
Research Article
Routing Optimization Algorithms Based on Node Compression
in Big Data Environment

Lifeng Yang,1 Liangming Chen,2 Ningwei Wang,2 and Zhifang Liao2

1School of Continuing Education, Yunnan Open University, Yunnan, China
2School of Software, Central South University, Hunan, China

Correspondence should be addressed to Zhifang Liao; zfliao@csu.edu.cn

Received 26 August 2017; Accepted 5 December 2017; Published 26 December 2017

Academic Editor: Wenbing Zhao

Copyright © 2017 Lifeng Yang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Shortest path problem has been a classic issue. Even more so difficulties remain involving large data environment. Current
research on shortest path problem mainly focuses on seeking the shortest path from a starting point to the destination, with both
vertices already given; but the researches of shortest path on a limited time and limited nodes passing through are few, yet such
problem could not be more common in real life. In this paper we propose several time-dependent optimization algorithms for this
problem. In regard to traditional backtracking and different node compressionmethods, we first propose an improved backtracking
algorithm for one condition in big data environment and three types of optimization algorithms based on node compression
involving large data, in order to realize the path selection from the starting point through a given set of nodes to reach the end
within a limited time. Consequently, problems involving different data volume and complexity of network structure can be solved
with the appropriate algorithm adopted.

1. Introduction

The single source shortest path problems in graph theory are
very typical questions that enjoy wide applications in real
life, such as network routing path selection, vehicle naviga-
tion, and travel routes. The classic algorithm to solve such
problems is Dijkstra’s Algorithm [1] proposed by Dijkstra in
1959 and a lot of researchers focus on this research area [2–
4]. However, Dijkstra fails to solve problems where routes
are required to go from the starting point, pass the specified
intermediate node, and finally reach the destination—far
more practical problems exemplified as follows:(1) “Postman problem”: the postman starts from the post
office, sends letters to residents, and returns home, where we
need to find the postman a shortest path within a given time.(2) “Limited time problem”: within a limited time,
activities designed for staff members who tracked con-
sent using depth sensors were proposed and they were
carefully reminded of noncompliant activities [5], and a
collaborative smartphone task model is proposed, which
is called Collaboration-Based Intelligent Perception Task
Model (CMST) [6].

(3) “Traveler problem”: calculate a travel route for the
traveler within the specified time, who needs to go from a
designated location, pass a designated scenery spot, and visit
a given place. The total distance should be the shortest or the
total expense should be the lowest [7, 8].(4) “Compression problem”: a new compression method
for large data environment is proposed, which can effectively
reduce the data compression of single nodes and ensure the
quality of data [9]. Due to the large amount of web service
data, a data-driven scheme is based on kernel least mean
squares (KLMS) algorithm [10]. In order to compress the
input to further improve the learning effect, a new QKLMS
is based on entropy-guided learning [11].(5) “Network routing problem”: find an efficient routing
algorithm to solve the problem of path optimization of
wireless sensor network, considering the influences of some
practical factors such as the consumption of the energy of the
nodes and recovery time of routing [12–14].(6) “Laguerre neural network” [15]: it intends to propose
a novel automatic learning scheme to improve the tracking
efficiency while maintaining or improving the data tracking
accuracy. A core strategy in the proposed scheme is the design

Hindawi
Scientific Programming
Volume 2017, Article ID 2056501, 7 pages
https://doi.org/10.1155/2017/2056501

https://doi.org/10.1155/2017/2056501

2 Scientific Programming

of Laguerre neural network- (LaNN-) based approximate
dynamic programming (ADP).(7) “Energy of the sensor nodes” [16]: a novel prediction-
based data fusion scheme using grey model (GM) and
optimally pruned extreme learning machine (OP-ELM) is
proposed. The proposed data fusion scheme called GM-OP-
ELMuses a dual predictionmechanism to keep the prediction
data series at the sink node and sensor node synchronous.

These problems can be summarized as one graph theory
problem; that is, in a weighted directed graph, a route
goes from a starting point, passes through the designated
intermediate node, and reaches a destination. It is required to
find valid paths within a specified time, calculate the weight
of these paths, and select a path with the lowest weight as the
final result.

To solve this kind of problems, we may traverse the
whole graph and find a shortest path, although theoretically
this traversal algorithm will eventually sort out the optimal
solution; however the time complexity remains high. In view
of this, this paper proposes a node compression routing algo-
rithmwith considered time limits.The study pays attention to
node compression and applies useful information obtained
in path finding to search conditions, readjusting the order
of subnodes and other methods as well. Additionally, the
high time complexity in traditional algorithm is improved,
offering an effective solution to this type of problem.

2. Problem Description

2.1. Mathematical Model of the Problem. Given a weighted
graph 𝐺(𝑉, 𝐸) where 𝑉 = {1, 2, 3, . . . , 𝑛} is the vertex set, 𝐸 ={𝑒𝑖𝑗 = (𝑖, 𝑗) | 𝑖, 𝑗 ∈ 𝑉, 𝑖 ̸= 𝑗} is the edge set. 𝑑𝑖𝑗 (𝑖, 𝑗 ∈ 𝑉, 𝑖 ̸= 𝑗)
is the weight of vertexes 𝑖 to 𝑗, where 𝑑𝑖𝑗 > 0 and 𝑑𝑖𝑗 ̸= ∞;
while 𝑑𝑖𝑗 and 𝑑𝑗𝑖 may be unequal, 𝑉󸀠 = {1󸀠, 2󸀠, . . . , 𝑛󸀠} ∈ 𝑉.
We need to find the sequence 𝐴 = {𝑎1, 𝑎2, 𝑎3, . . . , 𝑎𝑛} within a
given time, where 𝑠 is starting point and 𝑡 is the destination,𝑠, 𝑡 ∈ 𝑉 and 𝑠, 𝑡 do not belong to 𝑉󸀠, all of the elements in 𝑉󸀠
must appear in sequence 𝐴, making the sum of the weights
of all edges of the path formed in sequence 𝐴 minimal, and
loop is not allowed in any path. The mathematical model of
the problem is defined as follows.

Under the condition of Time = 𝑡, solvemin𝐶 = ∑𝑖 ̸=𝑗 𝑑𝑖𝑗×𝑋𝑖𝑗, in order to define the starting point 𝑠 and the destination𝑡 and make sure that there’s only one in-edge and out-edge
on each vertex except the edges of starting point and the
destination paths; we make the following constraints:

𝑋𝑖𝑗 = { 1, edge 𝑒𝑖𝑗 is along the result path
0, edge 𝑒𝑖𝑗 is out of the result path, (1)

where 𝑋𝑖𝑗 is an integer of 0 or 1, 1 represents edge 𝑒𝑖𝑗 on the
result path, and 0 represents edge 𝑒𝑖𝑗 out of the result path,
and𝑋𝑖𝑗 is used to calculate the weight of the resulting path.

∑
𝑖 ̸=𝑗

𝑋𝑖𝑗 = 1, 𝑗 ∈ 𝑉󸀠, (2)

where 𝑖 ̸= 𝑗 means that the result path cannot contain the
edges that the starting node and the end node are the same

node, which means the point in the intermediate node set on
the result path can only occur once and must occur once.

∑𝑋𝑠𝑗 = 1, 𝑗 ∈ 𝑉, 𝑗 ̸= 𝑠. (3)

The formula defines an edge that begins with the starting
nodes which should appear in the result path, and the starting
node in the edge cannot be the end node.

∑𝑋𝑗𝑠 = 0, 𝑗 ∈ 𝑉, 𝑗 ̸= 𝑠. (4)

The formula restricts that the starting node 𝑠 can only be
the starting node in an edge, and it cannot be any other kind
of nodes, such as end node or intermediate nodes.

∑𝑋𝑖𝑡 = 1, 𝑖 ∈ 𝑉, 𝑖 ̸= 𝑡. (5)

The formula restricts that the result path must have an
edge endedwith the end node 𝑡, whichmeans the edge cannot
start with the end point 𝑡.

∑𝑋𝑡𝑖 = 0, 𝑖 ∈ 𝑉, 𝑖 ̸= 𝑡. (6)

The formula restricts that the resulting path cannot con-
tain the edge beginning with the end node 𝑡; that is, the end
node 𝑡 can only be used as the final node on the resulting path.

∑
𝑖,𝑗∈𝑉

𝑋𝑖𝑗 = |𝐴| . (7)

This formula defines the number of edges on the resulting
pathwhich can be the number of nodesminus one; that is, the
resulting path cannot appear with unrelated edges and loops.

For the convenience of subsequent description, the fol-
lowing two definitions are given.

Definition 1 (key nodes). The nodes in𝑉󸀠 include othermust-
pass nodes except starting point 𝑠 and destination 𝑡.
Definition 2 (free nodes). All other nodes except the key
nodes are included.

2.2. Simple Example. In the weighted graph 𝐺 shown in
Figure 1, four nodes can be found, namely, 0, 1, 2, and 3;
therefore 𝑉 = {0, 1, 2, 3}, and there are seven edges 0, 1, 2,
3, 4, 5, and 6, so 𝐸 = {0, 1, 2, 3, 4, 5, 6}, where the weight of
the edge is {𝑑01 = 1, 𝑑02 = 2, 𝑑03 = 1, 𝑑21 = 3, 𝑑31 =1, 𝑑23 = 1, 𝑑32 = 1}. To find a path from 0 to 1 via vertexes
2 and 3, we have 𝑉󸀠 = {2, 3}. Two paths can be found to solve
this problem: 0→2→3→1 and 0→3→2→1. Since the weight
of edges on the first route is 4, and the weight of the other is
5, the optimal solution should be 0→2→3→1.
3. Improved Backtracking Algorithm: IBA

If using the backtracking method to solve this problem,
theoretically, we can have the optimal solution and of course
other solutions. However, the backtracking method does not
effectively use information constructed in the search process
or the optimal solution to lay a foundation for optimiza-
tion condition of the next-step search. In this section, an

Scientific Programming 3

0

1

32

1, 2,1

4, 1

5,1

6,1
LinkID,Cost

0,1

3, 3

2

Figure 1: A simple example of the problem.

improved backtracking method (OPT-Backtrack Algorithm)
is proposed based on traditional backtracking method. The
new IBA retrieves known information and valid results from
the previous search and adds them up to the next search rules
before searching from other nodes. In this way, the search
method and algorithms can be improved, since existing
information and possible results are taken into consideration
for a higher search efficiency.

The addition rule in the improved backtracking algorithm
is shown below.

Rule 1. If the next node happens to be the destination, yet the
current path has not gone through every must-pass node in
the node set, the path will track back and begin searching for
the next node.This rule avoids the generation ofmany invalid
solutions thus improving the algorithm efficiency.

Rule 2. If the current path weight and the weight of the edge
to the next node is greater than or equal to the minimum
weight of the available solution, the path will track back and
continue searching for the next node. If current path has been
found whose current weight and the weight of edge to the
next node is nomore than the existingweight, then there is no
need to search for the next node, because initially the problem
is to find the smallest possible weight of the path.

Rule 3. For those nondestination nodes with zero child
nodes, we should avoid entering the search. If a node is
not destination and has no child nodes, the path shall not
continue; therefore, it is not necessary to search at such nodes
or rather they can be simply deleted from the graph.

The key pseudocode of the improved backtracking algo-
rithm is shown in Algorithm 1.

4. Node Compression Based Search Algorithm

Although search efficiency can be enhanced by the improved
backtracking algorithm to a certain degree, the negative
complexity of the improved backtracking method will also
increase as scale of the graph and solution domain expand.

Improved-Backtrack (𝐺)(1) node=start(2) while usedtime< 𝑡 &&
(node!=end && !𝐴󸀠 ∈ nodes)(3) nodes.add(node)(4) record information include
route and weigths(5) for 𝑖 = 1 to children.length(6) add search rule(7) Improvedacktrack (children[𝑖])(8) if result !=null-𝐵(9) return result and weight(10) else(11) return NA

Algorithm 1: The key pseudocode of the improved backtracking
algorithm.

To reduce algorithm complexity, this paper proposes a new
algorithm, node compression based search algorithm:NCSA.

As the scale of graph increases, paths will expand accord-
ingly. The same problem would be finding a path from a
start point, reaching an intermediate node halfway and finally
the destination. To reduce the algorithm complexity, we may
preprocess the graph. The method is to compress the total
number of nodes, remove useless nodes and low-value path
fragments, and then save the only paths that are necessary
to simplify the entire graph; the goal is to compress solution
domain and ultimately improve search efficiency.

4.1. Node Compression Algorithm (NCA). The algorithm is
applicable to the following circumstance: If a node is relatively
remote which only reaches one other node, that is, a node
followed only by one child node, in this case, the search will
follow down the only child node route and will repeat this
wherever there is such a node during the searching process.
What we want to do is to avoid the simple and repeated
calculations in this kind of situation.

Solution to this problem is Node CompressionAlgorithm
(NCA).NCA records the paths through the above-mentioned
nodes when the algorithm is applied for the first time andwill
remove the nodes but retain the path information; therefore,
when the next search continues at this node, only stored path
information will be used to avoid duplicated counting. As a
result, the total number of nodes is compressed and reduced,
making it easier to search for a better solution.

The process is shown in Figure 2.
In Figure 2, node 1 is followed by the only child node

2, the weight from nodes 1 to 2 is 2, marked as path 1; the
compression process means transferring node 1 information
to node 2 so that node 2 becomes the direct child node of node
0. If compressed, the weight from nodes 0 to 2 is 3, and path
from nodes 0 to 2 is “0 | 1.” This means node 1 is removed
while the path information fromnodes 1 to 2 is retained solely
in node 2. When the next search algorithm reaches node 0,
information retained in node 2 can be used directly without
going back to node 1. So the number of nodes is reduced and
the path will not be searched again.

4 Scientific Programming

0

1

2

3

...

...

Weight: 1
Path: 0

0

2

...

3

...Weight: 2

Weight: 3

Path: 1

Weight: 1
Path: 2

Weight: 1
Path: 2Path: 0 | 1

Figure 2: The basic idea of compression search algorithm.

4.2. Complete Compression Algorithm: CCA. Since Node
Compression Algorithm (NCA) is used mainly to solve free
nodes with only one child node, if such nodes are many
in the graph, the algorithm efficiency will be significantly
improved. However, if the scale of such nodes is limited, the
basic compression algorithm will take less or no effect, which
limits the effectiveness of compression search algorithm.

In view of the problem of NCA, this paper proposes a
more efficient compression strategy, which compresses all
free nodes in the graph to reduce the complexity of the graph,
improving the search efficiency.

The problem is finding a noncircle path from the starting
node to the destination node while passing through the
intermediate node sets so that the weights of the edges on
paths are as small as possible. When the reachability of nodes
is complex, there will be many more possible paths to reach
nodes of one and another. Since the problem requires that
intermediate node set 𝑉󸀠 be passed and, within the set, there
aremultiple reachable paths between nodes, yet only one path
will be selected within the set as one fragment of the final
solution, therefore, we should find out all reachable paths
while saving the path with the smallest weight. As the search
algorithm reaches a corresponding node, the valid path will
be retrieved from the stored information while the original
nodes on the path can be removed from the graph, reducing
useless nodes and repetitive counting.With this compression
method, only the starting point, destination, the intermediate
node set, and their interconnected path information will
remain, simplifying the entire graph to a large extent with
excellent compression efficiency.

Just like Figure 1, it can be seen as a simplified graph, and
only the starting point, destination, and intermediate node set
are preserved. In this way, we can achieve good compression
efficiency by selecting the reachable path with the smallest
path.

4.3. Improved Complete Compression Algorithm: ICCA. In
order to further improve compression efficiency, this section
continues to adjust and improve node compression by the
three steps.

4.3.1. Adjusting Child Nodes Order by Weight. In the search
process, algorithm can be done based on the weight of
feasible solutions (see Rule 2 of IBA). First the order of
subnodes is sorted according to the weight size from small to
large. When algorithm searches the path, subnodes carrying

smaller weight are searched with priority so that paths with
smaller weight are easily obtained. As a result of this search
strategy, other paths with larger weight can be skipped. This
certainly reduces unnecessary search processes with greater
efficiency.

4.3.2. Adjusting Child Nodes Order by the Sequence of Passing
Nodes (from Small to Large). From the perspective of proba-
bility, when a new node is inserted into a graph, the more the
nodes a path passes, the more likely the repeated path will
be generated. Therefore, under the condition of same weight,
the nodes with fewer subnodes will be given priority since the
paths that follow will make fewer repeated attempts, making
it easier to find the solution path.

4.3.3. Removing Child Nodes with Larger Weight. This strat-
egy is only applicable to high-complexity graphs. After com-
pression, the remaining nodes will connect one and another
to form paths; complexity of the graph might be still high.
There would be the case where one path might be an effective
solution but the nodes it passes carry excessive weight, so the
path will not be considered the final solution. In this case,
removing large weight nodes will lower the graph complexity
and improve search efficiency. In addition, it will save time
and figure out a better solution with a lower weight path.

By analysis, the spatial complexity of IBA is 𝑂(𝑛), while
the spatial complexity of NCA, CCA, and ICCA is 𝑂(𝑛2),
where 𝑛 is the total number of nodes in the graph. ICCA
can quickly select the shortest paths according to the weights
of nodes and the nodes with smaller weights and delete the
nodes with larger weights from the compression of large
networks efficiently.

5. Experimental Analysis

5.1. DataDescription andAnalysis. Without loss of generality,
experiment data are from the cases of 2016 Huawei Software
Elite Competition; these quoted examples are based on the
network topological graph of Huawei’s network routers,
switches, and other network elements when Huawei estab-
lished its own network facilities.

5.1.1. Problem Description. Given a weighted graph 𝐺 =(𝑉, 𝐸), 𝑉 is the vertex set, 𝐸 is the directed edge set, and each
directed edge contains the weight. For a given vertex 𝑠, 𝑡, and
a subset𝑉󸀠 of𝑉, find a nonringing directed path 𝑃 from 𝑠 to 𝑡
within a given time so that 𝑃 passes through all vertices in𝑉󸀠
(the order of passing is not required), making the total weight
of all directed edges on path 𝑃 as small as possible.

5.1.2. Data Description. (1) All weights in the graph are
integers within [1, 20].(2)The starting point of any directed edge is not destina-
tion.(3)The number of directed edges connecting vertex 𝐴 to
vertex 𝐵 may be more than one, whose weight may or may
not be the same.(4)The total number of vertices of the directed graph will
not exceed 600, and the number of each vertex out-degree

Scientific Programming 5

(the number of directed edgeswith these points as the starting
point) does not exceed 8.(5)The number of elements in 𝑉󸀠 does not exceed 50.(6) The nonringing directed path 𝑃 starts from 𝑠 to 𝑡,
where 𝑃 is a directed connected path consisting of a series
of directed edges from 𝑠 to 𝑡, with no repeated path allowed.(7)The weight of a path is the sum of all weights on the
directed edges of the path.

5.1.3. Data Format. (1) In the graph, each line contains the
following information:

{LinkID, SourceID,DestinationID,Cost},
where LinkID is index of directed edge, SourceID is index of
the starting vertex of the directed edge, DestinationID is the
index of destination vertex of the directed edge, Cost is the
weight of the directed edge. The index of vertex and that of
directed edge are numbered from 0 (not necessarily continu-
ous, but the case ensures that the index does not repeat).(2) Path information includes

{SourceID,DestinationID, IncludingSet},
where SourceID is the starting point of the path, Desti-
nationID is the destination of the path, and IncludingSet
represents the must-pass vertex set 𝑉󸀠, and different vertex
indexes are segmented with “|.”
5.1.4. Experiment Environment. Windows 7 64-bit operating
system, with Intel core i5 processor, jre1.6, 32-bit java virtual
machine, up to 4G memory, is used.

5.2. Experiment Methods and Result Analysis

5.2.1. IBA, NCA, and CCA Comparison. To verify back-
tracking method and IBA, NCA, and CCA algorithms, four
sets of experiments will be conducted with the solution
time limited to 10 seconds. From Experiments 1–4, the total
number of nodes and edges in the graph will be gradually
increased, while the number of intermediate nodes will be
kept unchanged. Experiment results will be compared by the
weight of final path result and time spent.

Experiment 1. Total nodes are 10; must-pass nodes are 3;
edges are 39.

Figure 3 shows the experimental result fromExperiment 1
and it presents the fact that IBA has higher efficiency than the
backtracking method. Efficiency difference is not remarkably
obvious in NCA and CCA because the compression process
takes time and also the efficiency becomes even less obvious
if the complexity of the graph is low.

Experiment 2. Total nodes are 20; must-pass nodes are 5;
edges are 55.

Figure 4 shows the experimental result from Experi-
ment 2 and it presents the fact that IBA, NCA, and CCA have
a greater efficiency than backtracking method. Efficiency

Weight
Time (ms)

CCANCAIBABacktrack
0

5

10

15

20

25

30

35

40

45

Figure 3: Experimental results of Experiment 1.

Weight
Time (ms)

CCANCAIBABacktrack
0

10

20

30

40

50

60

70

80

90

Figure 4: Experimental results of Experiment 2.

of CCA is the highest while IBA and NCA have a similar
efficiency because of few remote nodes.

Experiment 3. Total nodes are 30; must-pass nodes are 10;
edges are 135.

Figure 5 shows the experimental result from Experi-
ment 3 and it presents the fact that the superiority of CCA
proves obvious as graph complexity gradually improves.

Experiment 4. Total nodes are 40; must-pass nodes are 10;
edges are 229.

Figure 6 shows the experimental result from Experi-
ment 4 and it presents the fact that backtracking method
indicates low efficiency if complexity of the graph is even
higher; in contrast, CCA efficiency performs reasonably well.

Experiment results have shown that IBA has a higher
efficiency than backtrackingmethod judged by either weights

6 Scientific Programming

Weight

CCANCAIBABacktrack
0

20

40

60

80

100

120

140

160

180

Time (100 ms)

Figure 5: Experimental results of Experiment 3.

CCANCAIBABacktrack
0

20

40

60

80

100

120

140

160

Weight
Time (100 ms)

Figure 6: Experimental results of Experiment 4.

or search time. NCA shows only a slight advantage over IBA
because remote nodes in the graph are very limited. In par-
ticular, judging from all dimensions, CCA has proved signi-
ficant quality in searching the results with superior efficiency
to other algorithms, indicating the effectiveness of CCA in
solving such problems.

5.2.2. CCA and ICCA Comparison. It is observed from the
previous four experiments that the respective efficiency of
backtracking method, IBA, and NCA decreases drastically as
the sum of nodes increases. Therefore, there is no research
value to add up more nodes to the graph. This section con-
tinues to compare between CCA and ICCA.

Experiment environment will remain the same as those
of Experiments 1–4; experiment will gradually increase total

IC
CA

5

CC
A
5

IC
CA

6

CC
A
6

IC
CA

7

CC
A
7

IC
CA

8

CC
A
8

IC
CA

9

CC
A
9

0

200

400

600

800

1000

1200

Weight
Time (100 ms)

Figure 7: Experimental results of Experiments 5–9.

nodes and edges, while the size of intermediate nodes set will
also increase. Comparison will be based on the following five
experiments.

Experiment 5. Total nodes are 60, must-pass nodes are 10,
and edges are 285.

Experiment 6. Total nodes are 100, must-pass nodes are 15,
and edges are 516.

Experiment 7. Total nodes are 200, must-pass nodes are 20,
and edges are 997.

Experiment 8. Total nodes are 400, must-pass nodes are 28,
and edges are 2178.

Experiment 9. Total nodes are 600, must-pass nodes are 50,
and edges are 3418.

Figure 7 shows the experimental results which have indi-
cated that compared to CCA, ICCA obtains better solutions.
Therefore, the improved strategy in Section 4.3 is proved to
be effective.

6. Conclusion

Problems like postman problem, traveler problem, bus line
design, network routing problem, and other similar cases can
be abstracted as the path finding graph model as discussed
in this study. IBA and NCA are applicable to medium-sized
problems. NCA is recommended to solve graphs that contain
many remote nodes, while CCA and ICCA are more efficient
in dealing with large-scale problems with great algorithm
complexity. Additionally, ICCA is able to promote search
efficiency when subnodes are readjusted.

As the size of problem becomes larger, CCA and ICCA
may not be able to search the whole solution space completely
with the optimal solutionwithin a given time. In this case, the
compression idea will be integrated into heuristic algorithms
such as genetic algorithm and ant colony algorithm to expect
a far more efficient search algorithm so as to resolve routing
problems with larger scales.

Scientific Programming 7

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

References

[1] E. W. Dijkstra, “A note on two problems in connexion with
graphs,” Numerische Mathematik, vol. 1, pp. 269–271, 1959.

[2] D.-Y. Zhang,W.-L.Wu, andC.-F. Ouyang, “Top-k shortest-path
query on RDF graphs,” Tien Tzu Hsueh Pao/Acta Electronica
Sinica, vol. 43, no. 8, pp. 1531–1537, 2015.

[3] H. Y. Cao, Y. Yuan, and Z. Q. Liu, “Routing algorithm forWSNs
based on residual energy of node and the maximum angle,”
Transducer & Microsystem Technologies, 2015.

[4] L.-Y. Feng, L.-W. Yuan, W. Luo, R.-C. Li, and Z.-Y. Yu, “Geo-
metric algebra-based algorithm for solving nodes constrained
shortest path,” Tien Tzu Hsueh Pao/Acta Electronica Sinica, vol.
42, no. 5, pp. 846–851, 2014.

[5] W. Zhao, R. Lun, C. Gordon et al., “A human-centered activity
tracking system: toward a healthier workplace,” IEEE Transac-
tions on Human-Machine Systems, vol. 47, no. 3, pp. 343–355,
2017.

[6] T. Li, Y. Liu, L. Gao, and A. Liu, “A cooperative-based model for
smart-sensing tasks in fog computing,” IEEE Access, vol. 5, pp.
21296–21311, 2017.

[7] Y.-H. Qi, Y.-G. Cai, H. Cai, Y.-L. Tang, and W.-X. Lv, “Chaotic
Hybrid Discrete Bat AIgorithm for TraveIing SaIesman Pro-
bIem,” Acta Electronica Sinica, vol. 44, no. 10, pp. 2543–2547,
2016.

[8] Y. Z. Wang, Y. Chen, and J.-S. Zhang, “Novel Fruit Fly Algo-
rithm Based on Learning and Memory for Solving Traveling
Salmesman Problem,” Journal of Chinese Computer Systems, vol.
37, no. 12, pp. 2722–2726, 2016.

[9] C. Yang, X. Zhang, C. Zhong et al., “A spatiotemporal compres-
sion based approach for efficient big data processing on Cloud,”
Journal of Computer and System Sciences, vol. 80, no. 8, pp. 1563–
1583, 2014.

[10] X. Luo, J. Liu, D. D. Zhang, and X. Chang, “A large-scale web
QoS prediction scheme for the Industrial Internet of Things
based on a kernel machine learning algorithm,” Computer Net-
works, vol. 101, pp. 81–89, 2016.

[11] X. Luo, J. Deng, J. Liu, W. Wang, X. Ban, and J. Wang, “A quan-
tized kernel least mean square scheme with entropy-guided
learning for intelligent data analysis,” China Communications,
vol. 14, no. 7, pp. 127–136, 2017.

[12] A. Fernández-Fernández, C. Cervelló-Pastor, and L. Ochoa-
Aday, “Improved Energy-Aware Routing Algorithm in Sof-
tware-Defined Networks,” in Proceedings of the 41st IEEE Con-
ference on Local Computer Networks, LCN 2016, pp. 196–199,
UAE, November 2016.

[13] N. Li, J.-F. Mart́ınez, and V. H. Dı́az, “The balanced cross-layer
design routing algorithm in wireless sensor networks using
fuzzy logic,” Sensors, vol. 15, no. 8, pp. 19541–19559, 2015.

[14] L. Lei, W. F. Li, and H. J. Wang, “Path optimization of wire-
less sensor network based on genetic algorithm,” Journal of Uni-
versity of Electronic Science & Technology of China, vol. 38, no.
2, pp. 227–230, 2009.

[15] X. Luo, Y. Lv, M. Zhou, W. Wang, and W. Zhao, “A laguerre
neural network-based ADP learning scheme with its applica-
tion to tracking control in the Internet of Things,” Personal and
Ubiquitous Computing, vol. 20, no. 3, pp. 361–372, 2016.

[16] X. Luo and X. Chang, “A novel data fusion scheme using grey
model and extreme learning machine in wireless sensor net-
works,” International Journal of Control, Automation, and Sys-
tems, vol. 13, no. 5, 2015.

Submit your manuscripts at
https://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 201

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 201

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

