
Review Article
Temporal and Evolving Data Warehouse Design

Sidra Faisal, Mansoor Sarwar, Khurram Shahzad, Shahzad Sarwar,
Waqar Jaffry, andMuhammadMurtaza Yousaf

Punjab University College of Information Technology, Lahore, Pakistan

Correspondence should be addressed to Khurram Shahzad; khurram@pucit.edu.pk

Received 30 May 2017; Accepted 16 October 2017; Published 26 November 2017

Academic Editor: Mario Alviano

Copyright © 2017 Sidra Faisal et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The data model of the classical data warehouse (formally, dimensional model) does not offer comprehensive support for temporal
data management. The underlying reason is that it requires consideration of several temporal aspects, which involve various time
stamps. Also, transactional systems, which serves as a data source for data warehouse, have the tendency to change themselves
due to changing business requirements. The classical dimensional model is deficient in handling changes to transaction sources.
This has led to the development of various schemes, including evolution of data and evolution of data model and versioning of
dimensional model. These models have their own strengths and limitations, but none fully satisfies the above-stated broad range
of aspects, making it difficult to compare the proposed schemes with one another. This paper analyses the schemes that satisfy
such challenging aspects faced by a data warehouse and proposes taxonomy for characterizing the existing models to temporal data
management in data warehouse. The paper also discusses some open challenges.

1. Introduction

Today, most applications related to finance, record keeping,
scheduling, and weather forecasting demand time-varying
nature of data in order to identify the trends by comparing the
current state of data with its previous states. The analyses of
these trends may lead to identifying the underlying patterns
in data, predicting the future andmaking informed decisions
[1]. In the absence of the time-varying nature of data in
transaction systems, users may miss important trends in data
or may infer the trends incorrectly [2–4]. However, temporal
data management for these applications is a challenging task.
It is because, besides temporal data management, it is likely
that an organization changes itself and to accommodate the
organizational changes the corresponding information sys-
tem is also changed [5]. The reasons for these changes could
be implementation of new ideas, compliancewith the changes
forced by the market and/or relevant standards bodies, or
changes in government policies. Here, it is important to note
that the nature of many changes cannot be foreseen because
there are a number of factors that are associated with it,
including dynamic nature of the market, changing weather,
new standards, and unforeseen policies of government.

Various temporal data models such as [6, 7] have been
proposed for temporal data management; specifically, the
database that can store and manage time-varying data by
using temporality types, called Temporal Database (TDB).
Although TDBs provide management of temporal data,
they cannot support analysis on the basis of historical data
aggregation. However, these databases can serve as a useful
source for supporting analysis and thereby decision support.
Such a database is called a data warehouse (DW). A DW is
a specialized storage area that captures processed and inte-
grated data from several heterogeneous data sources, which
may include TDBs, for analytical purposes [8]. Golfarelli
and Rizzi [9] argue that a DW has “rapidly spread in the
industrial world due to undeniable contribution to increasing
the effectiveness and efficiency of the decisions.” Since data in
a DW is used for decision support, therefore the data model
for a DW should be designed in a way that it is optimized
for this purpose [10]. A data model of DW (also known as
Star or multimultidimensional model) consists of a central
fact table and many dimension tables around it. The values
in a dimension table are usually textual, relatively stable,
discrete, and used as input conditions for analysingmeasures.
To support various levels of analysis, the dimension tables

Hindawi
Scientific Programming
Volume 2017, Article ID 7392349, 18 pages
https://doi.org/10.1155/2017/7392349

https://doi.org/10.1155/2017/7392349


2 Scientific Programming

may have hierarchies in it. A fact table contains foreign keys
for all other dimension tables and one or more measures
that describe the critical values for the subject of interest.
Measures are the nonkey and numeric values in the fact table.

A DW is dependent on its data sources for data popu-
lation, which is done through a process called Extraction,
Transformation, and Loading (ETL). However, the challeng-
ing task is the presence of TDBs as data sources. Recall
from a preceding paragraph that an organization changes
itself and to accommodate the organizational changes the
corresponding database system is also changed.This requires
adjustment to the multidimensional model [10], that is, to
accommodate the changes introduced by TDB [11].

The adjustments become further challenging if the data
sources are heterogeneous and they change with time, inde-
pendently of each other.Thismay lead to two types of changes
to a DW, content changes and schema changes [4, 10]. The
content changes include insert, update, and delete operations
on records while schema changes include adding, modifying,
and dropping an attribute or a table in the DW data model.
To summarize, the existence of TDBs and changes in them
lead to the development of a Temporal Data Warehouse
(TDW). A TDW requires consideration of several aspects in
itsDW, including temporal support in its datamodels [12–16],
changes to its schema, and changes to its data [17–21].

Our work analyses the challenging aspects faced by
TDWs and the solutions that have been proposed to address
these challenges. Currently, the studies to analyse the capa-
bilities of TDW are scarce [9, 22] and these studies have
at least one of the following limitations: (a) they focus on
explaining the concept of Temporal Databases and the ways
of handling changes in the DW but do not aim to offer
a comparative analysis of the existing approaches, (b) they
are old and, thus, do not include the latest development
in the area, and (c) they do not provide a comparison of
temporal support in the existing schemes based on various
time stamps. For instance, Golfarelli and Rizzi [9] discuss the
handling of schema and data level changes in datawarehouses
and data marts, design of TDWs, and querying temporal
data. However, they do not include the recent efforts such as
[23, 24] as well as a comparative analysis of these approaches.
Wrembel [22] also focuses on a subset of approaches, called
Multiversioned DataWarehouses (MVDWs). Additionally, it
includes a language for querying a MVDW, as well as the
detailed structure for sharing data and indexing data in a
MVDW.Wrembel [23] only discusses the challenges that arise
in the design, construction, and management of evolving
external data sources as well as evolution of an ETL layer.
All these approaches do not provide a comparison of the
temporal support provided by the existing schemes.

In the remaining part of this section,we present aworking
example to illustrate the concept of a temporal and evolving
DW as well as better understand the issues involved with it.
This is followed by a taxonomy for temporal and evolving
DW.

1.1. Working Example. Today, most applications related to
finance, record keeping, scheduling, weather forecasting, and
so forth demand time-varying nature of data in order to

Company

State

City

Corporation 

All

Type All

Country

Customer
QtySold

ProfitEarned

Sales_Fact

Date

Staff Allocation 
region

Brand
Product

Month

Year

Product

Category

Figure 1: S0: example of dimensional model for the sales company.

identify the trends by comparing the current state of data
with its previous states.The analyses of these trends may lead
to identifying the underlying patterns in data, predicting the
future and making informed decisions [1]. In the absence
of the time-varying nature of data in transaction systems,
users may miss important trends in data or may infer
the trends incorrectly [2–4]. However, temporal data man-
agement for these applications is a challenging task. It is
because, besides temporal data management, it is likely that
an organization changes itself and to accommodate the orga-
nizational changes the corresponding information system is
also changed [4]. The reasons for these changes could be
implementation of new ideas, compliance with the changes
forced by the market and/or relevant standards bodies, or
changes in government policies. Here, it is important to note
that the nature of many changes cannot be foreseen because
there are a number of factors that are associated with it,
including dynamic nature of the market, changing weather,
new standards, and unforeseen policies of government.

Existing studies, such as [25], suggest the use of a working
example for better understanding of the changes in a DW.
Thus, to further understand some of changes that can happen
in a DW as a result of the changes in its data sources, consider
a working example of a sales company that operates in several
states. Each state is divided into a number of regions. The
company has a number of staff members who operate in
those regions. The staff members are responsible for selling
a number of products to its customers dispersed in those
regions. The sales company maintains data about customers
and their city and state for analysis. The products sold to
customers are of different brands and are classified into
different categorizes based on their features. Consider S0 as an
excerpt conceptual data model of a DW depicted at 1/1/2012
(say 𝑡0) in Figure 1 using the Dimension Fact Model (DFM)
formalism, proposed in [26].

The central element Sales Fact shown in Figure 1 is a fact
table having two measures, namely, Sales Quantity and Prof-
itEarned. The five elements surrounding the central element
are dimensions, namely, product, staff, time, customer, and
Product Category. Each dimension has a hierarchy in which
an arc shows many-to-one association, that is, many-to-one
associations in the product dimension are between product
and brand and company and brand. This means that a brand
(say 𝑏1) can havemany products say (𝑎1, 𝑎2, . . . , 𝑎𝑛). Similarly,



Scientific Programming 3

a company (say 𝑐1) can have many brands (say 𝑏1, 𝑏2, . . . ,
𝑏𝑛).

The adjustment refers to two types of changes that are
possible in the DW data model, schema changes and content
changes [10].

(i) Schema changes include adding, modifying, and
dropping an attribute or a table in the DWdatamodel
[17].

(ii) Content changes include operations such as insert,
update, and delete on the records of DW.

Thereafter, we use S0 shown in Figure 1 to illustrate the
two types of changes. The motivation for choosing the exam-
ple changes is that the working example and corresponding
changes are subsequently used to elaborate the temporal and
evolving DW in the rest of the paper.

Schema Changes. They refer to the changes in the data
model of the DW. The possible set of schema change oper-
ations defined in [17] are insert level, delete level, insert
attribute, delete attribute, connect attribute to a dimension
level, disconnect attribute from a dimension level, connect
attribute to a fact, disconnect attribute from a fact, insert
classification relationship, delete classification relationship,
insert fact, delete fact, and delete dimension.

For the sales company example, consider that by 1/1/2013
(say 𝑡1) the analyses requirements lead to some adjustments
in the DW data model. The adjustments and their corre-
sponding schema change operations are as follows: (a) instead
of analysing the sales performance on monthly basis, the
company is interested in analysing the sales performance on
weekly basis. Here, the change operations are delete level and
add level; (b) instead of analysing the sales performance by
Product Type, the company is interested in analysing product
by brands and their types. The change operations therefore
become connect attribute to dimension level and disconnect
attribute from dimension level; (c) subcategories are defined
in each product category. The corresponding operations are
insert level and connect attribute to dimension; (d) the
company is not interested in analysing QtySold by states.
Therefore, the corresponding change operation for this case is
delete level.TheDWdatamodel generated as a result of these
changes is shown in Figure 2(a).

By 1/1/2014 (say 𝑡2) the analyses requirements further lead
to some adjustment in the DW data model. The adjustments
and their corresponding schema change operations are as
follows: (a) instead of analysing the sales performance on
weekly basis, the company is again interested in analysing
the sales performance on monthly basis. The corresponding
change operations are insert attribute, insert level, and delete
attribute; (b) instead of analysing products by brands (as
done in S1) the company is interested in simply analysing
products by Product Types, that is, without any association
with company but with corporation. Similar to the preceding
changes, these changes can be mapped to schema change
operations. The data model generated as a result of these
changes is shown in Figure 2(b).

Further, assume by 1/1/2015 (say 𝑡3) the analyses require-
ments lead to some adjustment in the DW data model. The

adjustments are that the company is not interested in the
brands of any product. The DW data model generated as a
result of these changes is shown in Figure 2(c).

Content Changes. They refer to the changes in the content of
the DW. The possible set of content change operations is as
follows: insertion of a record, deletion of a record, and update
of a record in dimension tables or fact tables. For the sales
company example, consider the staff dimension table and the
Sales Fact fact table in Figure 1. The staff dimension has a
hierarchical structure in which staff members are assigned to
regions. Also, consider a set of records at time 𝑡0 (i.e., 1/1/2012)
for S0 of the dimension and fact table as shown in Table 1.
From the content it can be seen there are two allocation
regions, AR1 and AR2. Two staff members S1 and S2 belong
to AR1, whereas one staff S3 belongs to AR2. The QtySold in
region AR1 is 150 whereas that of AR2 is 100.

Consider at time 𝑡1 (i.e., 1/1/2013) that a contention change
occurs to the DW data model S0. According to the change,
the staff member S2 that belonged to AR1 is moved to AR2,
as shown below in Table 2. As a result, the QtySold in region
AR1 becomes 100 and AR2 becomes 150. This is an example
of content changes in the DW that may require adjustment in
it. The two types of changes demonstrated above are used in
the rest of the paper to exemplify the existing approaches.

1.2. Taxonomy of Temporal and Evolving DW. Recall that a
DW is dependent on its data sources for data population,
called Online Transaction Processing, or OLTP. For temporal
data management in OLTP, various temporal data models
have been proposed. Specifically, an OLTP that can store
and manage time-varying data is called a Temporal Database
(TDB). A key feature of TDBs is that the entities and their
relationships are captured and maintained along with their
time stamps. One such time stamp is called valid time.
Valid time represents the time during which the data values
are valid. For the sales company example, consider a staff
member S1 havingmonthly salary USD 2000 from 1/1/2014 to
31/12/2014. Also, consider that her salary gets a 10% increase
from 1/1/2015 making her salary USD 2200. In this example,
the valid time of salary amount USD 2000 is from 1/1/2014
to 31/12/2014, and the valid time of salary USD 2200 is from
1/1/2015 until the new value is added. Other than valid time,
transaction time is another type of time stamp in aTDB. Since,
a DW is dependent on its data sources, which could be a
TDB; therefore the nature of temporal support in the DW
is dependent on the time stamps captured by the TDB. This
means that if the valid time of a data item is not stored in the
TDB, it may not be possible to have valid time for that data
item in the DW.

Since the aim of this study is to analyse temporal data
management as well as handling changes in aDW, sowe build
a taxonomy to group the existing approaches based on their
features. This paper follows the taxonomy given in Figure 3
to list the features. According to the taxonomy, for clearly
distinguishing the features of existing approaches, temporal
support in a DW is separated from handling the changes as
well as from their support in commercial tools. This is shown
in the first level of the taxonomy.



4 Scientific Programming

Company

City

Corporation 

All

Type All

Customer
QtySold

ProfitEarned
TotalRevenue

Sales_Fact

Date

Staff
Allocation 

region
Brand

Product

Year

Week

Category

Country

Subcategory

Product

Company

Subsidary

(a) Modified schema at 𝑡1

City

Corporation 

All

Type All

Customer
QtySold

ProfitEarned

Sales_Fact

Month

Staff Allocation 
region

Brand
Product

Company

Year

Category

Country

Subcategory

Product

State

(b) Modified schema at 𝑡2

City

Corporation 

All

Type All

Customer
QtySold

ProfitEarned

Sales_Fact

Month

Staff Allocation 
regionBrand

Product

Company

Year

Category

Country

Subcategory

Product

State

(c) Modified schema at 𝑡3

Figure 2: Schema modifications.

Evolution support in
commercial DWs

Change handling in DWsTemporal support in DWs

Evolution 
schemes

Versioning 
schemes

Implicit Explicit

Cross-version queries

Temporal and evolving DWs

Temporality types

Valid time

Transaction time

DW loading time

Figure 3: A taxonomy of temporal and evolving DWs.

The taxonomy is summarized below.

(i) The temporal support in a DW is required, partic-
ularly, when its source is a TDB [12–15]. Therefore,
we dedicate Section 2 to discussing the insight of the
various time stamps for temporal data management.
The types of time stamps are labelled as temporality
types in the figure.

(ii) For handling changes in a DW (recall schema and data
changes), a number of efforts [17–21] have been made.
According to Eder and Wiggisser [27] and Eder and
Wiggisser [28], there are two ways to handle these

changes: (a) updating schema, transforming existing
data into the new schema, discarding the schema, and
using the updated schema for future data population:
this is called evolution scheme [2]; (b) creating a
new schema, maintaining both schemas, and using
only the new schema for future data population [24]:
however, both schemas can be used for retrieval
from the DW. The is called versioning scheme. Our
classification of change handling is aligned with the
discussion as shown in Figure 3. The details of the
classification schemes as well as the types of changes
are discussed in Section 3.



Scientific Programming 5

(iii) Furthermore, the last segment of the taxonomy is
regarding assessment of the adaptation of research in
commercial tools for DWs.We provide an overview of
the tool support for temporal data management and
handling changes to DWs by the leading vendors in
Section 4.

Section 5 concludes this paper and gives some future
research directions.

2. Temporal Data Warehouse

DW is dependent on its sources for data population; there-
fore, if the data about some business object is not captured in
its source, it is likely that the business object cannot be made
part of the DWdesign.The exception is to involve an external
data source to extract the missing information. For the sales
company example, if the data about Customer Gender is not
maintained in the source OLTP, it cannot be designed as
part of the DW data model. However, it is possible that,
by involving some external data sources, such as social
network identity or customer name, we may derive/extract
Customer Gender. In linewith that, if temporal datamanage-
ment is not part of data sources, it is likely that the temporal
data management cannot be made part of the DW. Due to
this dependency of a DW on its data sources, we discuss the
temporal datamanagement in its sources as well as in theDW.
We also discuss how the meaning of a time stamp in a TDB,
say valid time, is different from that of a DW. Thereafter, we
discuss the special case where a time stamp can be made part
of a DW, even if it is not part of a source OLTP. Below, we
explain the time stamps and their meanings in the context of
source OLTP and DW.

Time Stamps for Source OLTP. The data model that captures
time-varying information is called temporal data model
or temporal model. In temporal models, objects and their
relationships are provided with time stamps. For source
OLTPs, the two key time stamps are valid time (VT) and
transaction time (TT) [15, 29, 30].

If the sourceOLTP is a snapshot system, it supports VT to
uncover changes and compare data with the previous copies
of data. VT represents the time duringwhich the data remains
constant and true in the real world [31]. The user specifies
the value of a VT. For the sales company example, consider
a staff member S1 having monthly salary USD 2000 from
1/1/2014 to 31/12/2014. Also, consider that her salary gets a
10% increase from 1/1/2015 making her salary USD 2200. In
this example, the VT of salary’s amount USD 2000 is from
1/1/2014 to 31/12/2014, and the VT of salary USD 2200 is from
1/1/2015 until the new value is added.

If the data source is a logging system it supports TT to
enlist all activities in log files. TT in TDBs defines the time
instant when the system performs a transaction associated
with an activity in real life. Specifically, it represents the time
stamp at which data was made current and retrievable and
remains logically present in the database [31]. When data in a
database gets modified, its corresponding TT is also changed
accordingly. In fact, TT is entirely maintained by the system
and users are not allowed to modify it [3]. For the salary

example given in the preceding paragraph, the TT of a staff
member S1, havingmonthly salary USD 2000 with valid time
from 1/1/2014 to 31/12/2014, is the time when the salary USD
2000 was entered into the system. Here it is important to note
that it is not necessary that the salary amount USD 2000 was
entered on 1/1/2014, meaning that the actual salary amount
can be entered in the system before or after that time, say
TT 1/6/2014, and it can be made applicable from a previous
date, say 1/1/2014. Similarly, the salary amount can be entered
before the applicable time.

Time Stamps for DW. In the data model of a DW, dimensions,
facts, and/or their relationships can be provided with time
stamps. For a DW, the key time stamps are VT, TT, and DW
load time (DWLT) [15, 32]. A brief description of the three
time stamps is as follows.

In a DW, VT represents the time during which dimen-
sions and aggregate data remain true in the real world. VT
is important in a DW since it permits correct aggregation
of measures [33]; that is, in the absence of VT misleading
aggregation of measures can be generated. For the sales
company example, the total amount paid to staff S1 since
1/1/2014 can be calculated by multiplying the salary of staff
with the number of months, say 18 months. Since the current
salary is USD 2200, the total amount paid to S1 becomes USD
39600. However, given that the VT of salary USD 2000 is
from 1/1/2014 to 31/12/2014 and the VT of salary USD 2200
is from 1/1/2015 to date, the given aggregation of measures is
misleading.The correct amount paid becomes 37200 (2000 ∗
12 + 2200 ∗ 6). This difference in the two aggregates becomes
increasingly misleading with the passage of time.

Recall that TT used in a source OLTP represents the
time when the data is “current”; that is, TT is changed when
the data in source gets modified. However, data in a DW
is neither modified nor deleted for each single data change.
Thus, the TT generated in a DW has different meaning from
TT in a source OLTP [32].There are two possibilities for that:
(a) to carry the source TT to the DW and (b) to generate
a new time stamp, called DW load time (DWLT). In the
former case, TT defines the time instance when the data was
recorded in the source OLTP; that is, the value of TT in
the DW is the same as the value in source OLTP. In the
latter case, DWLT is generated in the same way as TT was
generated in the source OLTP. Here, it defines the instant
when the records or modifications are loaded in the DW.
For the salary example, in the source OLTP, the TT of staff
S1 salary is 1/6/2014 and TT of staff S2 salary is 2/6/2014.
For this data modification, the DWLT is always greater than
TT of the source OLTP; that is, for S1, DWLT can be any
time after midnight 1/6/2014 (i.e., 00:00:00) and for S2 DWLT
can be any time after midnight 2/6/2014. It is because data
cannot be extracted from an OLTP until it is inserted into the
OLTP.

2.1. Temporal Support in Data Warehouse. The temporal
support provided in a DW mainly depends on the temporal
support provided by the source OLTPs as well as the needs of
analysis. Here, we describe the various possibilities regarding
the availability of time stamps in an OLTP and the support



6 Scientific Programming

Table 1: Sample data for staff dimension at 𝑡0.

𝑡0 = 1/1/2012
Allocation region Staff Sales

AR1 S1 100
S2 50

AR2 S3 100

Table 2: Sample data for staff dimension at 𝑡1.

𝑡1 = 1/1/2013
Allocation region Staff Sales
AR1 S1 100

AR2 S2 100
S3 50

Table 3: Temporal support in source OLTP and DW.

Cases Source OLTP DW
VT TT VT TT DWLT

1 No No No No Yes+/−

2 Yes No Yes No Yes+/−

3 Yes∗ Yes+/−∗

4 No Yes No Yes Yes+/−

5 Yes Yes+/−

6 Yes Yes Yes Yes Yes+/−

∗ and +/− have a special interpretation (see description).

for specific time stamps in the DW.There are six possibilities
that are shown in Table 3 and discussed below.

Case 1 describes the scenario when no time stamps
(neither VT nor TT) are provided in the source OLTP and
the decision-making users want to know the history of source
data. In this case, DW cannot support VT or TT of source.
However, the aggregate measures can be time-stamped with
DWLT to represent the time when the aggregates are loaded
into the DW. The special sign (+/−) with DWLT represents
that the value may or may not be “Yes,” depending upon the
user. The special sign is used to indicate that this time stamp
is independent of sources and can be used independently of
the existence of any time stamp in the source OLTP. For the
salary increase example, if the VT and TT of total amount
paid to staff S1 are not known it is not possible to support VT
or TT in the DW. However, it can be time-stamped to mark
that the value was loaded at the end of the second quarter.

Case 2 describes the scenario when VT is provided in
sourceOLTP andTT is not provided. In this case, theDWcan
support VT but cannot support TT of source. For the salary
increase example, if VT of the total amount paid to staff S1 is
given in source and TT is not given, it is possible to compute
the true value of the amount paid in the DW. However, since
it is not known when the salary amount was entered into
source OLTP during the previous years, the time stamp of
update cannot be known.Thismeans that true aggregates can
be computed and aggregate measures may be time-stamped
with DWLT. However, the changes cannot be retraced.

Case 3 describes the scenario when VT is provided in the
sourceOLTP andTT is not provided. In this case, theDWcan
support VT but cannot support TT of source. However, a new
TT can be generated in the DW in the same way as TT was
generated in the source OLTP.The new time stamp (formally,
DWLT) allows knowing when data was inserted, deleted, or
modified in the DW. Nevertheless, the DW data is neither
deleted nor modified for each instance change; thus this new
time stamp indeed represents the time when it was loaded
into the DW [7, 32]. So, in a way TT as well as DWLT can be
known and their value is the same. This is a special case with
a specific interpretation of TT so it is marked with an asterisk
(∗) in Table 3. The value of DWLT is marked with asterisk to
represent that the value of its each instance will be the same
as TT. Another distinction of this case is a time stamp (TT in
this case) that can be provided to DW, even if it (TT) is not
available in the source OLTP. For the salary example, assume
that, in the source OLTP, TT of staff S1 salary is not known,
but VT is known (say, 1/1/2014 to 31/12/2014). From this data,
it is not possible to knowwhen the amount was entered in the
source OLTP but it can be known when it was inserted in the
DW because of DWLT, say 30/06/2014. Since this is an inser-
tion to theDWwhich is the same inmeaning as TT, therefore,
it can be said that the value of TT is 30/06/2014 00:00:00.

Case 4 describes the scenario when TT support is pro-
vided in the source OLTP and VT is not provided. In this
case, the DW can support TT but cannot support VT. It is
the simplest case and does not require any illustration.

Case 5 describes the scenario when TT support is pro-
vided in the sourceOLTP andVT is not provided. In this case,
it is possible to support TT as well as VT; that is, according
to [3] VT may be provided to the DW in addition to TT and
DWLT. Here, TT of source is used as VT of DW.This means,
by the time the value is entered in source OLTP, the entered
value becomes valid until a new value is entered in the system.
This is a special case, where a time stamp (VT in this case) can
be provided to the DW, even if it (VT) is not available in the
sourceOLTP.The case is definedwith “italic font” in the table.
For the salary increase example, assume a salary USD 2000
was recorded in the system with TT value 1/5/2014, without
specifying VT. Later on, a new salary of USD 2200 was
recorded in the system with TT value 1/1/2015 and without
specifyingVT. In this case, the VT of salaryUSD 2000 is from
1/5/2014 till 1/1/2015 and the VT of salary USD 2200 is from
1/1/2015 till the new value is recorded in the system.

Case 6 describes the scenario when both time stamps
(VT and TT) are provided in the source OLTP. In this case,
VT and TT of source are moved to the DW and DWLT is
also generated [32]. The presence of these time stamps raises
consistency issues. To handle these issues, Bruckner and Tjoa
[50] present a conceptual model to describe how to manage
temporal consistency. For instance, a salary USD 2000 with
VT from the 1/1/2014 to 31/12/2014 was recorded on 1/5/2014
(transaction time TT1) in the data source. Later on, a new
salary of USD 2200 with VT from the 1/1/2015 until “Now”
was recorded on 1/1/2015 (transaction time TT2) in the data
source. In this case, when ETL was performed at the end of
first quarter (31/3/2014) the value of salary was not known. It
is so because the TT of salary USD 2000 was 1/5/2014; that



Scientific Programming 7

Table 4: A comparative analysis of various schemes based on supported temporality types.

Approach (last name, year) Reference VT DWLT TTs → TTDW TTs → VTDW

(Blaschka, 2000) [2] − − − −

(Abello and Mart́ın, 2003) [3] + − − +

(B̧ebel et al., 2004) [4] − + − −

(Koncilia, 2003) [7] + + − −

(Sarda, 1999) [13] + − − −

(Ravat and Teste, 2000) [14] + − − −

(Bruckner et al., 2001) [15] + + + −

(Blaschka, 1999) [17] − − − −

(Marotta, 2000) [18] − − − −

(Letz et al., 2002) [19] + − − −

(Kaas et al., 2004) [20] − − − −

(Rechy-Ramı́rez and Benı́tez-Guerrero, 2006) [21] + + − −

(Bliujute et al., 1998) [29] − − + −

(Malinowski and Zimanyi, 2006) [32] + + + −

(Rizzi, 2007) [34] − − − −

(Golfarelli et al., 2004) [35] − − − −

(Eder et al., 2003) [36] + − − −

(Body et al., 2003) [37] + − − −

(Vaisman, 2001) [38] − − − −

(Vaisman et al., 2004) [39] − − − −

(Pedersen et al., 2001) [40] + − + −

(Mendelzon and Vaisman, 2000) [41] + − + −

(Chamoni and Stock, 1999) [42] + − − −

(Hurtado et al., 1999) [43] − − − −

(Solodovnikova, 2007) [44] − − − −

is, on 31/3/2014 the value was not yet entered in the system.
However, when ETL was performed at the end of second
quarter (30/06/2014), the value of salary was available with
validity from a previous date (1/1/2014). Although some delay
has occurred betweenVT, TT, andDWLT, however, users can
analyse values at different time instants.

2.2. Analysis for Temporal Support in DW. In the initial part
of this section, we explain the various time stamps available in
the source OLTP and DW.The preceding subsection explains
the various cases in which temporal support can be provided
in DW due to the dependency of DW on source OLTP. In
this subsection, we analyse and compare the existing studies
that support these time stamps. For the choice of the existing
studies, we searched throughmajor academic databases using
several keywords such as temporal DW, temporal structures
in DW, multi-version DW, schema evolution in DW, change
management in DW, and DW maintenance. The retrieved
articles were assessed for their relevance to the scope of the
study by employing a relevance screening procedure [51]. A
comparison of the studies selected for temporal support in
DW is presented in Table 4.

In Table 4, the studies considered for comparison are
listed in first column. The second column explains whether
VT of the source OLTP is explicitly included in the DW or
not. The third column represents whether TT of source is
loaded in the DW as TT of source. The value “+” represents

that TT from source is loaded in the DW as TT. In this case,
it would be possible to analyse when the value was changed
in the source OLTP. For instance, in case of salary increase
example, when the salary amount was recorded in the source
OLTP, the value “−” means that TT is not available in the
DW; instead a new value is generated as DWLT. In this case,
it is not possible to analyse when the value of salary was
recorded in source but it is possible to record when the value
was loaded in the DW.The fourth column represents whether
TT of source is used as VT in the DW. The value “+” means
that TT from source is loaded in the DW as VT. In this case,
it would be possible to analyse the true value of salary based
on TT recorded in source. The value “−” represents that the
scheme does not allow TT to be used as VT in the DW. In this
case, it is not possible to analyse the validity time of salary and
misleading aggregates may be generated.

From Table 4, it can be seen that nearly half of the studied
schemes support VT and the other half do not. For the
schemes that do not support VT, it would be challenging
to avoid the generation of misleading aggregates. Besides
that, DWLT can be used as a time stamp even if there is no
time stamp in the source OLTP. However, it can be observed
that majority of the schemes do not support DWLT. For
these approaches, it will not be possible to make immediate
decisions and informed adjustment about the timing of
DW instantiation (i.e., adjusting load frequency). In some
cases, the decision maker may get delayed information. For



8 Scientific Programming

instance, in the sales company example it will not be possible
to immediately know the rise or fall in sales, as they happen,
until the next quarter. Therefore, the decision of at what
time stocks should be made available may not be taken in
time. Another observation in the usual practice is to ignore
TT coming from sources. However, in this way traceability
application such as fraud detection cannot be implemented.
Therefore, it is discouraged to ignore the TT coming from
source in cases where it may be required to retrack events
that might happen. Abello and Mart́ın [3] transform TT
from a source system to represent VT in the TDW. This
is semantically incorrect because data may be included in
a database after their period of validity has expired, for
example, clients’ previous region.

Observing the horizontal trends reveals that if a scheme
supports TT then it also supports VT; and if VT is not
supported then all other time stamps are not supported.
This indicates that the existing schemes support temporality
prioritizes VT because itmay generatemisleading aggregates.

There are, however, fewer studies [15] that support all
time stamps. These are effective techniques and by using
them correct aggregates can be made available, events can
be retracked, and adjustments to loading frequency can be
made.

3. Handling Changes in DW Metadata

In Section 2.1 we elaborated the dependency of DW onOLTP
for various time stamps, as six cases. Similarly, if the source
OLTP is changed over time, the DWmay cause maintenance
anomalies [52] and adjustments to the DWmay be required.
The development, instantiation, and maintenance are for the
sake of facilitating decision makers who query the DW for
decision support. Therefore, besides DW handling, querying
data in the presence of schema and content changes becomes
a nontrivial task.

Various solutions regarding DW adjustment are available
in order to handle schema and data changes in source OLTPs.
Another reason for adjustments to a DW could be evolving
business requirements. For instance, measures may become
obsolete, a dimension level is removed, new level is added,
or temporal granularity is changed. In the sales company
example, removal of date and week from time dimension is
an example of change in temporal granularity. This change
can be observed in Figures 2(a) and 2(b). Total revenue in
Figure 2(a) becomes obsolete in Figure 2(b) which is an
example of measure becoming obsolete. Similarly, examples
of removal of dimension level and addition of a new level can
be seen in Figures 2(a) and 2(b).

Eder and Wiggisser (2010) describe two schemes of
adjusting DW: (a) updating the schema, transforming the
existing data into the new schema, discarding the schema,
and using the updated schema for future data population:
these are called evolution schemes [17]; (b) the second
scheme consists of creating a new schema, maintaining both
schemas, and using only the new schema for future data
population [24]. However, both schemas can be used for
retrieval from the DW. These are called versioning schemes.
Similar to the temporal cases, there are six cases for change

handling schemes as shown in Table 5 and they are thereafter
explained.

Case 1 describes the scenario when both DW schema
and data are changed due to change in the source OLTP.
In this case, both evolution and versioning schemes can be
used. If evolution scheme is used, the DW schema is changed,
the existing data is transformed to a new schema, and the
previous schema is discarded. A key limitation of this case
is that schema changes are not available for the use of deci-
sion makers and data changes may or may not be available to
users. For the sales company example, consider Figure 2(b)
is changed in a way that brand is removed (schema change)
and the data about brand is also discarded (data change) to
form Figure 2(c). After this evolution, the attribute brand as
well as the data in the attributes will not be available to users,
meaning that QtySold and the ProfitEarned cannot be anal-
ysed with respect to brand. However, if a versioning scheme
is used, a new DW schema is created and both schemas
are maintained, but for future instantiation Figure 2(c) will
be used. For the sales company example, for the change
of discarding brand, the Figure 2(b) schema as well as the
Figure 2(c) schema will be maintained. After that, it will still
be possible to analyse QtySold and ProfitEarned with respect
to brand for time 𝑡2. However, subsequently this analysis will
not be available to users.

Case 2 describes the scenario when DW schema is
changed but data is not changed. In this case, both evolution
and versioning schemes can be used. If an evolution scheme is
used, the existing data is transformed to a new schema and the
previous schema is discarded. However, this change does not
require any data change in the DW. Similar to the preceding
case, schema changes are not available to decisionmakers but
data changes are not needed. For the sales company example,
consider Figure 2(a) is changed in a way that state is added
(schema change) to form Figure 2(c), but the data in the
DW does not require any change (no data change). After
this evolution, the newly added attribute will be available
for future instantiation. This means that the two measures,
QtySold and ProfitEarned, cannot be analysedwith respect to
state at this moment, but the analysis of these measures will
be available after future instantiation. If a versioning scheme
is used, a new DW schema is created and both schemas are
maintained, and Figure 2(b) schema will be used for future
instantiation. For the sales company example, at this moment
it will not be possible to analyse the two measures, QtySold
and ProfitEarned, with respect to state, but the analysis
of these measures will be possible after future instantia-
tion.

Case 3 describes the scenario when DW schema is not
changed but data is changed. This is the case in which new
records are added to DW, as a result of ETL process. If that is
the case then both evolution and versioning schemes may not
be needed.

Case 4 describes the scenario when DW schema is not
changed but data is changed. This is a special possibility
of data change that may lead to schema change. For such a
change, Case 3 is converted toCase 1, where both schema and
content are changed. In [4] a solutionwas presented to handle
this special possibility of data change as multiversion data



Scientific Programming 9

Table 5: DW changes and change handling schemes.

Cases DW changes Change handling scheme
Schema Data Evolution Versioning

1 Yes Yes Yes Yes
2 Yes No Yes Yes
3 No∗ Yes No No
4 Yes Yes
5 No No No No
6 Yes∗ Yes∗
∗Special interpretation (see the case description).

warehouse. Due to this distinction the value of this schema
change is marked with (∗).

Case 5 describes the scenario when DW schema and data
changes do not happen. In this case evolution and versioning
schemes are not needed. However, DW becomes a snapshot;
that is, no change of content happens in DW. In this case,
the analyses of measures gradually become obsolete, making
it less useful for users. For the sales company example, at
this moment it will be possible to analyse the two measures,
QtySold and ProfitEarned, with respect to state, till the last
update, say 31/6/2015. However, the values of these measures
will become obsolete if they are not updated afterwards,
making it less useful for users.

Case 6 describes the scenario when DW schema and
data changes do not happen; however both evolution and
versioning schemes can be used. In this case, the reason
of change is evolving business requirements that require
adjustments to DW. The evolving business requirements
could be, for instance, changed temporal granularity, removal
of dimension level, and addition of a new level.These evolving
business requirements may lead to changes in DW schema.
Due to this distinction, the value of this schema change is
marked with (∗).

In the remaining part of this section, we further elaborate
the evolution and versioning schemes with an illustrative
example for schema or data changes and compare the existing
approaches of the corresponding scheme.

3.1. Evolution Schemes. Evolution schemes support only a
single version of a DW schema (i.e., the current version) for
both schema and data changes. In evolution, first the schema
is updated and then data is transformed from the old schema
into the new schema, and the old schema is discarded.
However, it involves high maintenance cost. These schemes
time stamp the data coming at different time periods and
store them in the new schema.The studies [2, 13, 17–20, 39, 43]
describe some of the approaches that may be used for this
purpose. A comparative study of the schemes for manag-
ing schema and data changes requires the analysis of various
parameters. Before carrying out a comparison of the differ-
ent schemes, we describe the operations corresponding to
schema and data changes.

Schema Changes. Schema changes such as addition of weekly
analysis modify the source OLTP schema and this change can

also result in adjustment of the structure of the DW. An illus-
trative example of a schema change can be seen by comparing
the time dimension of Figures 1 and 2(a). Schema changes
can be creation/deletion of dimension, fact, hierarchy, level,
member attribute, measure, and level movement in the
hierarchical structure. These changes are later used to com-
pare existing evolution schemes, as shown in Table 6. The
five atomic update operators to tackle these changes are
relate levels, unrelate levels, delete level, generalize, and spe-
cialize. These operations are explained and illustrated in the
remaining part of this section. For illustration, we rely on the
working example of a sales company presented in Section 1.2.
Specifically, an excerpt of the sales company example, that is,
product dimension only, shown in Table 2, is used to illustrate
the atomic operators.

The relate levels operator specifies a roll-up operation
between two dimension levels. The change is done in such a
way that all the levels before the change are still reachable. In
Figure 4(b), brand and category are the two levels of the prod-
uct dimension. The creation of a relation between brand and
category, represented by an arrow, is an example of the relate
levels operator. Besides that, Prod.ID and category relation are
removed as a collateral action, because it should still be pos-
sible to reach category from Prod.Id via brand. This removal
of relation is represented by dotted line in Figure 4(b).

The unrelate levels operator removes a relationship
between two levels. Similar to the previous case, the change is
done in such a way that the levels before the change are still
reachable. In the example in Figure 4(c), to unrelate the cate-
gory and corporation levels, the relation between the category
and corporation levels is deleted. To ensure reachability, a
new relation between category and all is created. Because
of this new relationship, it is still possible to reach all even
when the relation between category and corporation has been
removed.

The delete level operator removes a level and its relation-
ship with other levels. The change is done in such a way that
the levels above the removed level are still reachable. In the
example in Figure 4(d), the delete operation on the brand
level deletes the relations between Prod.Id and brand and
brand and company. It then creates a new relation between
Prod.Id and company to reach the company level that was
originally reachable through the brand level.

The generalize operator adds a new level and rolls up an
existing level. Finally, the specialize operator creates a level



10 Scientific Programming

All

Corporation

Company

Brand

Prod.ID

Category

(a) Schema of dimension product

All

Corporation

Company

Brand

Prod.ID

Category

(b) Relate operation between
brand and category levels

All

Corporation

Company

Brand

Prod.ID

Category

(c) Unrelate operation between
category and corporation levels

All

Corporation

Company Category

Brand

Prod.ID

(d) Delete operation on brand
level

Figure 4: Structural update operations.

Table 6: A comparative analysis of evolution schemes for schema changes.

Evolution schemes
(last name, year) References Level of changes Schema level changes

Schema Data Dimension Fact Hierarchy Level Attribute Measure Level movement
(Blaschka, 2000) [2] + + + + − + + + −

(Sarda, 1999) [13] + + + + − − + + −

(Blaschka et al., 1999) [17] + + + + − + + + −

(Marotta, 2000) [18] + +

(Letz et al., 2002) [19] + + + − + + + − −

(Kaas et al., 2004) [20] + + + − − + + + −

(Rechy-Ramı́rez and
Benı́tez-Guerrero,
2006)

[21] + − + + + + + + +

(Bliujute et al., 1998) [29] − + + − + − + − −

(Vaisman, 2001) [38] + + + − − + − − −

(Vaisman et al., 2004) [39] + + + − + + + − −

(Hurtado et al., 1999) [43] + + + − + + + − −

Note. In [18], changes from source schema and support changes in attribute and relations are adapted. Rest of the schemes support changes arise due to changing
business requirements.

and drills it down to the lowest level, thus making the lowest
level in the dimension hierarchy.

Table 6 provides a comparative analysis of various evolu-
tion schemes based on their support for schema changes. The
“+” sign in the table represents that the type of change is han-
dled by the proposed approach and “−” sign represents that
the type of change is not handled by the proposed approach.
These parameters are the elements of the metamodel of
DW design as described in [53]. The elements indicate the
level where evolution support is provided in the DW. The
elements used as parameters are dimension, fact, hierarchy,
level, attribute, and measure.

The table shows that majority of the schemes support
schema and content changes. Among these schemes, in [21] a
conceptual model is proposed for DW schema that facilitates
the modification of a DW schema in an implementation
independent manner, without affecting its operations. Sim-
ilarly, authors in [29] handle slowly changing dimensions as
well as state-oriented data without fundamentally changing
the design. Letz et al. [19] on the other hand elaborate how

update operations on dimensions can be utilized to preserve
consistency, while Sarda [13] and Hurtado et al. [43] present
a formal model for defining the schema and a primitive
operator for dimension updates. A key deficiency in the
majority of these schemes is that they focus on handling
changes to dimension while ignoring aggregates (measures),
although the real use of a DW is associated with aggregates.
This of course does not mean that dimension updates are not
significant but instead we contend that sufficient attention is
not paid to aggregates. Sarda [13] is among the important
exceptions, which explicitly defines operators for modifica-
tion to facts such as insertion and deletion of fact or insert
dimension level to fact.

Data Changes. Data changes such as data insertion of new
products in the data sources do not modify the source OLTP
schema. However, such changes can modify the structure
of a DW. An illustrative example to this effect is given in
Tables 1 and 2 where allocation region of staff S2 is changed
from AR1 to AR2. The handling of this change requires



Scientific Programming 11

adjustments to the DW schema. Instance level changes
include the transformation,merging, splitting, reclassification,
creation, and deletion of member(s). For instance, a brand
may be split into two or more brands, or two brands may be
merged into one brand. Similarly, a member may be trans-
formed due to change in an attribute name or meaning, or
a dimension member may be reclassified in the dimension
structure. Furthermore, a brand can be added or an existing
brand can be deleted. These changes are used to compare
existing evolution schemes in terms of their ability to handle
data changes.

Table 7 provides a comparative analysis of various evo-
lution schemes based on their support for instance changes.
For comparison, we mainly use the possible set of changes
that can be made at instance level, as discussed in the
previous paragraph. These are member creation, deletion,
transformation, merging, splitting, or reclassification. In
addition, we also consider whether dimensions are shared or
not.

From the table we observe that at instance levels transfor-
mation, merging, and splitting are not supported by exist-
ing schemes. Also, fewer dimensions support constellation
schema, that is, sharing of dimensions with multiple fact
tables. However, some approaches such as [19] support cre-
ation and deletion of dimension members while preserving
consistency. This is done by analysing schema, detecting the
levels where conflicts may occur, and performing modifica-
tion by insertion or reclassification.

3.2. Versioning Schemes. Versioning schemes support multi-
ple versions of the DW schema. Versioning may be implicit
or explicit.

Versioning schemes support multiple versions of a DW
schema for both schema and data changes. In versioning, the
schema is changed to a new schema while maintaining both
schemas. For future instantiation the new schema is used,
but both schemas can be used for querying. Versioning does
not involve high maintenance cost compared to evolution,
but querying and presenting results from multiple versions
become a challenging task that also affects the interpretation
of results (details in Section 3.2.1).

According to Solodovnikova [44], there are two ways of
versioning a DW, implicit versioning and explicit versioning.
In implicit versioning, two versions of schema aremaintained
and transformation functions are defined to record adjust-
ments in the DW [54]. In explicit versioning, two versions
of schema as well as data are maintained [48]. Each version
represents a schema and data version. Due to the existence of
versions, the comparison of versioning schemes based on the
DW design elements (used in Section 2) is not interesting.
On the other hand, due to the existence of several versions
the bigger challenge is querying theDWand interpretation of
results. Also, in the presence of versioning the focus is shifted
from data analysis only to data as well as change analyses.
Therefore, for the comparison of versioning schemes we
rely on another set of elements such as cross-versioning
query, augmented schema, and multiversioned facts. Below,
we discuss the two types of versioning schemes separate-
ly.

AR1

S1 S2 S3

Year
2008 AR1

S1 S2

AR2AR2

S2

Year
2009

S3

Figure 5: Evolution of hierarchical structure for the dimension staff.

3.2.1. Implicit Versioning. In implicit versioning schemes,
versions are recorded implicitly by providing temporal exten-
sions to the DW schema only. Chmiel [45] proposed a
bitmap approach for sharing data between multiple versions.
However, Rizzi [55] argues that the use of bitmap approach
limits what-if analysis, because processing queries to retrieve
the data that is shared acrossmultiple versions is a challenging
task. Due to the challenging nature of querying versions, a
comparative study of these schemes requires the analysis of
various parameters regarding querying DW. A query to a
multiversion DW (with implicit versioning) can be a version
slice query that searches for data within a single version,
or a historical query that searches across evolved versions,
or a combination of both. Cross-version queries span over
multiple schema versions. Golfarelli et al. [25] propose the use
of augmented schema to increase flexibility while querying
cross-version data. According to this approach, whenever
a new schema version is generated, an augmented schema
is made to represent the new schema and extends the
previous schema. The augmented schema is stored together
with schema versions. Other than augmented schema, some
approaches, for example, [21], propose an extension to SQL
for querying a DW. Once data has been retrieved, the
interpretation of results is also challenging. It is so because
in the presence of versioning the focus is shifted from data
analysis only to data as well as change analyses.

For the sales company example, the staffmember S2 in the
staff dimension has been reallocated from allocation region
AR1 to AR2 between 2012 and 2013, as shown in Figure 5.
Assume data for the years 2012 and 2013, as given in Table 8.

The sample query “Find out the total amount of sales per
region and year” can be interpreted in three different possible
ways. The first interpretation gives the sales amount corre-
sponding to each particular region, as shown in Table 9(a).
The second interpretation returns the sales amount based on
the consideration that the allocation regions have always been
structured as these were in 2012, as represented in Table 9(b).
Finally, the third interpretation returns the sales amount
based on the assumption that allocation regions have always
been as these are now in 2013, as shown in Table 9(c). The
up, down, and horizontal arrows in the “evolution” column
showwhether sales for an allocation region has gone up, come
down, or stayed the same from years 2012 to 2013.

The above example shows that the results may greatly
vary or may even be contradictory, depending on query
interpretation.Therefore, it is necessary to guide the end-user
about the possible interpretation choices. Let us assume that
the allocation regionAR1 has been split into two regions AR11
and AR12 during the year 2014, as shown in Table 10.

The same query “Find out the total amount of sales
per region and year” can again be interpreted in three



12 Scientific Programming

Table 7: A comparative analysis of evolution schemes for data changes.

Evolution schemes
(last name, year) References

Instance level changes Shared
dimensionsMember

creation
Member
deletion Transformation Merging Splitting Reclassification

(Blaschka, 2000) [2] − − − − − + +

(Sarda, 1999) [13] + + − − + + −

(Letz et al., 2002) [19] + + − − − + −

(Kaas et al., 2004) [20] + + − − − − −

(Rechy-Ramı́rez and
Benı́tez-Guerrero,
2006)

[21] − − − − − − −

(Bliujute et al., 1998) [29] + − − − − − −

(Vaisman, 2001) [38] + + − − − − −

(Vaisman et al., 2004) [39] + + − − − − −

(Hurtado et al., 1999) [43] + + − − − − −

Table 8: Sample data for the dimension staff.

Year 2012 Year 2013
Allocation region Staff Sales Allocation region Staff Sales

AR1 S1 100 AR1 S1 100
S2 50 AR2 S2 100

AR2 S3 100 S3 50
The word sales is an alias of QtySold measure.

Table 9: Query interpretations in 2012-2013.

(a) Query interpretation I

Allocation region 2012 2013 Evolution
AR1 150 100 ↓

AR2 100 150 ↑

(b) Query interpretation II

Allocation region 2012 2013 Evolution
AR1 150 200 ↑

AR2 100 50 ↓

(c) Query interpretation III

Allocation region 2012 2013 Evolution
AR1 100 100 →

AR2 150 150 →

different possible ways.The first interpretation gives the sales
amount corresponding to each particular region, as shown
in Table 11(a). The second interpretation returns the sales
amount based on the consideration that the allocation regions
have always been structured as these were in 2013, as shown
in Table 11(b). This correspondence is straightforward and
acquired just by appending the sales of allocation regions
AR11 and AR12. The third interpretation returns the results
based on the consideration that the allocation regions have
always been as these are now in 2010, as shown in Table 11(c).
Here, additional information is needed to calculate the
amount of sales for the allocation regions AR11 and AR12

during the year 2013. The additional information may be
given in the form of estimated percentage.

The above example shows that the first interpretation
results are less detailed but show the true data as compared
to the last interpretation where approximations are made.
However, it is unable to facilitate the evolution of data and,
therefore, data is mapped onto the latest structure version.
Furthermore, it also shows the requirement of distinguishing
mapped data from source and, finally, data reliability.

For analysis and interpretation, both the detailed and
aggregated data can be used. Since detailed data is required
for routine decision-making tasks, therefore data should be
current and access latency should be minimized. Facilitating
such support in DWs is a major task [6]. It is so because the
delay in the discovery of real-world changes results in delayed
propagation of these changes to the DW. Hence, DWs may
suffer from the problem of temporal consistency when the
real-world changes are discovered after a delay. For consist-
ency reasons, analytical applications require temporal com-
ponents in the data model. A temporally consistent informa-
tion representation is a stable view of historical data at any
time regardless of propagation delays. Temporally consistent
information is therefore a key aspect of comparison.

For comparative study of the schemes that implicitly
record DW versions, various parameters of analysis should
be considered. But, due to the existence of versions, the DW
design elements (used in Section 2) based comparison is not
interesting. Instead, from the above discussion we conclude
the bigger challenges are querying DW, interpretation of
result, and availability of temporally consistent information.
This is the case because in the absence of versions the



Scientific Programming 13

Table 10: Allocation region AR1 split into AR11 and AR12.

Year 2013 Year 2014
Staff Allocation region Sales Staff Allocation region Sales

S1 AR1 100 S1 AR11 150
AR12 50

Table 11: Query interpretations 2013-2014.

(a) Query interpretation I

Allocation region 2013 2014 Evolution
AR1 100 — ?
AR11 — 150 ?
AR12 — 50 ?

(b) Query interpretation II

Allocation region 2013 2014 Evolution
AR1 100 200 ↑

(c) Query interpretation III

Allocation region 2013 2014 Evolution
AR11 (40% of AR1) 40 150 ↑

AR12 (60% of AR1) 60 50 ↓

decision-making users do not have access to data across
versions and, therefore, the types of analyses that can be sup-
ported are limited. Corresponding to these challenges, for the
comparison of versioning schemes we rely on the following
parameters: cross-version queries, augmented schema, multi-
versioned fact table, and temporally consistent representation
of information (TCR). Table 12 provides a summary of the
comparative analysis of the various schemes based on the
above-mentioned parameters.

From the table, it can be observed that majority of the
schemes support schema and data changes. Also, it can be
seen that no study proposes the use of augmented schema
because these schemes implicitly record temporal extension
and data is shared, for instance, by the bitmap approach [45].
This limits the “history of change” analysis. However, some
studies such as [33, 41, 44] recognize the challenge of querying
data when data of interest is distributed and shared across
version. Among these, authors in [33] provide temporal
attributes to all elements of the DWmetamodel and support
cross-version queries, as well as fact-constellation schemes.
Chmiel [45] on the other hand focuses on optimization of
queries. Another observation is that a couple of approaches,
[37, 38], support multiversioned fact table. Body et al. [37]
support schema and instance level changes and complex
hierarchical structures. Also, the study introduces the notions
of confidence factor, temporally consistent representation of
information (TCR), multiversion fact table, temporal dimen-
sion, and temporal relationship.The value of a confidence fac-
tor distinguishes the mapped data from source and describes
the reliability of the data. For instance, one can describe the
range for the values of confidence factors as source data,

temporally consistent data, exact or approximated mapped
data, or unknown mapping relationship.

3.2.2. Explicit Versioning. In explicit versioning schemes,
DW versions are maintained explicitly and result in better
query performance, as these schemes do not require schema
transformation functions. Such schemes handle changes in
the DW content and structure through the use of a multi-
version DW (MVDW), which represents schema and data
at a particular time instant. One approach to deal with data
versions is to physically store a copy of data in each version
of a DW. As DW versions are explicitly stored and require
no transformation functions, the cross-version queries run
faster. But this approach is not appropriate if the size of a DW
is in terabytes and a tremendous amount of additional disk
storage is required for storing data for each version. Thus,
a time-space trade-off exists between query performance
and disk storage. Moreover, it causes update anomalies, data
redundancy, and system overhead for consistently managing
the multiple data copies.

Explicit versioning schemes support thewhat-if function-
ality as they explicitly maintain record of all schema versions
by physically keeping different data versions. ADWcan adopt
the change operations like insert, update, and delete. Fur-
thermore, complex operations such as split, merge, andmove
can also be performed using these basic operations. Figure 6
shows how changes are handled through these operations.
In structure version SV3, the dimension member Cat2 has
split into Cat3 and Cat4 by using the delete operation for Cat2
and insert operation for Cat3 and Cat4. In SV4, dimension
members Cat3 andCat4 aremerged together to formmember
Cat2. The goal of merging has been achieved through two
operations, delete for Cat3 and Cat4 and insert for Cat2.

Similar to implicit versioning schemes, for comparative
study of explicit versioning schemes we rely on the following
parameters: cross-version queries, augmented schema, multi-
versioned fact table, and temporally consistent representation
of information (TCR). Table 13 provides a summary of the
comparative analysis of the schemes that explicitly store data
of every DW version.

From the table we observe that two studies, [25, 34],
implement the use of augmented schema to support cross-
version queries. Golfarelli et al. [25] provide proofs that an
input query can be mapped over versions and discusses the
summarizability issues with disaggregation when navigating
a DW. Specifically, it uses graphs to represent a DW schema
and defines algebra of schema operations. Whenever a new
version is created, an augmented schema is created to increase
flexibility in cross-version querying. It discusses consistent
movement of data between schema versioning. Further,
authors of [34] discuss the development of a prototype for



14 Scientific Programming

Table 12: Approaches supporting implicit DW versions.

TDW approach
(last name, year) Reference Level of changes Versioning support

Schema Data Cross-version queries Augmented schema MV fact table TCR
(Koncilia, 2003) [7] + + − − − −

(Solodovnikov et al.,
2015) [10] + + − − − −

(Manousis et al., 2015) [24] + + − − − −

(Malinowski and
Zimanyi, 2006) [32] + + − − − −

(Eder et al., 2002) [33] + + + − − −

(Body et al., 2003) [37] + + − − + +

(Vaisman, 2001) [38] + + + − + +

(Mendelzon and
Vaisman, 2000) [41] + + − − − −

(Chamoni and Stock,
1999) [42] + + − − − −

(Solodovnikova,
2007) [44] + − + − − −

(Chmiel, 2010) [45] + + + − − −

(Kang and Chung,
2002) [46] + − − − − −

(Quass and Widom,
1997) [47] + + − − − −

Note. In [44] both implicit and explicit versioning are supported.

Prod.A

Prod.B Prod.A

Prod.C Prod.A

Prod.C

Prod.C

Initial outline
(1) Change name of product B
(2) Insert new category

(1) Delete product ASplit C；Ｎ2 into C；Ｎ3

and C；Ｎ4

C；Ｎ1

C；Ｎ1

C；Ｎ1

C；Ｎ1 C；Ｎ2
C；Ｎ2 C；Ｎ3

C；Ｎ4

３６1 ３６2 ３６3 ３６4

(2) Merge C；Ｎ3 and C；Ｎ4

Figure 6: Operations to handle structural changes.

managing and query versions in a DW. The prototype is
based on the concept of augmented schema to increase cross-
version querying flexibility.

Another observation is that two studies, [5, 21], extend
SQL for querying multiple versions of a DW. Rechy-Ramı́rez
and Benı́tez-Guerrero [21] propose an SQL-like language that
allows users to express evolution requirements. The scope
of the language is limited to creation and changing version
of cube. Morzy and Wrembel [5] on the other hand extend
the SQL language and build an interface to express cross-
version queries. The query is split into several independent
partial queries, each executed on its particular DW version.
Later, the results of partial queries are combined to get the
required results. Also, they develop a GUI to visualize queries
and results. The benefit of query extension over augmented
schema is that it provides flexible query and more control

over query specification, whereas it increases the complexity
of query specification at the same time.

4. Commercial Data Warehousing Tools

There are several commercial DW systems and OLAP tools
available in the market. In terms of market value, the most
important ones are IBMDB2, SAP BusinessWarehouse, Ora-
cle Express Server, Ingres Decision Base OLAP Server, NCR
Teradata, Sybase Adaptive Server Enterprise, and Hyperion
EssbaseOLAP Server. Table 14 shows a comparison of tools in
terms of their support for handling changes to DW. Similar to
the previous tables, the “+” sign in the table indicates that the
support for the respective change is available in the tool, “−”
sign indicates that the support for the change is not available
in the tool, and “+/−” sign indicates that the support for the



Scientific Programming 15

Table 13: Approaches supporting explicit DW versions.

TDW approach
(last name, year) Reference Level of changes Versioning support

Schema Instance Cross-version queries Augmented schema MVFact table TCR
(Solodovnikova,
2007) [44] + − + − − −

(Rizzi and Golfarelli,
2007) [34] + + + + − −

(Wrembel and Bębel,
2007) [48] + + − − − −

(Golfarelli et al.,
2006) [25] + + + + − −

(Rechy-Ramı́rez and
Benı́tez-Guerrero,
2006)

[21] + + − − − −

(Morzy and Wrembel,
2004) [5] + + + − − −

(Hai et al., 2016) [1] + + − − − −

(Bellahsene, 1998) [49] + − − − − −

Table 14: Commercial tools support for DW changes.

Tools Evolution scheme Versioning scheme
Schema change Data change Schema change Data change Cross-versioning queries

IBM DB2 + +/− − − −

SAP Business Warehouse + +/− +/− − −

Oracle Express Server + +/− +/− − −

Ingres Decision Base OLAP Server + +/− − − −

NCR Teradata + +/− − − −

Sybase Adaptive Server Enterprise + +/− − − −

Hyperion Essbase OLAP Server + +/− − − −

change depends upon the type of change; that is, the support
for the change may or may not be available in the tool

The table marks that all tools support evolution of DW
schema. It is because the evolution approach does not require
any additional functionality in the commercial tools; that is,
in evolution DW schema is updated and transferred from
old to new schema. This functionality is available in all DW
systems. Also, it can be seen from the table that majority of
these tools do not provide support to manage versions of
DW schema and support for cross-version queries. However,
SAP Business Warehouse provides support to track dimen-
sional data changes and allows users to choose a version
of the hierarchies for querying, whereas commercial tools
still provide marginal support to schema changes, like SQL
Compare, which can compare and synchronize SQL Server
database schema and can push schema changes of a local
database to a remote database. Oracle’s what-if analysis uses
the model clause to express hypothetical analysis or create
the hypothetical rankings of records in a query [56]. Oracle
Change Management Pack compares database schema and
tracks metadata evolution and allows script generation and
execution to carry out the necessary changes. However, cross-
version querying support is not available in either SQL Com-
pare or Oracle Change Management Pack.

5. Conclusions and Future Work

In this study, we analyse temporal data management and how
to handle changes in a DW design, as well. To this end, a
taxonomy of existing approaches has been built. According to
the taxonomy, for clearly distinguishing the features of exist-
ing approaches, temporal support in a DW is separated from
handling the changes as well as from their support in commer-
cial tools. Subsequently, we have identified a large number of
DW design schemes in literature and analysed their abilities
to support temporal aspects and handling changes.

The temporal data in a DW enables us to perform what-if
analysis. Time stamps, such as valid time (VT), transaction
time (TT), and DW loading time, are used to capture time-
varying states. The temporal data model represents original
and transformed data items and their structure and time
stamps. Although associating time validities with dimensions
and facts can fulfil temporal requirements, however, it is
useful to define the dimension “time” in a DW for explicit
representation of calendars, time hierarchies, and events.
Our study of existing design schemes reveals that only half
of the studied schemes support VT. Therefore, the use of
these approaches is likely to generate misleading aggregates.
Further, the study reveals that majority of the schemes do



16 Scientific Programming

not support TT and DWLTwhich limits the analyses support
offered by DW. However, some design schemes support all
the time stamps. We argue that these design schemes should
be considered for implementing DW and particularly for
organizations who are sensitive towards change.

It is widely known that a number of external factors play
a pivotal role in compelling organizations to change, which
enforces changes in operational data sources as well as
changes to DW. For DW, these changes can be of two types,
schema changes and content changes. The schema changes
include creation and deletion of a dimension, hierarchy, level,
measure, or member attribute and level movement in the
hierarchical structure. The content changes include creation
of a new dimension member, deletion of an old dimension
member, member merging, splitting, transformation, or
reclassification of amember.Wehave first-hand experience of
observing changes to organizationswhich resulted in changes
to DW. To enhance the understanding of reader, below, we
briefly present simple but diverse examples of changes to
DW and provide an overview of how these changes were
handled in DW. The examples are as follows. (a) A manu-
facturing company started manufacturing new products to
meet marketing demands. This change led to content change
in the DW; that is, data about each of the new products were
added to the dimension table and no changes were made to
the structure of the dimension table. (b) The company con-
structed a new production unit at a tax-relaxed industrial
zone. This change resulted in schema changes in DW; that
is, a new dimension member was added in order to analyse
and compare the production performance of multiple units.
(c) The company transferred selected employees to the new
unit.This change resulted in schema change as well as content
changes in the DW. As a schema change, a new member
attributewas added to a dimension table indicating the unit to
which the employee belongs. As a content change, employees
were assigned to the new unit.

There are two types of schemes to handle schema and
content changes in DW. These are evolution and versioning
schemes. The evolution schemes support a single version of
DW schema for both schema and content changes. In evolu-
tion, the DW schema is updated and data is transferred from
old to the new schema. The benefits of evolution schemes
are as follows: querying mechanisms are not changed and
the available commercial tools can be used. However, the
schemes lack preserving history and maintenance cost is
high. In contrast to that, the versioning schemes support
multiple versions of DW schema for each schema change
and the content change, which cannot be accommodated in
the existing version. The benefit of version schemes is that
the history is preserved. However, retrieval of data requires
writing cross-version queries which cannot be performed by
using the available commercial tools. We thus suggest the
trade-offs of the two schemes (evolution and versions) should
be carefully examined. Our comparison of the change handl-
ing schemes reveals some schemes have been designed to
deal with changes to dimensional data and its support is
partially available in a couple of tools; however, no common
framework has been proposed for schema and factual data
changes.

Based on the synthesis we identify the following direc-
tions for future academic work: (a) the use of data mining
techniques is a scalable approach to detect structural changes
inDWs, (b) the exploration of self-adaptivemethods to detect
structural changes in DWs is an open research area, (c) a
common framework for retrieving and presenting data in a
temporally consistent manner, and (d) the support of cross-
version queries and their impact on interpretation of results
needs further exploration. For the practitioner, the study
established that no commercial DW provides support for
cross-version queries. The querying support can be provided
for monitoring different types of changes to support strategic
decision-making.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] W. Hai, Z. Zeshui, H. Jujita, and L. Shousheng, “Towards felici-
tous decision making: An overview on challenges and trends of
Big Data,” Information Sciences, vol. 367-368, pp. 747–765, 2016.

[2] M. Blaschka, FIESTA: A framework for schema evolution inmul-
tidimensional databases [Ph.D. thesis], Technische Universitat
Munchen, Munchen, Germany, 2000.

[3] A. Abello and C. Mart́ın, “The data warehouse: an object-
oriented temporal database,” in Proceeding of the 8th Conference
on Jornadas Ingenieŕıa del Software y Bases de Datos (JISBD’03),
pp. 675–684, Alicante, Spain, 2003.

[4] B. B̧ebel, J. Eder, C. Koncilia, T. Morzy, and R.Wrembel, “Creat-
ion and management of versions in multiversion data ware-
house,” in Proceedings of the Applied Computing 2004 - Proceed-
ings of the 2004 ACM Symposium on Applied Computing, pp.
717–723, New York, NY, USA, March 2004.

[5] T. Morzy and R. Wrembel, “On querying versions of multiver-
sion data warehouse,” in Proceedings of the 7th ACM Interna-
tional Workshop on Data warehousing and OLAP (DOLAP’04),
pp. 92–101, New York, NY, USA, 2004.

[6] W.Ahmed, E. Zimanyi, andR.Wrembel, “ModellingDataware-
houses with multiversion and temporal functionality,” in Pro-
ceedings of the 5th European Business Intelligence Summer School
(eBISS’15), pp. 1-2, Barcelona, Spain, 2015.

[7] C. Koncilia, “A bi-temporal data warehouse model,” in Pro-
ceedings of the 15th International Conference on Advanced Infor-
mation Systems Engineering (CAiSE’03), pp. 77–80, Klagenfurt,
Austria, 2003.

[8] W.Oueslati and J. Akaichi, “Querying amulti-version trajectory
data warehouse,” International Journal of Business Information
Systems, vol. 21, no. 4, pp. 403–417, 2016.

[9] M.Golfarelli and S. Rizzi, “A survey on temporal datawarehous-
ing,” International Journal of Data Warehousing & Mining, vol.
5, no. 1, pp. 1–17, 2009.

[10] D. Solodovnikov, L. Niedrite, and N. Kozmina, “Handling
Evolving Data Warehouse Requirements,” in Proceedings of
the East European Conference on Advances in Databases and
Information Systems (ADBIS), vol. 539, pp. 334–345, Springer
CCIS, 2015.

[11] G. Garani and C. E. Atay, “Comparison of different temporal
data warehouses approaches,”TheOnline Journal of Science and
Technology, vol. 7, no. 2, pp. 17–27, 2017.



Scientific Programming 17

[12] W. Ahmed and E. Zimanyi, “Querying multiversion data ware-
house,” in Proceedings of the East European Conference on
Advances in Databases and Information Systems (ADBIS), vol.
539, pp. 346–357, Springer CCIS, 2015.

[13] N. Sarda, “Temporal issues in data warehouse systems,” in
Proceedings of the 1999 International Symposium on Database
Applications in Non-Traditional Environments (DANTE’99), pp.
27–34, Kyoto, Japan.

[14] F. Ravat and O. Teste, “A temporal object-oriented data ware-
housemodel,” in Proceedings of the 11th International Conference
on Database and Expert Systems Applications (DEXA’00), pp.
583–592, London, UK, 2000.

[15] R. M. Bruckner, B. List, J. Schiefer, and A. M. Tjoa, “Modeling
temporal consistency in data warehouses,” in Proceedings of the
12th International Workshop on Database and Expert Systems
Applications, DEXA 2001, pp. 901–905, Munich, Germany,
September 2001.

[16] W. Ahmed, E. Zimanyi, and R. Wrembel, “A logical model for
multi-version data warehouse,” in Proceedings of the 16th Inter-
national Conference on Data Warehousing and Knowledge Dis-
covery (DaWaK), vol. 8646, pp. 23-24, Springer LNCS, Munich,
Germany, 2014.

[17] M. Blaschka, C. Sapia, and G. Höfling, “On schema evolution
in multidimensional databases,” in Proceedings of the 1st Inter-
national Conference on Data Warehousing and Knowledge
(DaWaK’99), vol. 1676, pp. 153–164, Springer LNCS, Florence,
Italy, 1999.

[18] A. Marotta, Data warehouse design and maintenance through
schema transformations [M.S. thesis], Universidad de la Repúbl-
ica Uruguay, 2000.

[19] C. Letz, E. T. Henn, and G. Vossen, “Consistency in data ware-
house dimensions,” in Proceedings of the IEEE International
Symposium on Database Engineering Applications (IDEAS’02),
pp. 224–232, Washington, DC, USA, 2002.

[20] C. Kaas, T. B. Pedersen, and B. Rasmussen, “Schema evolution
for stars and snowflakes,” in Proceedings of the International
Conference on Enterprise Information Systems (ICEIS’04), pp.
425–433, Porto, Portugal, 2004.

[21] E.-J. Rechy-Ramı́rez and E. Benı́tez-Guerrero, “A model and
language for bitemporal schema versioning in Data Ware-
houses,” in Proceedings of the 15th International Conference on
Computing, CIC 2006, pp. 309–314, November 2006.

[22] R. Wrembel, “A survey of managing the evolution of data ware-
houses,” International Journal of Data Warehousing and Mining
(IJDWM), vol. 5, no. 2, pp. 24–56, 2009.

[23] R. Wrembel, “On handling the evolution of external data
sources in a data warehouse architecture,” in Integrations of data
warehousing, data mining and database technologies: innovative
approaches, D. Taniar and L. Chen, Eds., pp. 106–147, Informa-
tion Science Reference, Hershey, PA, USA, 2011.

[24] P. Manousis, P. Vassiliadis, A. Zarras, and G. Papastefanatos,
“Schema Evolution for databases and data warehouses,” in
Proceedings of the 5th European Business Intelligence Summer
School (eBISS, 2015), Barcelona, Spain, 2015.

[25] M.Golfarelli, J. Lechtenbörger, S. Rizzi, andG.Vossen, “Schema
versioning in datawarehouses: Enabling cross-version querying
via schema augmentation,” Data & Knowledge Engineering, vol.
59, no. 2, pp. 435–459, 2006.

[26] M. Golfarelli, D. Maio, and S. Rizzi, “The dimensional fact
model: A conceptual model for data warehouses,” International
Journal of Cooperative Information Systems, vol. 7, no. 2-3, pp.
215–247, 1998.

[27] J. Eder andK.Wiggisser, “DataWarehouseMaintenance, Evolu-
tion and Versioning,” Springer Encyclopedia of Database Sys-
tems, pp. 664–669, 2009.

[28] J. Eder and K. Wiggisser, “Data warehouse maintenance, evolu-
tion and versioning,” inDataWarehousingDesign andAdvanced
Engineering Applications: Methods for Complex Construction, L.
Bellatreche, Ed., pp. 171–188, IGI Global, 2010.

[29] R. Bliujute, S. Saltenis, G. Slivinskas, and C. S. Jensen, “Sys-
tematic changemanagement in dimensional datawarehousing,”
in Proceedings of the 3rd International Baltic Workshop on
Databases and Information Systems, pp. 27–41, 1998.

[30] G. Garani, G. K. Adam, and D. Ventzas, “Temporal data ware-
house logical modelling,” International Journal of Data Mining,
Modelling and Management, vol. 8, no. 2, pp. 144–159, 2016.

[31] W.Ahmed, E. Zimanyi, andR.Wrembel, “TemporalDataWare-
houses: LogicalModels andQuerying,” in Proceedings of the 11th
Journées francophones sur les Entrepôts deDonnées et l’Analyse en
ligne (EDA), Bruxelles, Belgium, 2015.

[32] E. Malinowski and E. Zimanyi, “A conceptual solution for
representing time in data warehouse dimensions,” in Proceed-
ings of the 3rd Asia-Pacific Conference on Conceptual modelling
(APCCM’06), vol. 53, pp. 45–54, Springer LNCS, Darlinghurst,
Australia, 2006.

[33] J. Eder, C. Koncilia, and T.Morzy, “TheCOMETMetamodel for
temporal data warehouses,” in Proceedings of the 14th Interna-
tional Conference on Advanced Information Systems Engineering
(CAiSE’02), vol. 2348, pp. 83–99, Springer LNCS, Toronto,
Canada, 2002.

[34] S. Rizzi and M. Golfarelli, “X-time: Schema versioning and
cross-version querying in data warehouses,” in Proceedings of
the 23rd International Conference on Data Engineering, ICDE
2007, pp. 1471-1472, April 2007.

[35] M.Golfarelli, V.Maniezzo, and S. Rizzi, “Materialization of frag-
mented views in multidimensional databases,” Data & Knowl-
edge Engineering, vol. 49, no. 3, pp. 325–351, 2004.

[36] J. Eder, C. Koncilia, and D. Mitsche, “Automatic detection of
structural changes in data warehouses,” in Proceedings of the 5th
International Conference on Data Warehousing and Knowledge
(DaWaK’03), pp. 119–128, Pargue, Czech Republich, 2003.

[37] M. Body, M.Miquel, Y. Bédard, and A. Tchounikine, “Handling
evolutions in multidimensional structures,” in Proceedings of
the Nineteenth International Conference onData Ingineering, pp.
581–591, Banglore, India, March 2003.

[38] A. Vaisman, Updates, view maintenance and time management
in multidimensional databases [Ph.D. thesis], University of
Buenos Aires, 2001.

[39] A. A. Vaisman, A. O. Mendelzon, W. Ruaro, and S. G. Cymer-
man, “Supporting dimension updates in anOLAP server,” Infor-
mation Systems, vol. 29, no. 2, pp. 165–185, 2004.

[40] T. B. Pedersen, C. S. Jensen, and C. E. Dyreson, “A foundation
for capturing and querying complex multidimensional data,”
Information Systems, vol. 26, no. 5, pp. 383–423, 2001.

[41] A. O. Mendelzon and A. A. Vaisman, “Temporal queries in
OLAP,” in Proceedings of the 26th International Conference on
Very Large Data Bases, VLDB 2000, pp. 242–253, Cairo, Egypt,
September 2000.

[42] P. Chamoni and S. Stock, “Temporal structures in data ware-
housing,” in Proceedings of the First International Conference on
Data Warehousing and Knowledge Discovery (DaWaK’99), pp.
353–358, Springer LNCS, Florence, Italy, 1999.



18 Scientific Programming

[43] C. A. Hurtado, A. O. Mendelzon, and A. A. Vaisman, “Main-
taining data cubes under dimension updates,” in Proceedings of
the 15th International Conference onData Engineering, ICDE-99,
pp. 346–355, Sydney, Australia, March 1999.

[44] D. Solodovnikova, “Data warehouse evolution framework,” in
Proceedings of the Spring Young Researcher’s Colloquium on
Database and Information Systems (SYRCoDIS’07), pp. 6–12,
Moscow, Russia, 2007.

[45] J. Chmiel, “Data structures for multiversion data warehouse,” in
Proceedings of the International Conference onAdvances inData-
bases and Information Systems (ADBIS’09), vol. 5968, pp. 202–
210, Springer LNCS, Riga, Latvia, 2010.

[46] H. Kang and C. Chung, “Exploiting versions for on-line data
warehouse maintenance in MOLAP servers,” in Proceedings of
the 28th International Conference on Very Large Data Bases
(VLDB’02), pp. 742–753, Hong Kong, China, 2002.

[47] D. Quass and J. Widom, “On-line warehouse view mainte-
nance,” SIGMOD Record, vol. 26, no. 2, pp. 393–404, 1997.

[48] R. Wrembel and B. Bębel, “Metadata management in a multi-
version data warehouse,” Journal of Data Semantics, vol. 8, pp.
118–157, 2007.

[49] Z. Bellahsene, “View adaptation in data warehousing systems,”
in Proceedings of the 9th International Conference on Database
and Expert Systems Applications (DEXA’98), vol. 1460, pp. 300–
309, Springer LNCS, Vienna, Austria, 1998.

[50] R. M. Bruckner and A. M. Tjoa, “Capturing delays and valid
times in data warehouses - Towards timely consistent analyses,”
Journal of Intelligent Information Systems, vol. 19, no. 2, pp. 169–
190, 2002.

[51] R. J. B. Vanwersch, K. Shahzad, K. Vanhaecht et al., “Method-
ological support for business process redesign in health care: A
literature review protocol,” International Journal of Care Coordi-
nation, vol. 15, no. 4, pp. 119–126, 2011.

[52] S. Chen, B. Liu, and E. A. Rundensteiner, “Multiversion-based
viewmaintenance over distributed data sources,”ACMTransac-
tions on Database Systems (TODS), vol. 29, no. 4, pp. 675–709,
2004.

[53] D. Fasel and K. Shahzad, “A datawarehouse model for integrat-
ing fuzzy concepts in meta table structures,” in Proceedings of
the 17th IEEE International Conference and Workshops on the
Engineering of Computer-Based Systems, ECBS 2010, pp. 100–
109, Oxford, UK, March 2010.

[54] A. Gosain and K. Soraha, “Storage structure for handling
schema versions in temporal data warehouses,” in Proceedings of
the Progress in Intelligent Computing Techniques: Theory, Prac-
tice, and Applications, Springer Advances in intelligent Systems
and Computing, vol. 518, pp. 501–511, 2017.

[55] S. Rizzi, “What-if Analysis,” in Encyclopedia of Database Sys-
tems, L. Liu and T. Özsu, Eds., Springer, 2009.

[56] P. Lane, Oracle Database Data Warehousing Guide, 10g Release
1, 2005.



Submit your manuscripts at
https://www.hindawi.com

Computer Games 
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed 
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 201

 Applied 
Computational 
Intelligence and Soft 
Computing

 Advances in 

Artificial 
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in 

Multimedia

 International Journal of 

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 201

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational 
Intelligence and 
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014


