
Research Article
Software-Defined Congestion Control
Algorithm for IP Networks

Yao Hu, Ting Peng, and Lianming Zhang

College of Physics and Information Science, Key Laboratory of Internet of Things Technology and Application,
Hunan Normal University, Changsha 410081, China

Correspondence should be addressed to Lianming Zhang; zlm@hunnu.edu.cn

Received 7 October 2017; Revised 28 November 2017; Accepted 11 December 2017; Published 27 December 2017

Academic Editor: Basilio B. Fraguela

Copyright © 2017 Yao Hu et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The rapid evolution of computer networks, increase in the number of Internet users, and popularity ofmultimedia applications have
exacerbated the congestion control problem. Congestion control is a key factor in ensuring network stability and robustness.When
the underlying network and flow information are unknown, the transmission control protocol (TCP) must increase or reduce the
size of the congestion window to adjust to the changes of traffic in the Internet Protocol (IP) network. However, it is possible that
a software-defined approach can relieve the network congestion problem more efficiently. This approach has the characteristic of
centralized control and can obtain a global topology for unified networkmanagement. In this paper, we propose a software-defined
congestion control (SDCC) algorithm for an IP network. We consider the difference between TCP and the user datagram protocol
(UDP) and propose a newmethod to judge node congestion.We initially apply the congestion control mechanism in the congested
nodes and then optimize the link utilization to control network congestion.

1. Introduction

In recent years, the development of science and technology
has increased user demand for computer networks, which has
accelerated the severity of network congestion problems.The
increase in devices having applications that require file down-
loading and sharing, Internet browsing, voice over Internet
phone, and multimedia has also contributed to the severity
of network congestion problems. Thus, efficient congestion
control is a key factor to ensure IP network stability and
robustness.

There are two approaches in solving the network con-
gestion problem. The first is the end-to-end approach, where
research is focused on the mechanism of terminal congestion
control to relieve congestion. The second is the network side
approach, where congestion control is achieved through data
stream scheduling and line management on the forwarding
nodes. The initial research focused on the end-to-end con-
gestion control, such as the widespread use of transmission
control protocol (TCP). Because of its good adaptability
and extensible capability, TCP has received widespread
interest and became the main congestion control algorithm

presently. Researchers in this area have conducted significant
exploration and investigation and have put forward many
improvements. For example, the latest versions of the four
kinds of TCP congestion control algorithms, namely, Veno,
Westwood, Hybla, and Cubic, have achieved optimization
by packet loss judgment, bandwidth prediction, time delay
compensation, and homogeneous compensationmechanism,
respectively [1–3]. Paper [4] has studied the micro-level
behaviour characteristics of TCP congestion control algo-
rithm in multihop wireless networks. Paper [5] has proposed
an adaptive cross-layer-based TCP congestion control for 4G
wireless mobile cloud access. A deadline-aware congestion
control mechanism, based on a parametrization of the tradi-
tional TCP New Reno congestion control strategy, has been
proposed in [6].

The appropriate limit of the biggest transfer rate of each
data flow can effectively reduce network congestion and
packet loss. However, previous studies reported that when
the underlying network and information flow are unknown,
TCPmust increase or reduce the size of congestionwindow to
adjust to the changes of traffic [7–9].This finding highlighted
that the traditional IP network lacks the direct control

Hindawi
Scientific Programming
Volume 2017, Article ID 3579540, 8 pages
https://doi.org/10.1155/2017/3579540

https://doi.org/10.1155/2017/3579540


2 Scientific Programming

of forwarding queue and cannot guarantee link utilization
and quality of service. We have considered this aspect in
our research to find a solution for the network congestion
problem.

In the traditional IP network architecture, the control
and forwarding planes are highly integrated, and the net-
work is difficult to extend and customize. It has a long
technology update cycle and is too dependent on network
equipment manufacturers. Simultaneously, the increasingly
complex network environment makes it difficult to develop
the network and make innovations related to the hardware of
physical devices or software of related protocols and perfor-
mances, especially in the proprietary equipment and closed
interfaces. Programmable models and code that allow data
transmission from the network to the application are needed.
The technology of software-defined everything from applica-
tions to infrastructure is one of the top 10 strategic technology
trends identified by Gartner [10]. Software-defined network-
ing (SDN) separates the network control and forwarding
functions, enabling the network to be directly programmable,
dynamic, and manageable. The separation of the control
plane and data plane allows the core technologyOpenFlow to
realize the flexible control of the network traffic, making the
network more intelligent, and provide a better platform for
network application innovation [11–13].

In this study, we used a software-defined approach to
solve the congestion control problem in the IP network.
Compared with the existing literature, this paper has the
following major contributions:

(i) A comprehensive survey of congestion control in the
IP network is presented. In the traditional networks,
the underlying network and flow information are
unknown. It must increase or reduce the size of
the congestion window to adjust to the changes of
traffic, while a software-defined approach can relieve
the network congestion problem more efficiently. So,
we propose a software-defined congestion control
(SDCC) algorithm for the IP network.

(ii) The type of data flow in the IP network is taken into
account. The difference between TCP and UDP is
pointed out. Based on the different characteristics of
TCP and UDP, we propose a new method in judging
congested nodes.

(iii) The simulation of our algorithm is comprehensively
explained. We consider the packet loss rate and opti-
mization of link utilization.The simulation shows that
the proposed algorithm achieves network congestion
control and optimizes the link utilization.

In the following sections, we first discuss the existing
research on the congestion problem in the IP network based
on SDN in Section 2. Section 3 presents an SDCC algorithm
for the IP network. The effectiveness of the algorithm is
verified by a simulation experiment, described in Section 4.
Finally, the paper concludes in Section 5.

2. Background

2.1. Related Work. Network congestion control using a
software-defined approach is still in its early stage of devel-
opment. Ghobadi et al. [14] proposed a TCP dynamic
adjustment framework based on SDN-OpenTCP. OpenTCP
is an SDN application deployed on an SDN controller using
the global network view of SDNs and is established based
on the good strategy mechanism with the forwarding nodes
and modifying the terminal protocol stack to continue the
dynamic adjustment with the terminal congestion mecha-
nism to achieve optimization. It fills the SDN application
gap in the field of congestion control and is very interesting.
However, OpenTCP is a new architecture that is widely
deployed and needs to modify its source side, forwarding
nodes, controllers, and other global network to provide sup-
port. This framework also illustrates that the TCP dynamic
management strategy is open to managers and does not
have a specific adjustment method and adjustment of the
target. Long et al. [15] proposed a kind of network congestion
control mechanism based on OpenFlow, which is consid-
ered as the first SDN standard. This mechanism is based
on the OpenFlow network features that define a method
in judging the link congestion control threshold. When
network congestion occurs, the corresponding congestion
controlmechanism is immediately started, and themaximum
bandwidth data flow in the congested link is identified and
rerouted to achieve load balance. Lu et al. [16] presented a
congestion control algorithm that supports multiple active
queue management. The algorithm is dynamically adap-
tive to interactive link information and can effectively use
bandwidth and network congestion control. Gholami and
Akbari [17] proposed amethod based on SDN andOpenFlow
to solve this problem. In this method, link congestion is
detected by central monitoring of the port statistics of the
OpenFlow enabled switches, and some of the flows in any
congested link are rerouted by the OpenFlow controller. This
method highlighted the effectiveness of SDN in solving the
congestion problem. Hershberger et al. [18] also proposed a
new congestion optimization algorithm based on SDN. This
algorithm chooses the 𝑘 shortest path for each data flow
ahead of schedule. When network congestion occurs, the
𝑘 paths are sequentially traversed to determine which path
is not congested. This method realizes the load balance to
some extent; however, it also has a significant computation
overhead. Meanwhile, these methods do not consider the
type of data flow. If the selected routing involves a UDP data
flow with highly demanding timeline but allows packet loss,
and the delay of the new reroute shortest path is large. Then,
this reroute strategymay not be an optimal choice.Therefore,
we considered the difference of the type of data flow in our
proposed algorithm.

2.2. Key Principles of a Software-Defined Approach. SDN is a
mature software-defined area that originated from Stanford
University’s Clean Slate research [19, 20]. It is considered a
new kind of network architecture and a method of imple-
menting network virtualization. Its core concept is to separate
the control plane and the data plane of the network hardware



Scientific Programming 3

equipment. Software programming is implemented in the
control plane.The SDN architecture can be divided into three
levels: (1) application layer, (2) control layer, and (3) equip-
ment layer. It has the following three basic characteristics:
(1) centralized control, (2) programmable software, and (3)
network virtualization.

OpenFlow network is comprised of the OpenFlow switch
and OpenFlow controller. Switches and controllers establish
the secure connection by transport layer security (TLS) or
TCP prior to OpenFlow message interaction, issuing flow
sheets, information query, reporting interface status, and
other functions.

In OpenFlow network, controllers first send the link layer
discovery protocol (LLDP) message (encapsulated in the
Packet-Out message sent) to each of the OpenFlow switches
to obtain the global network topology. Then, the switches
regularly send Port-Status messages to controllers to report
port information of each switch. This information, including
data flowheader and transmission rate, is recorded in the data
information flow of each port in the switches.

3. Software-Defined Congestion
Control Algorithm

This paper investigates the use of software-defined approach
in solving the congestion control problem in the IP network.
We proposed an SDCC algorithm that considered the dif-
ference between TCP and UDP, a new method in judging
congested nodes, and the start of the congestion control
mechanism in the congested nodes, then controlling the
network congestion to optimize the link utilization.

The main concept of the SDCC algorithm is based on
the SDN architecture, where the controller obtains port
information of each switch to monitor for congested links. If
network congestion exists, the congestion controlmechanism
is started, then one or more appropriate data flows are
selected, and the shortest rerouting path is calculated to
control the congestion. This process allows the efficient
use of network bandwidth resources and increases the link
utilization.

We considered the data flow condition in the real network
and mainly focused on the heterogeneity between the TCP
data flow and the UDP data flow in proposing this congestion
control mechanism.

The process is as follows: (1) the controller obtains the
global information and regularly monitors the network con-
gestion condition; (2) estimate whether there are congested
links based on formula (1); (3) if congested link is discovered,
it is removed from the topology image to generate a new
topology image; (4) calculate the shortest path between the
last node of the congested node to the destination node; and
(5) select one or more appropriate data flows to reroute.

3.1. Estimating Congested Links. In the OpenFlow network,
the controller, according to theOpenFlow v1.0 standard spec-
ification, obtains a global network topology image through
the LLDP and then sends port status information request
message to each of the OpenFlow switches regularly. Open-
Flow switches receive this message and feedback to the

R1 R2

f1

f2

f3
fn

Figure 1: Bottom switch network.

Input: link bandwidth
Output: congested links
(1) For 𝑓𝑘 in link
(2) IF flow = TCP
(3) 𝐵tcp = 𝐵tcp + flow
(4) ELSE 𝐵udp = 𝐵udp + flow
(5) IF 𝐵th-𝐵udp < 𝐵tcp < B
(6) link→ congested
(7) ELSE continue monitoring

Algorithm 1: Estimating.

controller the data information flow of each port in the
switches, such as data flow header and transmission rate.

As shown in Figure 1, the controller detects that, in the
OpenFlow network, there are 𝑛 data flows (𝑓1, 𝑓2, 𝑓3, . . . , 𝑓𝑛)
in R1 to R2 link, and the rate of each data stream is
(V1, V2, V3, . . . , V𝑛). Moreover, there are 𝑖 UDP data flows and
𝑗 TCP data flows.

Assume that the total bandwidth for the link R1 to
R2 is 𝐵, and the link congestion threshold is 𝐵th (specific
value of 𝐵th is according to the physical properties of the
network environment).𝐵tcp is the congestion threshold of the
TCP flows in this link, which is the link surplus maximum
bandwidth for the TCP data flows aftermeeting theUDPdata
flow transmission demand as follows:

𝐵󸀠th (𝑡) = 𝐵th −
𝑖

∑
𝑘=1

𝑓udp
𝑘 (𝑡)

𝐵tcp =
𝑗

∑
𝑘=1

𝑓tcp
𝑘 (𝑡) ,

(1)

where 𝑖 + 𝑗 = 𝑛, 𝐵tcp is the total rate of the TCP flows, and the
initial value of 𝐵tcp and 𝐵udp is 0. Then, if 𝐵󸀠th < 𝐵tcp < 𝐵, we
confirm that R2 is in a congestion state, and the link R1 to R2
is the congested link.The algorithm for estimating congested
links is as in Algorithm 1.

3.2. Calculation of Rerouting Links. Now, the controller needs
to choose a new path for rerouting part of the data flows
in the congested link. The controller removes all estimated



4 Scientific Programming

R1 R2

Figure 2: New bottom switch network.

Input: link and node distance
Output: new path and update the flow table
(1) IF link[𝑎]→ congested
(2) dist[𝑎] = INFINITY
(3) For 𝑖 do
(4) dist[𝑖] = V[0] → V[𝑖]
(5) For 𝑖 do //find the nearest point
(6) int mindist = INFINITY
(7) For 𝑗 do
(8) If dist[𝑗] <mindist
(9) mindist = dist[𝑘]
(10) For 𝑗 do //update the shortest path
(11) If mindist + V[𝑘] → V[𝑗] < V[0] → V[𝑗]
(12) dist[𝑗] = mindist + V[𝑘] → V[𝑗]
(13) Newlink→ Packet out //update flowtable
(14) OFPFC DELETE
(15) OFPFC ADD
(16) Delete OutFlowtable

Algorithm 2: Rerouting.

congested links from the global network topology image and
then obtains a new noncongested network topology image as
shown in Figure 2. In the concrete execution, we set the link
path distance as infinity to achieve the deletion.

Then, using the shortest path algorithm to calculate the
shortest path with non-congestion from the last node of the
congested node to the destination node, and finally choosing
the appropriate data flows transferred to this new path to
complete the transmission, the algorithm of the OpenFlow
network rerouting is presented as in Algorithm 2. Parameter
𝑖 represents 𝑖 UDP data flows, and parameter 𝑗 represents 𝑗
TCP data flows. Parameter 𝑘 represents the 𝑘th data flow.

3.3. Selection of Rerouted Data Flows. Considering that the
UDP data flows always emphasize short transfer time and
high-efficiency requirements, we selected the TCP data flows
for the rerouting. Assuming that there are 𝑗 TCP data flows
(𝑓1, 𝑓2, 𝑓3, . . . , 𝑓𝑗) on one congested link, the rate of each data
flows is (V1, V2, V3, . . . , V𝑗), and we obtain the following:

𝐵󸀠tcp = 𝐵tcp − (V𝑎 + V𝑏 + ⋅ ⋅ ⋅ + V𝑘) . (2)

To ensure high link bandwidth utilization, when the
total rate of the TCP flows on this link 𝐵tcp minus part of
the rate (𝑓𝑎, 𝑓𝑏, . . . , 𝑓𝑘), and a new total rate of TCP flows
𝐵󸀠tcp closest to 𝐵󸀠th is obtained, then we are assured that the
data flows (𝑓𝑎, 𝑓𝑏, . . . , 𝑓𝑘) are optimal choice for rerouting
the transmission. The selection algorithm of the rerouted
data flows are as in Algorithm 3. Parameter 𝑤 represents the
number of the most suitable data flows.

4. Experiment and Result

4.1. Experiment Design. We considered the data flow condi-
tion in the real network and mainly focused on the hetero-
geneity between the TCP data flow and the UDP data flow
in proposing this congestion control mechanism. In our test
environment, the controller obtains the global information
and regularly monitors the network congestion condition.
The controller estimates whether there are congested links. If
congested link is discovered, it is removed from the topology
image to generate a new topology image. The controller
calculates the shortest path between the last node of the
congested node to the destination node. At last, the controller
selects one or more appropriate data flows to reroute.

To verify the proposed congestion control mechanism
using the OpenFlow network, we built the test environment
as shown in Figure 3. OFS1, OFS2, and OFS3 are OpenFlow
switches by Mininet simulation; OFC is the OpenFlow con-
troller with POX [21]; PC1–PC6 are common user terminals,
and we use the Iperf tool on user terminals to send the data
flows.

We added the link monitoring, congestion detection,
rerouted data flow selection, and shortest path calculation
function modules in the POX controller and combined them
with the existing modules of topology discovery and flow
table update to achieve the proposed congestion control
mechanism. The running process of each module is shown
in Figure 4.

After the POX controller starts, the LLDP protocol is
first run to obtain the entire network topology, and then
the congestion detection module is triggered to regularly
(the experiment is set at 2 s) query each OFS for status
information of each port and record the number and size
of each flow through this port. Then, the controller will
add the rates of all data flows together. We found that the
NetFPGA’s port line speed is 1 Gbps. Aftermany experiments,
when the port rate reaches 950MB/s, the packet loss rate will
quickly reach 2% magnitude, and it is out of the standard
of common business demand. Therefore, to simulate the real
network environment, we set the port congestion threshold
at 950MB/s in our test.

4.2. Results and Analysis. To facilitate testing, we built four
data flows with Iperf (as shown in Table 1), and sets OFS1-
OFS2 as Path 1 and OFS1-OFS3-OFS2 as Path 2. As identified
by the shortest path algorithm, these four flows will be
transmitted through Path 1. In this experiment, the rate of 𝑓3
will be increased over time.



Scientific Programming 5

Input: all data flow rates through the congested link
Output: number of selected flow
(1) For 𝑖 do
(2) sum = sum + flow[𝑖]
(3) For i do //Select the appropriate flow and tag it
(4) If flow = TCP && congested && sum-flow[𝑤] > bestsum
(5) bestsum = sum − flowsize[𝑤]
(6) bestflownum = 𝑤
(7) Return bestflownum

Algorithm 3: Selection.

PC1

PC2

PC3

PC4

PC5

PC6

OFS1 OFS2

OFS3

OFC

Figure 3: OpenFlow network experiment platform.

Link monitoring Congestion detection Data flow selection

Path calculation and flow table update Controller

Figure 4: Module architecture of the POX controller in SDCC
algorithm.

(1) Link Bandwidth. Figure 5 shows the complete process of
Path 1 and Path 2 loading with𝑓3 data flow rate. First, the two
links maintain a stable trend without large fluctuation.When
the 𝑓3 growth rate reaches around 350MB/s, an obvious

Table 1: Set of four data flows.

Flow Type Rate
𝑓1 TCP (PC1–PC4) 150MB/s
𝑓2 UDP (PC2–PC4) 100MB/s
𝑓3 TCP (PC3–PC6) Increasing
𝑓4 UDP (PC1–PC6) 350MB/s

turning point occurred as shown in Figure 6. At this time,
the OFC detected OFS2 link is congested, and the most
appropriate data flow is selected (𝑓1 in the experiment) from
all data flows through this link. Finally, the flow is rerouted to



6 Scientific Programming

0 50 100 150 200 250 300 350 400
0

100

200

300

400

500

600

700

800

900

1000

Flow f3 rate (MB/s)

Fl
ow

 lo
ad

 (M
B/

s)

Path1
Path2

Figure 5: Link bandwidth.

300 310 320 330 340 350 360 370
0

100

200

300

400

500

600

700

800

900

1000

Flow f3 rate (MB/s)

Fl
ow

 lo
ad

 (M
B/

s)

Path1
Path2

Figure 6: Link bandwidth in turning point.

Path 2 because we only select TCP data flows to reroute in our
algorithm, and theUDPdata flows are not adjusted consistent
with the aim of the algorithm.

Figure 6 provides details of the turning point of the
link bandwidth. Then, Path 1 loading decreases by 150MB/s
from 950MB/s to 800MB/s. Moreover, Path 2 significantly
increased in loading size at about 150MB/s, which explains
the transmission of 𝑓1 to Path 2. After the congestion relief,
the loading in Path 1 continues to rise steadily with the
increase of 𝑓3 data flow until the next congestion.

(2) Packet Loss Rate.The packet loss rate is shown in Figure 7,
where the increase of 𝑓3 increases the packet loss rate of
Path 1, but the overall trend and value are small and within

0 50 100 150 200 250 300 350 400
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Pa
ck

et
 lo

ss
 ra

te
 (1

00
%

)

Flow f3 rate (MB/s)

Figure 7: Packet loss rate.

0 50 100 150 200 250 300 350 400
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Flow f3 rate (MB/s)

Pa
th

 1
 li

nk
 u

sa
ge

 (1
00

%
)

SDCC algorithm
LABERIO algorithm

Figure 8: Link utilization.

a reasonable range. When 𝑓3 reached 350MB/s, an obvious
increase in packet loss rate was observed.The packet loss rate
has increased dramatically to 2%, which indicates that it has
reached a state of congestion at this time. While the rate of
𝑓3 increases from 350MB/s to 400MB/s, there is an obvious
decline process, which shows the congestion relief and the
packet loss rate return to a reasonable range.

(3) Link Utilization. At the full stage of flow 𝑓3 rate from
0 to 400MB/s, the average link utilization of the proposed
algorithm is about 78.5%, and the LABERIO algorithm has
an average link utilization of about 74%. Figure 8 shows that
when congestion did not occur, the link utilization rate does
not have much difference. However, when congestion occurs
and congestion control is performed, the SDCC algorithm
proposed in this paper does not fluctuate significantly. More-
over, the algorithm stillmaintainedhigh link utilization. First,



Scientific Programming 7

the utilization on Path 1 link starts at around 60% and shows
a linear growth trend with the flow rate of flow 𝑓3, where
the maximum link utilization can be up to 95%. When the
rate of flow 𝑓3 reaches 350MB/s, the link utilization of the
SDCC algorithm is about 80%. Moreover, a follow-up with
the growth rate of flow𝑓3 showed an upward trend.However,
the LABERIO algorithm significantly declined at less than
60%, and the follow-up showed almost no growth trend.
Therefore, the SDCC algorithm is superior to the LABERIO
algorithm in link utilization.

(4) Complexity. Finally, the complexity analysis shows the
considerable properties of the SDCC algorithm that are
mainly related to the calculation of three parts, namely, the
real-timemonitoring and judgment of the congested link, the
new shortest path calculation of rerouting, and the selection
of rerouting data flows. If 𝑘 nodes exist in a network topology
and there are 𝑛 data streams on the link, the time complexity
of these three parts is 𝑂(𝑛𝑘), 𝑂(𝑘2), and 𝑂(𝑛).

Therefore, the results show the effectiveness of our con-
gestion mechanism. It effectively relieved congestion and
guaranteed the packet loss rate and link utilization.

5. Conclusion and Future Work

Congestion is a common problem in the IP network, but the
current level of development in the traditional network algo-
rithm is insufficient to meet the growing network demand.
A software-defined approach is required to find a solution to
the network congestion problem. Using centralized control
features of the SDN network, we proposed a new network
congestion control algorithm called SDCC algorithm. The
SDCC algorithm is based on the SDN architecture, and it can
obtain a global topology for unified network management.
SDCC algorithm can relieve the network congestion problem
more efficiently. We considered the difference between TCP
and UDP and proposed a new method in judging congested
nodes. Moreover, the simulation shows the effectiveness of
our congestionmechanism.Theproposed algorithm achieves
network congestion control, guarantees the packet loss rate,
and optimizes the link utilization. In future work, we will
apply a software-defined approach to the data center network
or other more complex and special network to solve the
congestion problem in depth. Furthermore, we can still
optimize our algorithm considering the different attributes
of UDP packets or other such factors and adding different
parameters to provide a fair and accurate data flow selection
strategy.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work is supported in part by grants from the National
Natural Science Foundation of China (61572191 and
61402170).

References

[1] C. P. Fu and S. C. Liew, “TCPVeno: TCP enhancement for trans-
mission over wireless access networks,” IEEE Journal on Selected
Areas in Communications, vol. 21, no. 2, pp. 216–228, 2003.

[2] C. Caini and R. Firrincieli, “TCP Hybla: A TCP enhancement
for heterogeneous networks,” International Journal of Satellite
Communications and Networking, vol. 22, no. 5, pp. 547–566,
2004.

[3] C. E. Palazzi, M. Brunati, andM. Roccetti, “An OpenWRT solu-
tion for future wireless homes,” in Proceedings of the 2010 IEEE
International Conference on Multimedia and Expo, ICME 2010,
pp. 1701–1706, July 2010.

[4] D. SreeArthi, S. Malini, M. J. Jude, and V. C. Diniesh, “Micro
level analysis of TCP congestion control algorithm inmulti-hop
wireless networks,” in Proceedings of the 2017 International Con-
ference on Computer Communication and Informatics (ICCCI),
pp. 1–5, January 2017.

[5] B.-J. Chang, Y.-H. Liang, and J.-Y. Jin, “Adaptive cross-layer-
based TCP congestion control for 4G wireless mobile cloud
access,” in Proceedings of the 3rd IEEE International Conference
on Consumer Electronics-Taiwan, ICCE-TW 2016, pp. 1-2, May
2016.

[6] M. Claeys, N. Bouten, D. De Vleeschauwer et al., “Deadline-
aware TCP congestion control for video streaming services,” in
Proceedings of the 12th International Conference on Network and
Service Management, pp. 100–108, November 2016.

[7] J. Gruen, M. Karl, and T. Herfet, “Network supported conges-
tion avoidance in software-defined networks,” in Proceedings of
the 2013 19th IEEE International Conference on Networks, ICON
2013, p. 16, December 2013.

[8] A. El-Mougy, M. Ibnkahla, G. Hattab, and W. Ejaz, “Reconfig-
urable wireless networks,” Proceedings of the IEEE, vol. 103, no.
7, pp. 1125–1158, 2015.

[9] J.-H.Wang, K. Ren,W.-G. Sun, L. Zhao,H.-S. Zhong, andK. Xu,
“Effects of iodinated contrast agents on renal oxygenation level
determined by blood oxygenation level dependent magnetic
resonance imaging in rabbit models of type 1 and type 2 diabetic
nephropathy,” BMC Nephrology, vol. 15, no. 1, article 140, 2014.

[10] “Gartner Identifies the Top 10 Strategic Technology Trends for
2015,” 2014, http://www.gartner.com/newsroom/id/2867917.

[11] P. Sun, M. Yu, M. J. Freedman, J. Rexford, and D. Walker,
“HONE: Joint Host-Network Traffic Management in Software-
Defined Networks,” Journal of Network and Systems Manage-
ment, vol. 23, no. 2, pp. 374–399, 2015.

[12] Z. Ge, R. Gu, andY. Ji, “An active queuemanagement adaptation
framework for software defined optical network,” in Proceedings
of the 2014 13th International Conference on Optical Communi-
cations and Networks, ICOCN 2014, p. 14, November 2014.

[13] L. Zhang, Q. Deng, Y. Su, and Y. Hu, “A Box-Covering-Based
Routing Algorithm for Large-Scale SDNs,” IEEE Access, vol. 5,
pp. 4048–4056, 2017.

[14] M. Ghobadi, S. H. Yeganeh, and Y. Ganjali, “Rethinking end-to-
end congestion control in software-defined networks,” in Pro-
ceedings of the 11th ACM Workshop on Hot Topics in Networks,
HotNets 2012, pp. 61–66, October 2012.

[15] H. Long, Y. Shen, M. Guo, and F. Tang, “LABERIO: dynamic
load-balanced routing in OpenFlow-enabled networks,” in
Proceedings of the IEEE International Conference on Advanced
Information Networking Applications, pp. 290–297, 2013.

http://www.gartner.com/newsroom/id/2867917


8 Scientific Programming

[16] L. Lu, Y. Xiao, and H. Du, “OpenFlow control for cooperating
AQM scheme,” in Proceedings of the 2010 IEEE 10th Interna-
tional Conference on Signal Processing, ICSP2010, pp. 2560–
2563, October 2010.

[17] M. Gholami and B. Akbari, “Congestion control in software
defined data center networks through flow rerouting,” in Pro-
ceedings of the 23rd Iranian Conference on Electrical Engineering,
ICEE 2015, pp. 654–657, May 2015.

[18] J. Hershberger, M. Maxel, and S. Suri, “Finding the k shortest
simple paths: A new algorithm and its implementation,” ACM
Transactions on Algorithms (TALG), vol. 3, no. 4, Article ID
1290682, 2007.

[19] N. McKeown, T. Anderson, H. Balakrishnan et al., “OpenFlow:
enabling innovation in campus networks,” Computer Commu-
nication Review, vol. 38, no. 2, pp. 69–74, 2008.

[20] M.-K. Shin, K.-H. Nam, and H.-J. Kim, “Software-defined
networking (SDN): A reference architecture and open APIs,” in
Proceedings of the 2012 International Conference on ICT Con-
vergence: “Global Open Innovation Summit for Smart ICT Con-
vergence”, ICTC 2012, pp. 360-361, October 2012.

[21] POX, 2017, https://github.com/noxrepo/.

https://github.com/noxrepo/


Submit your manuscripts at
https://www.hindawi.com

Computer Games 
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed 
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 201

 Applied 
Computational 
Intelligence and Soft 
Computing

 Advances in 

Artificial 
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in 

Multimedia

 International Journal of 

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 201

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational 
Intelligence and 
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014


