolerance [38]. �e CAP theorem is a
fundamental part of the hypothesis of distributed systems. It
expresses that, within the sight of partitions (i.e., network
failures), it is not possible for a system to be both consistent
and available, and therefore, it becomes important to select
one of the two. It has really changed the landscape of how
distributed storage systems were architected. It can be
expressed as “In a network subject to communication failures,
it is impossible for any web service to implement an atomic
read/write shared memory that ensures a response to each
request.” �e three fundamental properties of CAP theorem
are consistency, availability, and partition tolerance [39].

CAP offers architecture improvement of distribution
systems. However, one cannot build up a distributed da-
tabase system that is continually available, sequentially
consistent, and tolerant to partition pattern. It must be
assembled only with two of these three properties. Fur-
thermore, certain restrictions degrade the efficiency of CAP
theorem [40, 41].�e limitations of CAP are given in [41, 42]
as illustrated below:

(i) Binary existence is convenient for proof purposes,
but does not closely match the intuitive notion of
availability.�e traditional CAP theorem’s definition
does not take into account a quantitative measure
of network latency. According to the availability

Scientific Programming 3

property, if the response has not arrived, there is still
hope that the response will arrive, but still it does not
have an upper bound on latency.

(ii) Availability requires that only the nonfailed nodes
respond. In a networked partitioned area, even if
one node fails at a given time, the availability of a
system is hampered. In order to ensure complete
availability, one of the solutions proposed is to
forcibly make all nodes unavailable [41]. But this
trivial solution is unacceptable since it is un-
necessarily tampers with remaining active nodes.

(iii) CAP theorem fails to encompass problems like node
failure, loss, or delay of messages and restart time
lapse of nodes other than partition. Fair link loss is
possessed by a link if it has a nonzero probability of
packet loss. In such a link, the lost packets will be
delivered by a limited number of repeated attempts
ensuring packets reaching the destination. �e fair
link loss is closely associated with mobile networks
which are integral in today’s application. Problems
like node failures and restarts are no longer acci-
dental as much as they occur due to attacks on a
system. For instance, denial-of-service attack is
common, and it is one of most notorious attacks on
a network operation [42].

(iv) It is also possible to define consistency as a
quantitative metric rather than a safety property.
However, these stochastic definitions of consis-
tency are not the subject of CAP.

(v) Partitioning is inevitable in any distributed system.
Even if we assume that one node has 99.9% chance
of not failing in a particular time period, five
such nodes in a cluster will have a probability of
99.5% chance of failure [40]. �us, one cannot
compromise on partition tolerance. �erefore,
there is an inevitable choice between availability
and consistency.

4. MGSO-Based Dynamic Replication Strategy

�e limitations of the CAP theorem have been considered,
and this proposed model of the MGSO-based dynamic
replication algorithm is presented in order to achieve better
performance. Initially, the distributed database system to be
considered is described. �e scheme consists of n nodes,
represented as p1, p2, . . . , pn. Each node comprises of a
processor and a local memory. All the local memories are
remote and available simply by local processors. Internode
communication is supported by sending data through the
underlying network. All requests, each with its corre-
sponding time deadline, are presumed to reach the pro-
cessors. Requests reach at a processor synchronously, and
there is a concurrency control mechanism to serialize them
for handling. For each requested data, it is anticipated that
there are at least t(1≤ t≤ n) replicas in the database system,
where n is the number of network nodes. �is limitation is
customarily referred to as t-availability constraint. Figure 1
shows the overall flow of the proposed dynamic replication

strategy. �e overall process begins with the initialization of
the LAN clusters which consists of 1 server structure with n
number of clients. �e data to be replicated are selected, and
they are loaded to the main server in the test environment.
�en the dynamic window-based mechanism is utilized to
access the data on each processor, where request of the same
data is stocked on a temporal window until the fixed time
deadline of the user request. �is window mechanism de-
termines the concurrent execution of the arriving user re-
quests or queries. Based on this temporal window, the
processor receiving more number of requests is considered
for storing a replica of the original data from the main server
in order to make it available for certain set of users. �e
MGSO is applied to identify the optimal number of proc-
essers that can be allowed to replicate based on queries/
requests while also in determining which processors are
suitable for storing the replica data depending upon their
load and other features. �e output obtained from the
MGSO model is employed for final replica storage which
becomes invalid if the publisher or authority of the original
data tends to modify the data with updated contents. At
these stages, the abovementioned process is restarted to
update the replica system.

In the proposed system, all requests reach the distributed
processors in the network system. For evaluation purposes,
we have utilized an example of storing replica of a dataset
that contains YouTube, Sensor, and Twitter contents. �ese
data are filtered and preprocessed to obtain complete in-
dividual set of data before storing them in the main server.
Once the data are stored in the main server, the data requests

Start

Initialize LAN clusters
with 1 server and n clients

Select data to be replicated

Set dynamic window for
concurrent control

mechanism

MGSO for selecting number of
replica system needed and which

server to be selected

Store data in other cluster
servers

End

Process user
query

Figure 1: MGSO-based dynamic data replication strategy.

4 Scientific Programming

from the users are analysed. When a processor pi wants to
read data d, if the latest version of data d is in its local
memory, then data d are directly recovered from their local
memory, else, since pi knows the fixed processor set S(d), pi

will direct a read request to the nearby server, pj, in S(d).
�is would sustainCc units of cost. As a reply, pj will recover
data d from their local memory and send them to pi, in-
curring (Cio + Cd) units of cost. Finally, in order to mini-
mize the total servicing cost of forthcoming requests, pj

might specify pi to save data d into their local memory.�is
read request is described as the saving-read request. It
should be noticed that exclusive servers of data d can get
requests from remote processors to read data d. Further-
more, each processor can issue a write request for any data
in a distributed database without loss of all inclusive

statement. In this manner, the request arriving at processor
q can be anyone of these: a read request from processor q
for data d in their nearby memory and a write request from
processor q for any data in the system, or a read request
from a remote processor for a data d′ if processor q is the
server of data d′.

4.1. Cost Model. �is cost model [43] is utilized to compute
the cost of servicing a read request or a write request arriving
at a processor q. �e cost of servicing of request REQ by an
algorithm A is defined as COSTA(Req). Consequently, in
view of servicing a read request R

pi

d (k), let Ad be the allo-
cation pattern of data d identified by processor q, and then
the cost is given by

COSTA R
pi

d (k)􏼐 􏼑 �

1 if pi ∈ Ad,

1 + Cc + Cd if pi ∉ Ad and R
pi

d (k) is not a saving− read request,

2 + Cc + Cd if pi ∉ Ad and R
pi

d (k) is a saving− read request.

⎧⎪⎪⎨

⎪⎪⎩
(1)

An important feature of this model is that, after getting
the data d, when pi keeps data d into its local memory
(saving-read request), then the servicing cost will be one
unit greater than when pi does not save data d (nonsaving-
read request). Moreover, whether this read request is a
saving-read request or not is certain by processor q
established on the dynamic request window mechanism.

Once processor q chooses that request R
pi

d (k) is a saving-
read request, q and pi will transform their corresponding
allocation patterns.

Likewise, consider servicing a write request W
q

d(k),
and let Ad be the allocation pattern of data d recognized
by processor q. �en, the cost of servicing this request is
specified as follows:

COSTA W
q

d(k)􏼐 􏼑 �

(t− 1)Cd + t + 􏽘
p∈S(d)

|inv_list(p, d)|Cc if q ∈ S(d),

tCd +(t + 1) + 􏽘
p∈S(d)

|inv_list(p, d)− q􏼈 􏼉|Cc otherwise,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(2)

where inv_list(p, d)− q􏼈 􏼉 represents the set of processors in
inv_list(p, d), excluding processor q. A write request
generates a different form of data. In order to sustain the
consistency among the replicas of the data, the new form
should be moved to those processors which have the
available replicas of these data in their corresponding local
memories. It must be noted that each relocation of these
data to the corresponding processors will sustain Cd units
of cost.

4.2. Window Mechanism. A certain concurrency control
mechanism in each processor is expected to serialize the
arriving requests so that it yields at most one request in a δ
time units, with δ being imperceptibly small. Without loss
of consensus, it is expected that δ � 1. Each request landing
at a processor creates an underlying request scheme. In
order to process these requests, their individual time
deadline is noted from the discharge points of the con-
currency control mechanism and the window mechanism

is invoked to respond to this request. Figure 2 shows the
proposed window mechanism working process which
defines the addition of new write requests to the currently
available read requests. It can be seen that the concurrency
control is performed in time slots for each requests.

Furthermore, the scheme of the window mecha-
nism comprises a dynamic practice. Numerous dynamic
request windows are produced in each processor, one for
each requested object. A request window for data d in a
processor is symbolized as win(d). Each request window is
of a FIFO-type window with size τ to collect most τ
number of requests in τ time units for the similar data.
Furthermore, two counters, TC1

d and TC2
d, are connected

for each win(d). TC1
d has a preliminary value τ, and the

value of TC1
d is decremented by one per time unit till it

touches 0. TC2
d will track the time deadline of requests

in win(d). �e window mechanism is described in Al-
gorithm 1.

It can be witnessed that the handling of requests in a
request window can be determined by the deadline

Scientific Programming 5

obligation of a specific request and is not utterly constrained
by the realisation of the request window. In fact, three
conditions can activate instant servicing of the requests in
win(d). At any time, TC1

d of win(o) in processor q ranges 0,
win(d) will be removed from q, and windowmechanism will
reset Ad in q to S(d). Likewise, if q is a server of data d, then q
will directly invalidate control-messages to the processors
iinv_list(q, d)n inv_list(q, d) to invalidate the replicas of
data d and void . �e succeeding request for data d received
at processor q will be deliberated as the first request for data

d, and win(d) will be restarted by the window mechanism.
�us, the request structure introduced into win(d) is
considered through its distinct lifetime as σd, and it is ob-
vious that, by using the window mechanism, a σd will be
principally subdivided into numerous phases P (1), P (2), . . .,
P (r). Each phase fits either into Type I or into Type II. While
the Type I phase comprises of a number of read requests,
a Type II phase comprises of a write request monitored
by numerous read requests. Whenever a phase originates
into a reality, the window mechanism will prove the request

Initialize the servers and subservers
For each time unit
If there is request REQ for data d with time deadline τREQ
If win(d) does not exist

Generate win(d) and insert REQ into win(d);
TC1

d�τ; TC2
d � τREQ;

Else If REQ is a read request
Insert REQ into win(d); TC2

d � min(TC2
d, τREQ);

Else
Service the requests in win(d); Insert REQ into win(d); TC1

d � τ; TC2
d � τREQ;

End if
End if

End for
For each presently existing request window win(d′) in processor q
TC1

d′ � TC1
d′ − 1;TC

2
d′ � TC2

d′−1;
If (TC1

d′ �� 0)

Service the requests in win(d′); Delete win(d′);
If (q is a server of data d′)

Invalid the copies of d′ in processors that fit to inv_list(q, d′);
Empty inv_list(q, d′);

Ad′ � S(d′)
End if

Else if (TC2
d′ �� 0)

Service the requests in win(d′); TC1
d′ � τ; TC2

d′ �∞;
End if

End for

ALGORITHM 1: Window mechanism.

Concurrent
requests

Concurrency
control

mechanism

Dynamic
window

mechanism

Time Request

δ time slots

Write 1Read 1, Read 2 Read 1, Read 2

New write 1

Figure 2: Working procedure of the dynamic window mechanism.

6 Scientific Programming

sequence in that phase without any understanding of the
upcoming phases [44].

It must be noticed that the extent of a request window τ
is a key parameter in our system. Different estimations of τ
bring about various execution of the system.�e estimation
of τ ought to be resolved based on the node ability (for
example, CPU power, memory limit, and network data
transmission), system request arriving rate, and deadlines
forced by the application requests. It is clear that the es-
timation of τ ought not to be too small. If τ � 1, at that
point, each request will frame a request sequence, and each
request window would be produced and erased in one time
unit. �is will suddenly consume the vast majority of the
computing capacity of the processor. It must also be no-
ticed that if the deadlines imposed by the requests are too
short for the system to process, certain requests might be
dropped by the system. Without loss of generality, the
deadline imposed by a request that can be effectively
handled by the system is at least equivalent to 1. Such
dropped requests known as the blocked requests would
either leave the system or are resubmitted, depending on
the underlying application. It can be managed by the ad-
mission control mechanism of this model.

4.3. Replica Selection and Placement Problem. �e selection
of replica and the problem of placement in the distributed
systems can be defined by considering a distributed system
containing K data objects that would be replicated onto N
servers. Let S(n) and O(k) be the names of server n and data
object k, correspondingly. C(n) and V(k) denote the ca-
pacity of server n and the volume of data object k, re-
spectively, where 1≤ n≤N and 1≤ k≤K. A link amongst
two servers S(n) and S(m) (if it occurs) has an integer
number l(n, m), and this provides the communication cost
for transmitting a data unit amongst servers S(n) and S(m).
It is presumed that l(n, m) � l(m, n). Let read(n, k) and
write(n, k) be the number of read and write demands
requested from server n for data object k. Each data object
O(k) has a principal server P(k), which holds the main copy
of O(k). �e main copy of data objects cannot be deal-
located. Figure 3 shows the replica placement strategy in
which the replica has been selected after determining the
constraints and then the placement is carried out for
practical use.

It is expected that each primary server has the replication
representation of k-th data object, RS(k), which comprises a
list of servers where RS(k) is replicated. In order to achieve a
write request, P(k) obtains the update request from the
source server which requests to update the data object O(k)

and broadcasts it to all servers in its replication represen-
tation RS(k). �e main objective of replica placement
problem is allocating replicas over all the servers in order to
reduce the total operation cost TOC(k), which is induced by
two modules,accessR(k) and accessw(k). Hence, TOC(k) is
obtained as follows:

TOC(k) � accessR(k) + accessw(k), (3)

where accessR(k) is the total operation cost due to all servers
reading requests for O(k) and accessw(k) the total operation
cost due to all servers writing requests for O(k).

accessR(k) and accessw(k) are given as follows:

accessR(k) � V(k) × 􏽘
N

n�1
read(n, k) × l(n, ..,NS(n, k))⎛⎝ ⎞⎠,

accessw(k) � V(k) × 􏽘
N

n�1

⎛⎝write(n, k)

× l(n, P(k)) + 􏽘
(∀j∈RS(k)),j≠n

l(P(k), j)⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦⎞⎠,

(4)

where NS(n, k) is the nearby server to S(n) that encloses a
replica of O(k).

Consequently, the concise TOC based on total read
and write requests’ cost for all data objects is obtained as
follows:

TOC � 􏽘
K

k�1
TOC(k). (5)

Reducing this equation is the solution to the replica
selection and placement problem in distributed systems.
�is is achieved in this proposed model by using a multi-
objective glowworm swarm optimization algorithm for
optimally selecting the number of replica and also with the
server location for placement of replica.

4.4. MGSO-Based Replica Selection and Placement. In this
proposed model, each glow-worm agent (gwa) is a N × K

matrix with Boolean components [45]. �e replication
problem is modelled into each glow-worm, and it moves
towards the brighter glowworm, i.e., determining which
processor is better suited to store the replica data. As the
utilized glowworm and agents are of N × K Boolean matrix,
the logical operations are employed. �e logical OR oper-
ations are performed by the inbuilt processing unit to move
the selected glowworm towards the better one in terms of
brightness (i.e., better replica conditions). Let element
gwan,k � 1 if S(n) comprises a replica of O(k) and gwan,k � 0
otherwise. �e fitness value of each agent is calculated in
terms of TOC percentage, which is saved using the repli-
cation strategy of the algorithms, compared to the initial one,
i.e., when only primary copies exist. �is value indicates the
solution quality of replication schema associated with the
glowworm agent. Fitness function is computed as follows:

fgwa(i) � 1−
TOCgwa(i)

TOCinitial
, (6)

where TOCgwa(i) is the TOC for replication scheme for
the i-th agent and TOCinitial, the TOC achieved in the
initial allocation, which is calculated only when the primary
copy of the data objects exists while replica has not been
produced.

Scientific Programming 7

In addition to the Boolean logical operations, the update
and other processes of the MGSO are also needed to be
processed which are undertaken by the agents specified. �e
validity of each gwa is influenced by the servers’ capacity.
�e foremost principles in a multiobjective GSO is that the
solution is not an absolute optimal solution as in the
common GSO because only the most viable among the
optimal solution is chosen, and this cannot be consider as
100% optimal. �e population and step size are initialized
randomly for the noninferior sorting process. �e luciferin
update process is performed as follows:

li(t) � (1− ρ)li(t− 1) + cJ xi(t)(􏼁, (7)

where li(t) represents the luciferin level associated with
glowworm i at time t, ρ is the luciferin decay constant
(0< ρ< 1), c is the luciferin enhancement constant, and
J(xi(t)) represents the value of the objective function at
glowworm i-th location at time t.

During the movement phase, each glowworm decides,
using a probabilistic mechanism, to move toward a neighbor
that has a luciferin value higher than its own.However, in order
to increase population diversity and the convergence speed, a
disturbance term is added to the location updating formula:

Xi(t + 1) � Xi(t) + s
Xj(t)−Xi(t)

Xj(t)−Xi(t)
�����

�����

⎛⎝ ⎞⎠ + u, (8)

where u � α∗ rand∗ (iter_max− t)/iter_max, s step, and α
which can control the range of disturbance, rand, the
random number that meets normal distribution. α is the
algorithm parameter set in advance, which is relevant to the
problem. �e range of α values 0 to 1, but in general, the
value of α is set to 0.001.

When the glowworms are determined only by the local
information to select their movements, it is anticipated that
the number of peaks caught would be a function of the radial
sensor range. Consequently, GSO utilizes an adaptive
neighbourhood range in order to detect the existence of
multiple peaks in a multimodal utility landscape. It is
represented as follows:

r
i
d(t + 1) � min rs, max 0, r

i
d(t) + β xt − Xi(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑􏽮 􏽯􏽮 􏽯, (9)

where ri
d is the neighbourhood range, rs is the neighbourhood

range with respect to step size, β is a constant parameter, and
xt is a parameter used to control the number of neighbors.
�e complete process of MGSO for replication process in
distributed systems is given as shown in Algorithm 2.

�e most time-consuming parts of the algorithms
are associated with population initialization, and updating
best positions is achieved by all glowworms in each itera-
tion. �e time complexity of initializing N glowworms is
O(Np(K2N + KN2)). In order to update best neighbour-
hood locations in each iteration, fitness values of all gwa

must be considered. �e time complexity of fitness value
calculation is O(K2N). �us, the time complexity of solving
replica placement in distributed systems via MGSO is
O(Np(K2N + KN2) + Ng(K2N)).

5. Simulation Results

5.1. Validation of MGSO-Based Replication Algorithm in
Hadoop Simulation. �e proposed MGSO-based dynamic
replication algorithm uses the strategies of MGSO with the
dynamic window mechanism to tackle the limitations of
the CAP theorem. �e theoretical soundness of any al-
gorithm becomes legated when it is practically not viable.
Hence, the validation of the MGSO-based algorithm is
performed in Hadoop clusters. �e Hadoop framework
consists of Hadoop distributed file system (HDFS) and
MapReduce framework, which seem efficient in setting up
multiple clusters of LAN servers and subservers for eval-
uation. �e HDFS enables to utilize it for memory purpose,
without requiring the user to purchase cloud or other
storage platforms. �e cluster set up ensures that there is
adequate data transmission between the client systems in
distant location without much packet loss and also with

Initialize the population N, step size s
Set servers (solutions) as gwa
A � 0; All dominated solution will be placed in A
Let t � 0;
Compute fgwa(i);
Update li(t);
Determine direction of movement of each gwa;
Update gwa location;
Noninferior sorting process initiated;
Update A;
t � t + 1;
Until (t � iter_max)

Place replica at S(n) in A;
End

ALGORITHM 2: MGSO-based replica placement.

Data

Data

Original
database

Replica
Recovery

Server

Figure 3: Replica placement strategy.

8 Scientific Programming

minimal energy consumption. As said above, for valida-
tion, a raw database consisting of data which is collected
from three different domains is used. �e raw database
includes environmental data collected by sensors and social
data collected from Twitter and also YouTube. Initially,
these three types of data are unstructured, which will
eventually be refined during the replication primary copy
storage time using the window mechanism. Let the vali-
dation results help us in justifying the performance of the
proposed model.

Let us take the abovementioned database for simulating
the proposed algorithm. �e initial Hadoop settings are
done as in the instructions manual, and then the main
project for simulation is done. Figure 4 shows the initial
processes involved in setting up primary data copy in a
distributed system for replication. �ese data are the main
source that contain all the three types of collected data,
namely YouTube, Sensor, and Twitter.

Figure 5 shows the effect of window mechanism for
the replication process. Figure 5(a) illustrates the practical

(a)

(b)

Figure 4: (a) Initial server set up for primary data copy. (b) Primary data storage process.

Scientific Programming 9

settings required for initializing the window mechanism,
while Figure 5(b) shows the query/request analysis based on
the data categorization of those requests. Based on the re-
quests, the demand for each datum is obtained which is
helpful in determining the number of replica.

Figure 6 shows the backend server table after the ad-
mission control mechanism where the storage and pro-
cessing capabilities of each server/processor are stored.
�is information will be utilized for selecting the pro-
cessors where the data have to be replicated. Figure 7
shows the replica selection and placement process as
performed based on the concept of Figure 3 utilizing the
MGSO algorithm.

Figure 8 shows the replica selection using MGSO. �is
process is achieved after the initialization of the window
mechanism. When the raw data are categorized into three

individual categories, the subserver which is most suitable
for storing specific category is chosen using MGSO.

Figure 9 shows the MGSO-based replica placement
stage. In this stage, the replica which is basically a single
category of data are placed in the relevant server in another
cluster. �ese data can be fetched through a user query by
the clients as and when required.

Figure 10 shows the data replication placement table
which is maintained at the servers in each cluster as a routing
table for priority selection when any user query arises. Based
on these tables, the servers in the clusters select the best
server to fetch the data relevant to the query when a client
raises a query.

�e query process is described in Figures 11(a) and
11(b). When a user requires query, they intimate the query
to the client system, which in turn is forwarded to the

(a)

(b)

Figure 5: (a) Window initialization before replication. (b) Data categorization using window mechanism.

10 Scientific Programming

respective server. As mentioned before, the server checks the
availability of the data for the query, and based on the
priority of stored server locations, it chooses the server with
minimum time consumption time. �e request REQ is then
forwarded, and the data are obtained for the write requests,
as shown in Figure 11(b).

5.2. Performance Evaluation. �e simulations are done
using the Hadoop system, and the performance of the
proposed MGSO-based model is compared with that of
other algorithms. �e performance of the MGSO-based
replication algorithm is compared with the following four

replication algorithms, namely, least frequently used
(LFU), least recently used (LRU), 3-level hierarchical al-
gorithm (3LHA), and bandwidth hierarchy-based repli-
cation algorithm (BHR). Execution time is how long it
takes a program to run while the time complexity is the
asymptotic behavior of running time as input size tends to
infinity. In this evaluation, mean execution time is used
which is the average of time taken by the algorithm to select
the optimal replica and subsequent placement and the time
to execute one read/write request for 12 iterations. We have
utilized this parameter to evaluate the efficiency of the
proposed model.

Figure 6: Backend server memory table.

Figure 7: Replica selection and placement process.

Scientific Programming 11

Figure 12 illustrates the mean execution time compar-
ison of the replication algorithms with respect to the storage
size, while Figure 13 shows the comparison of the algorithms
in terms of mean execution time with respect to file size. It
can be observed that the MGSO-based dynamic replication
algorithm has lesser execution time when compared to the
other algorithms. Similarly, even when larger files are
employed for replication, the proposed model has less ex-
ecution time, thus justifying the performance of the model.
�e reason that can validate this deviation is the fact that the
window mechanism and optimal replica selection concept
significantly reduce the execution time.

Figure 14 shows the execution time for replica selection
and placement, and Figure 15 shows the execution time of 1
read request for different file sizes. �e execution time of the
other algorithms are considerably higher than the proposed

MGSO-based model as the optimal number of replica se-
lection is performed within less time and the subsequent
selection of processors is also optimal. Due to this reason, the
MGSO algorithm has better performance in the selection
process. Similarly, the proposed model consumes less time
in executing 1 read request with different file sizes. Even with
increased file size, the proposed model outperforms the
other models with faster execution. It also hosts an auxiliary
processor that has programmable accelerators to perform
various tasks more efficiently and is attached to a number of
peripherals enabling efficient performance. In this paper, the
mean execution time is considered as the main efficiency
criteria for analysing data reusability and parallelization.
In this regard, the alternative configurations are comparable.
In order to determine the best implementation, several
options were explored. �e simplest is to perform the entire

Figure 8: Replica selection using MGSO.

Figure 9: MGSO-based replica placement.

12 Scientific Programming

Figure 10: Data replication placement table.

(a)

(b)

Figure 11: (a) User query process: input query. (b) User query process: final result.

Scientific Programming 13

algorithm on the host processor; this approach was used as a
benchmark to assess the improvements made by the dif-
ferent implementations. Even though this approach incurs
some negligible overhead due to replica operations, the
improvement in execution time favours this approach.�us,
from the performance evaluation, it can be concluded that
the proposedMGSO-based dynamic replication algorithm is
the better algorithm.

6. Conclusion

Distributed systems are the highlights of most data-intensive
computing application. �ese systems predominate most

web services and geographic data processing systems. �e
issues of selecting optimal replica number and replica server
location still continue to throw challenges that prove to be
roadblocks to efficient performance the distributed systems’
applications. �is study focused on developing a dynamic
data replication algorithm for real-time distributed data-
bases using MGSO that resolves the existing open challenges
to a considerable extend. �e simulation results also illus-
trate the efficient performance of the proposedMGSO-based
replication algorithm. In future, MGSO-based replication
algorithm can be combined with a proper scheduling al-
gorithm to improve the overall performance of the system.
�e model can also be extended with additional parameters
such as fault tolerance and security.

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Storage size (GB)

LRU
LFU
BHR

3LHA
MGSO

M
ea

n
ex

ec
ut

io
n

tim
e (

se
c)

Figure 12: Storage size vs. mean execution time.

Size of file (MB)

LRU
LFU
BHR

3LHA
MGSO

1 1.5 2 2.5 3 3.5 4 4.5 5
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

M
ea

n
ex

ec
ut

io
n

tim
e (

se
c)

Figure 13: Size of file vs. mean execution time.

0 5 10 15 20 25 30 35 40
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Storage size (GB)

LRU
LFU
BHR

3LHA
MGSO

Ti
m

e f
or

 re
pl

ic
a s

el
ec

tio
n

an
d

pl
ac

em
en

t (
se

c)
Figure 14: Execution time of replica selection and placement.

0 5 10 15 20 25 30 35 40
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Size of file (MB)

LRU
LFU
BHR

3LHA
MGSO

Ex
ec

ut
io

n
tim

e o
f 1

 re
ad

 re
qu

es
t (

se
c)

Figure 15: Execution time of 1 read request for different file sizes.

14 Scientific Programming

Data Availability

�e data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

�e authors declare that there are no conflicts of interest
regarding the publication of this paper.

References

[1] A. S. Tanenbaum and M. Van Steen, Distributed Systems:
Principles and Paradigms, Prentice-Hall, Upper Saddle River,
NJ, USA, 2007.

[2] M. T. Özsu and P. Valduriez, Principles of Distributed Da-
tabase Systems, Springer Science and Business Media, Berlin,
Germany, 2011.

[3] S. W. Ambler,Mapping Objects to Relational Databases: What
You Need to Know and Why, Ronin International, London,
England, 2000.

[4] J. W. Yoder, R. E. Johnson, and Q. D. Wilson, Connecting
Business Objects to Relational Databases, Vol. 51, University
of Illinois, Urbana, Kolkata, 2005.

[5] P. Padmanabhan, L. Gruenwald, A. Vallur, and
M. Atiquzzaman, “A survey of data replication techniques for
mobile ad hoc network databases,” VLDB Journal, vol. 17,
no. 5, pp. 1143–1164, 2008.

[6] M. Wiesmann, F. Pedone, A. Schiper, B. Kemme, and
G. Alonso, “Understanding replication in databases and
distributed systems,” in Proceedings of 20th International
Conference on Distributed Computing Systems, 2000,
pp. 464–474, IEEE, Taipei, Taiwan, April 2000.

[7] P. Elango and K. Kuppusamy, “Data replication for the
distributed database using decision support systems,” In-
ternational Journal of Computer Applications, vol. 69, no. 3,
pp. 28–39, 2013.

[8] G. Bent, D. Vyvyan, D. Wood, P. Zerfos, and S. Calo,
“Distributed policy based access to networked heterogeneous
ISR data sources,” in Proceedings of Ground/Air Multi-Sensor
Interoperability, Integration, and Networking for Persistent
ISR, vol. 7694, p. 769406, International Society for Optics and
Photonics, Orlando, FL, USA, April 2010.

[9] Z. Guessoum, J. P. Briot, N. Faci, and O. Marin, “Towards
reliable multi-agent systems: an adaptive replication mech-
anism,” Multiagent and Grid Systems, vol. 6, no. 1, pp. 1–24,
2010.

[10] R. Akbarinia, M. Tlili, E. Pacitti, P. Valduriez, and A. A. Lima,
“Continuous timestamping for efficient replication manage-
ment in DHTs,” in Proceedings of International Conference on
Data Management in Grid and P2P Systems, pp. 38–49,
Springer, Bilbao, Spain, September 2010.

[11] J. M. Perez, F. Garćıa-Carballeira, J. Carretero, A. Calderón,
and J. Fernández, “Branch replication scheme: a new model
for data replication in large scale data grids,” Future Gener-
ation Computer Systems, vol. 26, no. 1, pp. 12–20, 2010.

[12] M. H. Zack, “�e role of decision support systems in an
indeterminate world,”Decision Support Systems, vol. 43, no. 4,
pp. 1664–1674, 2007.

[13] M. G. Martinsons and R. M. Davison, “Strategic decision
making and support systems: comparing American, Japanese
and Chinese management,” Decision Support Systems, vol. 43,
no. 1, pp. 284–300, 2007.

[14] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki,
“Reactive NUCA: near-optimal block placement and repli-
cation in distributed caches,” ACM SIGARCH Computer
Architecture News, vol. 37, no. 3, pp. 184–195, 2009.

[15] H. Mühleisen, T. Walther, and R. Tolksdorf, “Data location
optimization for a self-organized distributed storage system,”
in Proceedings of 2011 Bird World Congress on Nature and
Biologically Inspired Computing (NaBIC), pp. 176–182, IEEE,
Salamanca, Spain, October 2011.

[16] M. Patiño-Martinez, R. Jiménez-Peris, B. Kemme, and
G. Alonso, “MIDDLE-R: consistent database replication at the
middleware level,” ACM Transactions on Computer Systems,
vol. 23, no. 4, pp. 375–423, 2005.

[17] F. Chang, J. Dean, S. Ghemawat et al., “Bigtable: a distributed
storage system for structured data,” ACM Transactions on
Computer Systems, vol. 26, no. 2, pp. 1–26, 2008.

[18] Y. Elouerkhaoui, “Static replication,” in Credit Correlation,
pp. 195–202, Palgrave Macmillan, Basingstoke, UK, 2017.

[19] E. Derman and N. N. Taleb, “�e illusions of dynamic rep-
lication,” Quantitative Finance, vol. 5, no. 4, pp. 323–326,
2005.

[20] L. M. Khanli, A. Isazadeh, and T. N. Shishavan, “PHFS: a
dynamic replication method, to decrease access latency in the
multi-tier data grid,” Future Generation Computer Systems,
vol. 27, no. 3, pp. 233–244, 2011.

[21] K. Ranganathan and I. Foster, “Identifying dynamic repli-
cation strategies for a high-performance data grid,” in Pro-
ceedings of International Workshop on Grid Computing,
pp. 75–86, Springer, Denver, CO, USA, November 2001.

[22] M. L. Yiu, H. Lu, N. Mamoulis, and M. Vaitis, “Ranking
spatial data by quality preferences,” IEEE Transactions on
Knowledge and Data Engineering, vol. 23, no. 3, pp. 433–446,
2011.

[23] P. Kunszt, E. Laure, H. Stockinger, and K. Stockinger, “File-
based replica management,” Future Generation Computer
Systems, vol. 21, no. 1, pp. 115–123, 2005.

[24] B. Lin, S. Li, X. Liao, Q. Wu, and S. Yang, “eStor: energy
efficient and resilient data center storage,” in Proceedings of
2011 International Conference on Cloud and Service Com-
puting (CSC), pp. 366–371, IEEE, Hong Kong, China, De-
cember 2011.

[25] R. S. Chang, H. P. Chang, and Y. T. Wang, “A dynamic
weighted data replication strategy in data grids,” in Pro-
ceedings of IEEE/ACS International Conference on Computer
Systems and Applications, 2008. AICCSA 2008, pp. 414–421,
IEEE, Doha, Qatar, March 2008.

[26] X. Dong, T. El-Gorashi, and J. M. Elmirghani, “Green IP over
WDM networks with data centers,” Journal of Lightwave
Technology, vol. 29, no. 12, pp. 1861–1880, 2011.

[27] F. Ping, X. Li, C. McConnell, R. Vabbalareddy, and
J. H. Hwang, “Towards optimal data replication across data
centers,” in Proceedings of 2011 31st International Conference
on Distributed Computing Systems Workshops (ICDCSW),
pp. 66–71, IEEE, Minneapolis, MN, USA, June 2011.

[28] W. Li, Y. Yang, and D. Yuan, “A novel cost-effective dynamic
data replication strategy for reliability in cloud data centres,”
in Proceedings of 2011 IEEE Ninth International Conference on
Dependable, Autonomic and Secure Computing (DASC),
pp. 496–502, IEEE, Sydney, Australia, December 2011.

[29] Q.Wei, B. Veeravalli, B. Gong, L. Zeng, and D. Feng, “CDRM:
a cost-effective dynamic replication management scheme for
cloud storage cluster,” in Proceedings of 2010 IEEE In-
ternational Conference on Cluster Computing (CLUSTER),
pp. 188–196, IEEE, Heraklion, Greece, September 2010.

Scientific Programming 15

[30] Y. Qu and N. Xiong, “RFH: a resilient, fault-tolerant and high-
efficient replication algorithm for distributed cloud storage,”
in Proceedings of 2012 41st International Conference on
Parallel Processing (ICPP), pp. 520–529, IEEE, Pittsburgh, PA,
USA, September 2012.

[31] Y. F. Lin, J. J. Wu, and P. Liu, “A list-based strategy for optimal
replica placement in data grid systems,” in Proceedings of 37th
International Conference on Parallel Processing, 2008. ICPP’08,
pp. 198–205, IEEE, Portland, Oregon, September 2008.

[32] V. Andronikou, K. Mamouras, K. Tserpes, D. Kyriazis, and
T. Varvarigou, “Dynamic QoS-aware data replication in grid
environments based on data “importance”,” Future Genera-
tion Computer Systems, vol. 28, no. 3, pp. 544–553, 2012.

[33] N. Bonvin, T. G. Papaioannou, and K. Aberer, “A self-organized,
fault-tolerant and scalable replication scheme for cloud storage,”
in Proceedings of the 1st ACM Symposium on Cloud Computing,
pp. 205–216, ACM, Indianapolis, IN, USA, June 2010.

[34] D. Boru, D. Kliazovich, F. Granelli, P. Bouvry, and
A. Y. Zomaya, “Energy-efficient data replication in cloud
computing datacenters,” Cluster computing, vol. 18, no. 1,
pp. 385–402, 2015.

[35] Y. Mansouri, A. N. Toosi, and R. Buyya, “Cost optimization
for dynamic replication and migration of data in cloud data
centers,” IEEE Transactions on Cloud Computing, 2017.

[36] V. Nagarajan and M. A. M. Mohamed, “A prediction-based
dynamic replication strategy for data-intensive applications,”
Computers & Electrical Engineering, vol. 57, pp. 281–293, 2017.

[37] S. Pan, L. Xiong, Z. Xu, Y. Chong, and Q. Meng, “A dynamic
replication management strategy in distributed GIS,” Com-
puters & Geosciences, vol. 112, pp. 1–8, 2018.

[38] E. Brewer, “A certain freedom: thoughts on the CAP theo-
rem,” in Proceedings of the 29th ACM SIGACT-SIGOPS
Symposium on Principles of Distributed Computing, p. 335
ACM, Zurich, Switzerland, July 2010.

[39] S. Gilbert and N. Lynch, “Perspectives on the CAP theorem,”
Computer, vol. 45, no. 2, pp. 30–36, 2012.

[40] B. W. Diack, S. Ndiaye, and Y. Slimani, “CAP theorem be-
tween claims andmisunderstandings: what is to be sacrificed,”
International Journal of Advanced Science and Technology,
vol. 56, pp. 1–12, 2013.

[41] M. Kleppmann, “A critique of the CAP theorem,” 2015, http://
arxiv.org/abs/1509.05393.

[42] O. Patinge, V. Karkhanis, and A. Barapatre, “Inadequacies of
CAP theorem,” International Journal of Computer Applica-
tions, vol. 151, no. 10, pp. 18–20, 2016.

[43] N. K. Gill and S. Singh, “A dynamic, cost-aware, optimized
data replication strategy for heterogeneous cloud data cen-
ters,” Future Generation Computer Systems, vol. 65, pp. 10–32,
2016.

[44] L. Wujuan and B. Veeravalli, “An object replication algorithm
for real-time distributed databases,” Distributed and Parallel
Databases, vol. 19, no. 2-3, pp. 125–146, 2006.

[45] B. K. Panigrahi, Y. Shi, and M. H. Lim, Handbook of Swarm
Intelligence: Concepts, Principles and Applications, Springer
Science and Business Media, Vol. 8, Springer Science and
Business Media, Berlin, Germany, 2011.

16 Scientific Programming

http://arxiv.org/abs/1509.05393
http://arxiv.org/abs/1509.05393

Computer Games
 Technology

International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

 Journal ofEngineering
Volume 2018

Advances in

Fuzzy
Systems

Hindawi
www.hindawi.com

Volume 2018

International Journal of

Reconfigurable
Computing

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

 Artificial
Intelligence

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Civil Engineering
Advances in

Hindawi
www.hindawi.com Volume 2018

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi
www.hindawi.com Volume 2018

Hindawi

www.hindawi.com Volume 2018

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Engineering
 Mathematics

International Journal of

Robotics
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Computational Intelligence
and Neuroscience

Hindawi
www.hindawi.com Volume 2018

Mathematical Problems
in Engineering

Modelling &
Simulation
in Engineering
Hindawi
www.hindawi.com Volume 2018

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific
World Journal

Volume 2018

Hindawi
www.hindawi.com Volume 2018

Human-Computer
Interaction

Advances in

Hindawi
www.hindawi.com Volume 2018

 Scienti�c
Programming

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/ijcgt/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/afs/
https://www.hindawi.com/journals/ijrc/
https://www.hindawi.com/journals/acisc/
https://www.hindawi.com/journals/aai/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/jcnc/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/journals/ijbi/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/cin/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ahci/
https://www.hindawi.com/journals/sp/
https://www.hindawi.com/
https://www.hindawi.com/

