
Research Article
Improving I/O Efficiency in Hadoop-Based Massive Data
Analysis Programs

Kyong-Ha Lee ,1 Woo Lam Kang,2 and Young-Kyoon Suh 3

1Research Data Hub Center, Korea Institute of Science and Technology Information, Daejeon, Republic of Korea
2School of Computing, KAIST, Daejeon, Republic of Korea
3School of Computer Science and Engineering, Kyungpook National University, Daegu, Republic of Korea

Correspondence should be addressed to Young-Kyoon Suh; yksuh@knu.ac.kr

Received 30 April 2018; Revised 24 October 2018; Accepted 6 November 2018; Published 2 December 2018

Academic Editor: Basilio B. Fraguela

Copyright © 2018 Kyong-Ha Lee et al./is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Apache Hadoop has been a popular parallel processing tool in the era of big data. While practitioners have rewritten many
conventional analysis algorithms to make them customized to Hadoop, the issue of inefficient I/O in Hadoop-based programs has
been repeatedly reported in the literature. In this article, we address the problem of the I/O inefficiency in Hadoop-based massive
data analysis by introducing our efficient modification of Hadoop. We first incorporate a columnar data layout into the
conventional Hadoop framework, without any modification of the Hadoop internals. We also provide Hadoop with indexing
capability to save a huge amount of I/O while processing not only selection predicates but also star-join queries that are often used
in many analysis tasks.

1. Introduction

Data volumes in scientific areas are unprecedently sky-
rocketing, and new sources and types of information are
proliferating. We witness that the rate at which the data is
being generated is faster, and the amount of the generated
data is enormously larger than ever before. Apache Hadoop
[1], an open-sourced implementation of Google’s MapRe-
duce [2], is a prominent data processing tool that processes a
massive volume of data with a shared-nothing architecture
in a parallel and efficient manner. /erefore, it has been
widely recognized as an efficient tool for large-scale data
analysis in the era of big data. Many algorithms for data
analysis and mining have been rewritten for being run on
Hadoop. /at said, MapReduce has raised a nontrivial
concern of exhibiting a clear tradeoff between I/O efficiency
and fault tolerance [3]. Pavlo addressed that Hadoop
MapReduce was 2 to 50 times slower than conventional
parallel database systems except in the case of data loading
[4]. Anderson and Tucek also noted that Hadoop was re-
markably scalable but achieved very low efficiency per node,
less than 5MB per second processing rate [5]. /e

community thus has exerted to obtain efficient I/O, espe-
cially by building new frameworks over Hadoop [6–10].

In the same line, this manuscript addresses the issue of I/
O inefficiency in MapReduce-based programs. Specifically,
we focus on improving the I/O efficiency in massive data
analysis when using Apache Hadoop. It is of critical im-
portance to eliminate I/O bottleneck in Hadoop-based
programs, considering a wide use of Hadoop in many sci-
entific areas.

In this regard, we propose ColBit, a combination of
bitmap indexes and an efficient columnar data layout for
data blocks stored on the Hadoop distributed file system,
aka, HDFS. ColBit dramatically improves the performance
of Hadoop-based programs by reducing a huge amount of I/
O while processing data analysis tasks. It is achieved by both
(i) skipping unnecessary data reads during analysis and (ii)
reducing the size of overall intermediate data size through
the substitution of most of intermediate results with com-
pressed bitvectors. At loading time, ColBit automatically
transforms data block replicas into their corresponding
columnar layouts. /erefore, users do not need to know
details about internal data layouts. Both the layout

Hindawi
Scientific Programming
Volume 2018, Article ID 2682085, 9 pages
https://doi.org/10.1155/2018/2682085

mailto:yksuh@knu.ac.kr
http://orcid.org/0000-0001-6929-0825
http://orcid.org/0000-0003-3124-2566
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2018/2682085

transformation and the index-building tasks are performed
at the loading time so that no overhead is imposed while
processing data analysis tasks. In addition, a modification of
the Hadoop internals is not necessary in our approach.
Moreover, bitmap indexes facilitate the processing of not
only selection predicates but also star-join queries, which are
widely used in data warehouses, on Hadoop. Also, the
bitmap indexes help save a large amount of I/O with
compressed bitvectors. Finally, our join technique equipped
with the bitmap indexes allows us to use only bitvectors for
joining relations. /e rest of this article is organized as
follows. /e following section discusses a rich body of
existing literature related to our work. In turn, we propose a
novel idea of columnar layout exploiting bitmap indexes.
Next, we elaborate on query processing using the proposed
bitmap indexes (ColBit), which are then evaluated by a
microbenchmark test. Finally, Section 6 concludes our
discussion by summarizing our contributions.

2. Related Work

Hadoop MapReduce is an open-sourced framework that
supports MapReduce programming model introduced by
Google [2]. /e main idea of this model is to hide details of
parallel execution so as to allow users to focus only on their
data processing tasks./eMapReduce model consists of two
primitive functions: Map() and Reduce(). /e input for a
single MapReduce job is a list of (key1, value1) pairs, Map()
function is applied to each pair, and, then intermediate key-
value pairs are computed as results. /e intermediate key-
value pairs are then grouped together on the key-equality
basis, i.e., (key2, list_of_value2). For each key2, Reduce()
function works on the list of all values, then produces zero or
more aggregated results. Users can define Map() and Re-
duce() functions. Each processing job in Hadoop is broken
down to as many Map tasks as input data blocks and one or
more Reduce tasks. Hadoop MapReduce also utilizes HDFS
as an underlying storage layer [11]. HDFS is a block-
structured file system that supports fault tolerance by data
partitioning and block replication, managed by a single or
two master nodes.

Some approaches for improving the I/O performance in
MapReduce-based programs have been proposed. Readers
are referred to a recent survey for MapReduce and its im-
provements [3]. Llama has a columnar layout called CFile to
help the join processing [12]. /e idea is that input data are
partitioned and sorted based on the selected column and
stored column-wise on HDFS. However, since HDFS ran-
domly determines the block placement at runtime, associ-
ated column values in a single row may not be located
together in a node. Record Columnar File (RCFile) [13]
developed by Facebook and used in Apache Hive and Pig
projects rather chooses another approach similar to the PAX
layout [4]. A single RCFile consists of a set of row groups,
acquired by horizontally partitioning a relation, and then,
values are enumerated and stored column-wise in each row
group. A weak point of RCFile is that data placement in
HDFS is simply determined by the master node at runtime.
/erefore, all related fields in the same record cannot

guarantee to be saved in the same node if each column is
saved in a separate file in HDFS. CoHadoop [14] was also
devised to locate associated files together in a node. To
achieve this, CoHadoop extends HDFS with a file-level
property, and files marked with the same locator are
placed on the same set of slave nodes. Floratou et al. also
propose a binary column-oriented storage format that stores
each column in a spate file [10]. Both Floratou’s work and
RCFile exploit a column-wise data compression in a row
group. Hadoop itself also provides data compression for
mapped outputs to raise I/O efficiency while checkpointing
intermediate results [1].

Hive [6] is an open-source project, which aims at pro-
viding a data warehouse solution on the Hadoop framework.
It supports ad hoc queries with an SQL-like query language.
Hive evaluates its SQL-like query by compiling the query
into a directed acyclic graph that is composed of multiple
MapReduce jobs. Hive also maintains a system catalog that
provides schema information and data statistics, similar to
other relational database systems. Hive currently adapts
RCFile [13] and Apache ORC format, which is an improved
version of RCFile that features block groups, as its man-
datory storage types. HBase [7] is an open-source Java
implementation of Google’s Bigtable [8]. HBase is a wide-
column store, which maps two arbitrary string values (row
key and column key) and timestamp into an associated
arbitrary byte array, working on HDFS. It features data
compression, the use of bloom filter for checking the ex-
istence of data, and a log-structured storage. HBase is not a
relational database, rather known to be a sparse, distributed
multisorted map which works better for treating sparse data
such as web addresses.

3. Columnar Layout Equipped with
Bitmap Indexes

3.1. Columnar Storage Layout for HDFS. In the original
HDFS, a logical file is physically partitioned into equal-sized
blocks, and then, values in the logical file are enumerated
row-wise in each physical block on local file systems. While
this row-wise data layout provides fast data loading, it in-
volves two major problems in the task of data analysis
[10, 15]. First, a row-wise data layout requires unnecessary
columns to be read even when only a few columns in a
relation are accessed during query processing. Second,
MapReduce itself leads to many I/Os as it simply delivers
unnecessary columns to the next stages, i.e., reduce tasks and
the next MapReduce job, checkpointing every tuple with
unnecessary column values into disks or HDFS at each stage.

Inspired by the columnar storage model in read-
optimized database systems [16] and bitmap index tech-
niques [17], we devise our data layout equipped with bitmap
indexes for HDFS. When relations are loaded, our system
first partitions each relation into multiple groups such that
the size of the base column values in each group is the same
as the HDFS block size. In other words, the size of each data
block in each group does not exceed the physical block size,
i.e., basically 64MB./is makes other columns have roughly
the same block size. We then partition each group column-

2 Scientific Programming

wise and store each column in a separate binary le. All the
columns in each group are stored as binary les, which can
be optionally compressed in ZLIB [18], in a subdirectory
associated with the group. Figure 1 illustrates how a single
relation is partitioned and stored column-wise on HDFS in
our approach.

In the gure, Relation T1 is loaded on our system and
then each column, i.e., C1∼C5 in T1, and is basically stored as
a single data block on HDFS. As such, to process an analytic
query that treats only a few columns, ColBit does not need to
read unnecessary columns.

Moreover, we allow users to group multiple columns
into a single block to gain more I/O e�ciency for query
processing.

Suppose that a given analytic query Q1 requires pro-
jection on T1 so that a few columns, e.g., C1, C2, and C3, and
a join key column is C5. �en, our system allows users to
build only two blocks for the four column values: the three
column values, i.e., C1, C2, and C3, are stored in a single
block row-wise and C5 column values are stored in another
block. Consequently, a MapReduce job reads a single block
to get those column values for selection at once. �is enables
us to skip late materialization for showing row-wise results
from column-wise storages [10, 15].

A problem in our approach is that the column values that
constitute a single row may not be physically located to-
gether in a single node. �is causes many I/Os as it is
necessary to access them through a network during query
processing. �e reason is that Hadoop’s original block
placement policy does not guarantee the colocation of re-
lated blocks since it determines the block placement at
runtime with no semantics about related blocks. RCFile [11]
follows the PAX layout [14] to avoid this problem. In RCFile,

a relation is rst partitioned into a set of row groups, and
each HDFS block is lled with these row groups, where the
values are stored column-wise in each. Since all the related
columns reside in a row group, it avoids the colocation
problem while providing a columnar layout. However, it still
su�ers from unnecessary data reads since all columns are
located in a single block. We instead solve this problem by
providing a new block placement policy, which is allowed in
HDFS since Hadoop release 0.21.0 [2]. With the new block
placement policy, blocks are located together with other
blocks in the same group in a physical node.

3.2. Bitmap Index for HDFS. While transforming a data
layout, users are also allowed to build indexes on selected
columns for each group. ColBit provides a bitmap index,
which is considered to be better than traditional B+-tree
indexes for analytical workloads [17]. A bitmap index is a
collection of bitvectors that consists of only 0’s and 1’s. �e
bitvectors in a bitmap index correspond to distinct values in
a certain value domain. �e 1’s in a single bitvector identify
tuples in a relation that is represented by the bitvector.
Several encoding schemes for bitmap indexes can be used to
determine how to map 1’s positions into distinct values in a
value domain. For example, equality encoding scheme maps
each 1’s position into the position of a tuple that contains a
certain column value which is represented by a bitvector.
Shortly, the number of bitvectors in a bitmap index is the
same as the cardinality of a column the index is built on. On
the other hand, in range and interval encoding scheme, a
single bitvector represents not only a single distinct values
but also multiple column values. Readers are referred to
Chan’s work [19, 20] for understanding various encoding

Relation T1

OrderId

C1 C2 C3 C4 C5

Data loader

OrderId

1

2

. . .

Collocating group1 (/T1)

CustId Price Discount Date

OrderId

1,000

1,001

. . .

Collocating group2 (/T2)

CustId Price Discount Date

00
10

00
10

1
Bit vectors

00
10

00
10

1
B+-tree

B+-tree

bit vectors

C1 C2 C3 C4 C5

C1 C2 C3 C4 C5

DateDiscountPriceCustId

Figure 1: Data layout transformation.

Scientic Programming 3

schemes used for building bitmap indexes. In our system,
users are allowed to choose their encoding schemes for
better support of various query types. For example, users are
allowed to choose range encoding scheme rather than
equality encoding scheme for efficiently processing range
selection queries. Currently, ColBit provides three major
encoding schemes including equality, range, and interval
encoding.

To further improve the I/O efficiency, ColBit compresses
all the bitvectors by using run-length encoding scheme, where a
“run” represents a consecutive sequence of the same bits,
i.e., either 0’s or 1’s. We also exploit WAH (word-aligned
hybrid) compression scheme [17] that groups bits into com-
pressed words and uncompressed words. /e major profit is
that bitwise operations are executed very efficiently benefiting
from that bitwise operations are actually performed on word
units in a computer system. Furthermore,ColBit is also devised
to facilitate query processing by performing bitwise operations
on compressed bitvectors without decompression.

Figure 2 presents how a bitvector of 8,000 bits is com-
pressed into four 32-bit words in a system./e first bit of each
word indicates whether the word is compressed. If the first bit
is 1, the word is compressed with a sequence of bit values that
the second bit called fill bit represents. For example, in the
figure, the second word is compressed to represent 256 ∗ 31
0’s. /e fourth word keeps the rest bits, which stores the last
few bits that cannot be a single word by themselves.

To fetch the position of tuples fast from a bitvector that
represents a certain distinct value, we build a virtual cursor
that can run on the compressed bitvectors to compute the
next 1’s positions with no decompression./is virtual cursor
consists of three values: (1) the position of the wordW that a
virtual cursor C is currently located at, (2) the position of the
bit within W that C is located at, and (3) the position of bit
within the rest word if C is located at the word.

Example 1. Suppose that a virtual cursor C currently in-
dicates the last bit in the first word of a bit vector at the
bottom of Figure 2, then the current cursor indicates the 31st
tuple in a certain relation. If we find the position of the next 1
to fetch a tuple that contains the value that the bitvector
represents, it begins from the first bit in the second word
compressed. /e word is filled with 0’s since fill bit in the
word indicates 0. We thus simply skip counting the position
of the next 1 bit by bit simply moving cursor C by run_length
of 0’s without decompression. /us, the next tuple that we
must fetch will be 7,998(31 + 256 ∗ 31 + 31)th tuple.

We also exploit B+-tree index [21] to efficiently get
relevant bitvectors for given certain values for selection
queries. Note that compressed bitvectors are stored as a
single file for each block group and also located together with
their corresponding data blocks in the block group for I/O
efficiency.

4. Query Processing with ColBit

In our system, MapReduce jobs are developed to widely
utilize ColBit for processing analytical queries over a massive
volume of data for better improving I/O efficiency. It is

noteworthy that our approach is not restricted to processing
only relational data but also processing other data models
including graphs such as RDF dataset which also requires
selection and join queries. Since MapReduce programming
model does not have any dependency on data model and
schema, it is widely accepted in the literature that the
MapReduce programming model can deal with irregular or
unstructured data more easily than they do with DBMS [3].

Figure 3 illustrates the execution plans for two popular
queries in relational data analysis: selection and star-join
queries.

In the MapReduce model, selection predicates are
usually performed by mappers, and reducers group mapped
outputs using a table name and column name pair. ColBit
facilitates selection query processing using both columnar
data layout and bitmap indexes, as shown in Figure 3(a). To
achieve this, we extend the original input format class of the
Hadoop framework. Our input format class first selects
bitmap indexes built on selected columns and then, reads
only the columnar files associated with the selected columns.
While reading the values from the column files, our input
format class outputs only values in the rows indicated by bit
positions whose values are set to 1. As unnecessary column
values are not read, we save many I/Os during query pro-
cessing. Note that we follow the late materialization policy
[15] so that tuple reconstruction is delayed to the reduce
stage.

As MapReduce is initially designed to process a single
large input, join processing on Hadoop has been challenging.
Blanas et al. compared various join techniques devised for
running on Hadoop MapReduce [22]. Repartition join is the
most general join technique for Hadoop MapReduce [4, 22].
In a repartition join, each mapper appends a tag as a key value
to each row so as to identify which relation the rows come
from. Rows with the same key value are then transferred to a
reducer during a shuffling phase. Finally, each reducer joins
the rows on a key-equality basis. However, a repartition join
does not support star-join queries well. /e rationale behind
this assertion is that a star-join query usually is executed by
multiple binary joins on a fact table and multiple dimension
tables. /erefore, multiple MapReduce jobs are usually re-
quired to perform multiple binary joins on Hadoop [4, 22].
Moreover, many I/Os are consumed just for data trans-
mission to the next stages, i.e., reduce tasks or the next
MapReduce jobs, while process join operations since the
philosophy of MapReduce is to sacrifice I/O efficiency for
guaranteeing fault tolerance by utilizing frequent check-
pointing and block-level data replication.

With ColBit, our initial idea is to save many I/Os by
delivering compressed data structures, rather than data
themselves, to the next stage. We further developed the idea
to holistically improve star-join query processing on
Hadoop. Star-join queries usually restrict a set of tuples from
the fact table using selection predicates on one or more
dimension tables and then perform some aggregations on
the restricted fact table, often grouping tuples by the at-
tributes of other dimension tables. As a result, join opera-
tions should be performed between the fact table and
dimension tables for each selection predicate and for each

4 Scientific Programming

group-by-aggregation. A sample query in Example 2 is to
nd the total revenue of customers in Asia who purchased a
product supplied by Asian suppliers between the years 1992
and 1998, and the total revenue must be grouped by each
nation and transaction year.

Example 2. A sample star-join query from Star Schema
Benchmark [23].

SELECTc. nation, s. nation, d. year, sum (lo.revenue) as
revenue
FROM customer AS c, lineorder As lo, supplier AS s,
dwdate AS d
WHERE lo.custkey � c.custkey

AND lo.suppkey � s.suppkey
AND lo.lo.orderdate � d. datekey
AND c.region � “ASIA”
AND s.region � “ASIA”
AND d. year ≥1992 and d. year ≤1998

GROUP BY c. nation, s. nation, d. year
ORDER BY d. year asc, revenue desc;

We adapted invisible join technique, which was initially
devised for column-oriented databases, to reduce the
volume of data accessed out of order from dimension tables
[15]. Unlike traditional join techniques, invisible join is a
variant of late materialized join that focuses on minimizing

Bitvectors

C1
C2

C3
C4

C5

1
2
…

Columns

InputFormat

Mapper

Reducer

1Selection

Grouping by
(table name,

Column name)

Materialization

C1

1
C1

C3

(a)

1101011

001000101

Bitvectors Columns
of R

Columns
of T

Columns
of T

Columns
of S

InputFormat

001000101

Bitvectors

1
2
…

InputFormat

Mapper

Reducer

Mapper

Hashtable
for R

Hashtable
for S

1101011

1
2

.. ..

1
2
…

R1 R2
R3

S1
S2

S3

T1

1 3
T1 R3 S2

T2

(b)

Figure 3: MapReduce plans for relational data processing. (a) Selection query. (b) Star-join query.

000100000000100000000000000011

(a) An original bitvector with 8,000 bits

000010…010…011 100… 0100000000 000…001

(b) Grouping as a unit of 31 bits and merging identical groups

31 bits 2 bits256 × 31 bits31 bits

000…000

(c) Encoding each group as 1 word (4 byte on a 32-bit machine)

Uncompressed
word

Compressed
word

Run-length is 256 Remaining
word

31 literal bits

Uncompressed
word

00000000000000000000000000000000100000000000 . . . 00000000000000

Figure 2: Example of bitvector compression.

Scientic Programming 5

the values required to be extracted out of order. /erefore,
it rewrites join operations on fact table columns so that
joins can be performed at the time when other selection
predicates are evaluated to the fact table. /e selection
predicates are evaluated by using other data structures such
as hash table lookups. We tailored the invisible join
technique to fit the MapReduce model with ColBit’s bitmap
index. Figure 3(b) illustrates our join technique imple-
mented with two MapReduce jobs on Hadoop.

In the first MapReduce job, we extend the InputFormat
class to apply each selection predicate to dimension tables
for selecting key values that satisfy the predicate from the
dimension tables. /e InputFormat class then returns a Java
HashMap object that is used for checking which key values
satisfy the predicate. At the map stage, each mapper uses the
hash maps for finding tuples of the fact table that satisfy the
selection predicate./is is performed by looking up the hash
table with values of the foreign key column in the fact table.
It then creates a bitvector in which the positions of 1’s
represent tuples in the foreign key column that satisfy the
selection predicate. Bitvectors from all mappers are then
transferred and grouped by row groups and finally merged
into a single bitvector by a bitwise-AND operator at the
reduce stage. A merged bitvector represents the positions of
all tuples that satisfy all predicates in the fact table. Note that
when reading fact table columns at the map stage, mappers
directly read only relevant columns from columnar files
stored on HDFS. In the second MapReduce job, we use the
merged bitvector for the actual joining process. Each mapper
reads fact table columns and extracts foreign key values in the
rows, where the corresponding bits are set to 1 in the bit-
vector./e foreign key values are then used to extract column
values from the dimension tables. In the second MapReduce
join, grouping and aggregations are applied to the selected
and joined results that came from the first MapReduce job.
Based on the observation that a MapReduce job simply works
like a group-by-aggregation query in database systems, it is
reasonable that grouping and aggregating are assigned to a
separated MapReduce job. Note that the second MapReduce
job is omitted in Figure 3 owing to a space limitation.

/e major contributions of our approach are summa-
rized in the following: first, as intermediate results are de-
livered as compressed bitvectors, we can save a huge amount
of I/O. Second, by applying bitwise operations on com-
pressed bitvectors, we can easily compute multiple selection
predicates. Finally, when it comes to handling a star-join
query, no more than two MapReduce jobs are sufficient in
our approach while much more MapReduce jobs are needed
in other join techniques. Note (or Recall) that a single
MapReduce job implements each join operation.

5. Experimental Study

We performed our microbenchmark test on a 9-node
cluster, where each node is equipped with an Intel i7-6700
3.4GHz processor, 16GB of memory, and a 7200RPM
SATA3 HDD, running on CentOS 7.5. All nodes are con-
nected through a gigabit switching hub. We used a subset of

the TPC-H benchmark dataset [24] with three queries (Q1
and Q6 for selection queries, and Q3 for a star-join query), as
shown in Table 1. We compared our approach with the
original HDFS data layout, RCFile [13], and ORC [25].
Moreover, we compared our approach with an improvement
for Hadoop, i.e., Apache Hive version 2.3.3., which currently
accepts RCFile and ORC as its storage types [25].

All programs were implemented using JDK 8 and
Hadoop release 2.7. Figure 4 shows the elapsed time for
loading TPC-H datasets on. In all cases, all of the data layout
schemes scaled linearly with an increase in the volume of
input data. Among them, Hadoop’s row-wise data layout
(sequential file) showed the best loading time. /is was
because it does not require any layout transformation. All
the column-wise data layouts exhibited relatively long
loading time. ORC shows the worst loading time followed by
RCFile. Among the column-wise data layouts, ColBit
exhibited the best performance regardless of bitvector
encoding schemes applied to bitmap indexes. Specifically,
ColBit with bitmap indexes paid slightly more time for an
additional bitmap index buildup. However, fast query
processing time could compensate for the marginal loss of
loading time.

Figure 5 shows the sizes of data reads at the map stage for
TPC-H Q1 and Q6. ColBit substantially reduced the size of
data reads using mappers. Specifically, ColBit with bitmap
indexes showed the smallest data reads as it further skipped
many unnecessary values during the query processing.
RCFile and ORC recorded the second and third best per-
formance at the size data read. /e row-wise layout labeled
“Original” recorded the worst performance since all of the
data should be understandably read for batch processing
with Hadoop.

To see how much I/O affected the overall performance,
we measured elapsed time for TPC-H queries. /ese queries
were selected with care for fair comparison. Note that
Apache Hive can exploit two columnar layouts for query
processing: RCFile and ORC. Accordingly, we configured
Apache Hive with the two columnar layouts and measured
the performance of each of the layouts. Also, note that
MapReduce jobs could use the columnar layout without any
help of Apache Hive. So, we examined which columnar
layout could influence the performance of MapReduce jobs
as well.

Figure 6 presents the execution time for two selection
queries. Again, ColBit outperformed other approaches by up
to two orders of magnitude as it significantly reduced I/O
from the data reading. It is noteworthy that neither I/O
efficiency nor query processing time was improved by
RCFile./e reason for this was that with PAX-similar layout,
unnecessary columns in a row groupwere still read in RCFile

Table 1: Statistics of the selected dataset from TPC-H [24].

Table name Data size /e # of rows in a table
Customer S ∗ 24MB S ∗ 150,000
Orders S ∗ 171MB S ∗ 1,500,000
Lineitem S ∗ 759MB S ∗ 6,001,215
S: scale factor.

6 Scientific Programming

during query processing as noted earlier in Section 2.
Apache Hive that utilized RCFile and ORC as a storage
format also exhibited better performance than that of
original Hadoop MapReduce jobs whose inputs were either
RCFile or ORC. �is was because an up-to-date version of
Apache Hive bettered the performance of selection query
processing by (i) removing unnecessary Map phases and (ii)
adopting vectorized query execution model [25].

Finally, Figure 7 presents the performance of our star-
join query analysis based on MapReduce. As ColBit reduces
many data reads with bitvectors and a columnar data layout,
we witnessed a signicant performance gain in the query
execution time. It is also noteworthy that for the star-join
query, Apache Hive did not show better performance even
when compared to original Hadoop MapReduce jobs that
utilizes invisible joining whose inputs are either RCFile or

ColBit

RCFile
ORC

Hadoop
ColBit (equality)
ColBit (range)

ColBit (interval)

4
Scale factor

2561 6416
1

4

16

64

256

1024

4096

El
ap

se
d

tim
e (

se
c)

ColBit

RCFile
ORC

Hadoop
ColBit (equality)
ColBit (range)

ColBit (interval)

4
Scale factor

2561 6416
1

4

16

64

256

1024
El

ap
se

d
tim

e (
se

c)

(a) (b)

ColBit

RCFile
ORC

Hadoop
ColBit (equality)
ColBit (range)

ColBit (interval)

4
Scale factor

2561 6416
4

16
64

256
1024
4096

16384

El
ap

se
d

tim
e (

se
c)

(c)

Figure 4: Data loading time. (a) Customer table. (b) Orders table. (c) Lineitem table.

0.01
0.1

1
10

100
1000

10000
100000

Si
ze

 (M
B)

Hadoop
RCFile
ORC

ColBit
ColBit (bitmap)

4
Scale factor

2561 6416
1

16

256

4096

65536

4

Si
ze

 (M
B)

Scale factor

Hadoop
RCFile
ORC

ColBit
ColBit (bitmap)

2561 6416

(a) (b)

Figure 5: Sizes of input data read at the map stage. (a) TPC-H Q1 query. (b) TPC-H Q6 query.

Scientic Programming 7

ORC. �e reason was that Apache Hive’s query planner
builds a multiple MapReduce for a given user-written
HiveQL statement, as Hive’s query planner builds a single
MapReduce job for each binary join operator. But our so-
lution could nish the star-join query only with two
MapReduce jobs involving this performance gap.

6. Conclusion

We address the problem of I/O ine�ciency in
Hadoop-based data analysis with a columnar data
layout and compressed bitmap indexes in this article.
Experimental results exhibit that our approach out-
performs both the Hadoop-based programs and
Apache Hive that utilize RCFile and ORC, recent
columnar data layouts for Hadoop. Furthermore, our
techniques do not require any modication of
Hadoop internals.

�erefore, any Hadoop version can be incorporated with
our techniques with no e�ort. As future work, given a set of
queries, we intend to nd an e�cient method to choose
index types and to group columns into a few column groups

so as to automatically maximize the I/O e�ciency and
minimize the chance of tuple reconstructions.

Data Availability

�e TPC-H decision support benchmark dataset which has
been used to perform our experiments is provided by TPC
(Transaction Processing Performance Council) at http://tpc.
org/tpch. �e source code used for our experiments is also
deliverable upon request.

Conflicts of Interest

�e authors declare that they have no con¬icts of interest.

Acknowledgments

�is work was funded by the Korea Institute of Science and
Technology Information, Korea (grant number K-18-L11-
C03 and K-18-L15-C02-S18). �is work was also supported
by Basic Science Research Program through the National
Research Foundation of Korea (NRF) funded by the Min-
istry of Education (NRF-2018R1A6A1A03025109).

8
16
32
64

128
256
512

1024
2048
4096

1

El
ap

se
d

tim
e (

se
c)

Scale factor

8
16
32
64

128
256
512

1024
2048

El
ap

se
d

tim
e (

se
c)

25664164 1
Scale factor

25664164

Hadoop (ORC)
ColBit (Bitmap)

Hive (RCFile)
Hadoop (ORC)
ColBit (Bitmap)

Hive (RCFile)

Hadoop (original)

Hadoop (RCFile)

ColBit
Hive (ORC)

Hadoop (original)

Hadoop (RCFile)

ColBit
Hive (ORC)

(a) (b)

Figure 6: Execution time of the selection queries. (a) TPC-H Q1 query. (b) TPC-H Q6 query.

8
16
32
64

128
256
512

1024
2048
4096

El
ap

se
d

tim
e (

se
c)

1 4 16 64 256
Scale factor

Hadoop (original)
Hive (ORC)

Hive (RCFile)
ColBit (Bitmap)

(b)

0.01
0.04
0.16
0.64
2.56

10.24
40.96

163.84
655.36

2621.44
10485.76

1 4 16 64 256

Si
ze

 (M
B)

Scale factor

Hadoop (original)
Hive (ORC)

Hive (RCFile)
ColBit (Bitmap)

(a)

Figure 7: Correlation between query execution time and the size of the intermediate results (TPC-H Q3). (a) Intermediate result size. (b)
Execution time.

8 Scientic Programming

http://tpc.org/tpch
http://tpc.org/tpch

References

[1] Apache Hadoop, “Apache Hadoop project,” December 2010,
http://hadoop.apache.org.

[2] J. Dean and S. Ghemawat, “MapReduce: simplified data
processing on large clusters,” Communications of the ACM,
vol. 51, no. 1, pp. 107–113, 2008.

[3] K. Lee, Y.-J. Lee, H. Choi, Y. D. Chung, and B. Moon, “Parallel
data processing with MapReduce: a survey,” ACM SIGMOD
Record, vol. 40, no. 4, pp. 11–20, 2012.

[4] A. Pavlo, “A comparison of approaches to large-scale data
analysis,” in Proceedings of SIGMOD Conference, pp. 165–178,
Providence, RI, USA, June 2009.

[5] E. Anderson and J. Tucek, “Efficiency matters!,”ACM SIGOPS
Operating Systems Review, vol. 44, no. 1, pp. 40–45, 2010.

[6] A. /usoo, J. S. Sarma, N. Jain et al., “Hive: a warehousing
solution over a map-reduce framework,” Proceedings of VLDB
Endowment, vol. 2, no. 2, pp. 1626–1629, 2009.

[7] L. George,HBase: the Definitive Guide: Random Access to your
Planet-Size Data, O’Reilly Media Inc., Sebastopol, CA, USA,
2011.

[8] F. Chang, J. Dean, S. Ghemawat et al., “Bigtable: a distributed
storage system for structured data,” ACM Transactions on
Computer Systems (TOCS), vol. 26, no. 2, pp. 1–26, 2008.

[9] M. Zaharia, M. J. Franklin, A. Ghodsi et al., “Apache Spark: a
unified engine for big data processing,” Communications of
ACM (CACM), vol. 59, no. 11, pp. 56–65, 2016.

[10] A. Floratou, U. F. Minhas, and F. Özcan, “SQL-on-Hadoop:
full circle back to shared-nothing database architectures,”
Proceedings of VLDB Endowment, vol. 7, no. 12, pp. 1295–
1306, 2014.

[11] K. Shvachko, “/e Hadoop distributed file system,” in Pro-
ceedings of IEEE Symposium on Mass Storage Systems and
Technologies (MSST), pp. 1–10, Lake Tahoe, NV, USA, May
2010.

[12] Y. Lin, D. Agrawal, C. Chen, B. C. Ooi, and S. Wu, “Llama:
leveraging columnar storage for scalable join processing,” in
Proceedings of ACM SIGMOD Conference, pp. 961–972,
Athens, Greece, June 2011.

[13] Y. He, R. Lee, Y. Huai et al., “RCFile: a fast and space efficient
data placement structure in mapreduce-based warehouse
systems,” in Proceedings of 27th IEEE ICDE Conference,
pp. 1199–1208, Hannover, Germany, April 2011.

[14] M. Y. Eltabakh, Y. Tian, F. Özcan, R. Gemulla, A. Krettek, and
J. McPherson, “CoHadoop: flexible data placement and its
exploitation in Hadoop,” Proceedings of the VLDB Endow-
ment, vol. 4, no. 9, pp. 575–585, 2011.

[15] D. J. Abadi, S. R. Madden, and N. Hachem, “Column-stores
vs. row-stores: how different are they really?,” in Proceedings
of ACM SIGMOD International Conference onManagement of
Data-SIGMOD’08, pp. 967–980, Vancouver, BC, Canada,
May 2008.

[16] S. Harizopoulos, V. Liang, D. J. Abadi, and S. Madden,
“Performance tradeoffs in read- optimized databases,” in
Proceedings of VLDB Conference, pp. 487–498, Seoul, Korea,
September 2006.

[17] K. Wu, E. J. Otoo, and A. Shoshani, “Optimizing bitmap
indices with efficient compression,” ACM Transactions on
Database Systems, vol. 31, no. 1, pp. 1–39, 2006.

[18] P. Deutsch and J.-L. Gailly, “ZLIB compressed data format
specification version 3.3,” No. RFC 1950, Internet Engi-
neering Task Force, Fremont, CA, USA, 1996.

[19] C. Y. Chan and Y. E. Ioannidis, “An efficient bitmap encoding
scheme for selection queries,” in Proceedings of the 1999 ACM

SIGMOD International Conference on Management of Data-
SIGMOD’99, pp. 215–226, Philadelphia, PA, USA, June 1999.

[20] C. Y. Chan and Y. E. Ioannidis, “Bitmap index design and
evaluation,” ACM SIGMOD Record, vol. 27, no. 2, pp. 355–
366, 1998.

[21] D. Comer, “Ubiquitous B-tree,” ACM Computing Surveys,
vol. 11, no. 2, pp. 121–137, 1979.

[22] S. Blanas, J. M. Patel, V. Ercegovac, J. Rao, E. J. Shekita, and
Y. Tian, “A comparison of join algorithms for log processing
in MapReduce,” in Proceedings of ACM SIGMOD Conference,
pp. 975–986, Indianapolis, IN, USA, June 2010.

[23] P. O’Neil, E. O’Neil, X. Chen, and S. Revilak, “/e star schema
benchmark and augmented fact table indexing,” in Technology
Conference on Performance Evaluation and Benchmarking,
Springer, Berlin, Germany, 2009.

[24] Transaction Processing Performance Council, “TPC-H
benchmark specification,” April 2008, http://www.tpc.org/
hspec.html.

[25] Y. Huai, X. Zhang, A. Chauhan et al., “Major technical ad-
vancements in Apache Hive,” in Proceedings of ACM SIG-
MOD Conference, pp. 1235–1246, Snowbird, UT, USA, June
2014.

Scientific Programming 9

http://hadoop.apache.org
http://www.tpc.org/hspec.html
http://www.tpc.org/hspec.html

Computer Games
 Technology

International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

 Journal ofEngineering
Volume 2018

Advances in

Fuzzy
Systems

Hindawi
www.hindawi.com

Volume 2018

International Journal of

Reconfigurable
Computing

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

 Artificial
Intelligence

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Civil Engineering
Advances in

Hindawi
www.hindawi.com Volume 2018

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi
www.hindawi.com Volume 2018

Hindawi

www.hindawi.com Volume 2018

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Engineering
 Mathematics

International Journal of

Robotics
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Computational Intelligence
and Neuroscience

Hindawi
www.hindawi.com Volume 2018

Mathematical Problems
in Engineering

Modelling &
Simulation
in Engineering
Hindawi
www.hindawi.com Volume 2018

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific
World Journal

Volume 2018

Hindawi
www.hindawi.com Volume 2018

Human-Computer
Interaction

Advances in

Hindawi
www.hindawi.com Volume 2018

 Scienti�c
Programming

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/ijcgt/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/afs/
https://www.hindawi.com/journals/ijrc/
https://www.hindawi.com/journals/acisc/
https://www.hindawi.com/journals/aai/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/jcnc/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/journals/ijbi/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/cin/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ahci/
https://www.hindawi.com/journals/sp/
https://www.hindawi.com/
https://www.hindawi.com/

