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The Internet applications, such as network searching, electronic commerce, andmodernmedical applications, produce and process
massive data. Considerable data parallelism exists in computation processes of data-intensive applications. A traversal algorithm,
breadth-first search (BFS), is fundamental in many graph processing applications and metrics when a graph grows in scale. A
variety of scientific programmingmethods have been proposed for accelerating and parallelizing BFS because of the poor temporal
and spatial locality caused by inherent irregular memory access patterns. However, new parallel hardware could provide better
improvement for scientific methods. To address small-world graph problems, we propose a scalable and novel field-programmable
gate array-based heterogeneous multicore system for scientific programming. The core is multithread for streaming processing.
And the communication network InfiniBand is adopted for scalability. We design a binary search algorithm to address mapping to
unify all processor addresses.Within the limits permitted by theGraph500 test bench after 1D parallel hybrid BFS algorithm testing,
our 8-core and 8-thread-per-core system achieved superior performance and efficiency compared with the prior work under the
same degree of parallelism. Our system is efficient not as a special acceleration unit but as a processor platform that deals with
graph searching applications.

1. Introduction

Information technology, the Internet, and intelligent tech-
nology have ushered in the era of big data. Data-intensive
applications, as a typical representative of big data applica-
tions represented by graph searching, have been receiving
increased attention [1]. Many real-world applications could
be abstracted as a large graph of millions of vertices, but
this procedure is a considerable challenge for processing.
These applications represent the connections, relations, and
interaction among entities, such as social networks [2], bio-
logical interactions [3], and ground transportation [1]. Poor
data-driven computation, unstructured organization, irregu-
lar memory access, and low computations-to-memory ratio
are the prime reasons for parallel large-graph processing
inefficiency [4]. To traverse larger graphs caused by data-
intensive applications, a variety of scientific programming
methods has been proposed [5, 6]. Tithi et al. [5] optimized
the programme and used dynamic load balancing with Intel
click++ language. Chen et al. [6] proposed a new parallel

model called Codelet model.They all do a good job in speed-
ing up access to memory. However, new parallel computing
machines could provide a better platform for software meth-
ods. Heterogeneous processing, with reconfigurable logic
and field-programmable gate array (FPGAs) as an energy
efficient computing systems [7], performs competitively with
the multicore CPUs and GPGPUs [4, 8]. The performance of
breadth-first search (BFS) on large graphs is bound by the
access to high-latency external memory. Thus, we designed
considerable parallelism and relatively low clock frequencies
to achieve high performance and customized memory archi-
tecture to deal with irregular memory access patterns.

The bottleneck of processing graph search is memory.
Communication is a primary time overhead in the expansion
of processors. In this study, we propose a scalable and novel
FPGA-based heterogeneous multicore system for big data
applications. The core is multithread for streaming process-
ing, and the communication network is InfiniBand (IB) for
scalability. The address mapping is a binary search algorithm
mapping, and three levels of hierarchy of memory exist.
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The remainder of this paper is organized as follows:
Section 2 introduces the details of our 1D decomposition
hybrid BFS algorithm. Section 3 shows the details of the
proposed parallel system architecture. Section 4 describes the
implementation of binary search address mapping. Section 5
provides details of the single processor architecture. Section 6
exhibits the three-level memory hierarchy. Section 7 analyzes
the experiment results.

2. Related Works

While parallel computers withmillions of cores are already in
production, the trend is geared toward higher core densities
with deepermemory hierarchies [10] even though other node
resources (e.g., memory capacity per core) are not scaling
proportionally [11]. Anghel et al. (2014) [12] analyzed node-
to-node communications and showed that the application
runtime is communication bound and that the communica-
tion makeup is as much as 80% of the execution time of each
BFS iteration [13].

The Graph500 benchmark is the representative of the
graph-based analytic class of applications and is designed to
assess the performance of supercomputing systems by solving
the BFS graph traversal problem [14, 15].

Fast graph traversal has been approached from a range
of architecture methods. Fast graph traversal has been ap-
proached from a range of architecture methods. In general-
purpose CPU and multicore/supercomputing approaches
[16, 17], Agarwal et al. performed locality optimizations on a
quad-socket system to reduce memory traffic [18]. A consid-
erable amount of research on parallel BFS implementations
on GPUs focuses on level-synchronous or fixed-point meth-
ods [19, 20].The reconfigurable hardware approach in solving
graph traversal problems on clusters of FPGAs is limited by
graph size and synthesis times [4, 8]. Betkaoui et al. (2012)
[4] and Attia et al. (2014) [8] explored highly parallelized pro-
cessing elements (PEs) and decoupled computation memory.
Umuroglu et al. (2015) [11] demonstrated the density, rather
than the sparsity, of the treatment of the BFS frontier vector
in yielding simpler memory access patterns for BFS, trading
redundant computation for DRAM bandwidth utilization,
and exploring faster graphs.

3. 1D BFS Algorithm for Testing

In 2013, Beamer et al. [21] proposed a bottom-up algorithm
on BFS, which dramatically reduces the number of edges
examined, and presented the combination of a conventional
top-down algorithm and a novel bottom-up algorithm. The
combined algorithm provides a breakthrough for level-syn-
chronized parallel BFS in parallel computation, and this
novel bottom-up algorithm is applied in 2D sparse matrix
partitioning-based solutions. Today, the 2D bottom-up BFS
implementation is a general application in Blue Gene archi-
tecture.

Experiments show that with a large number of processors
relative to the 1D decomposition, the 2D decomposition can
effectively reduce the total communication between proces-
sors. In the 2D decomposition, the BFS algorithm has better

performance. By contrast, with a small number of processors,
the BFS algorithm is suitable in the 1D decomposition.
Moreover, our system has eight processors in parallel with
unified fine-grained address mapping. Algorithm 1 uses 1D
decomposition-optimized BFS algorithm which is proposed
by Yasui et al. [22]. In Algorithm 1, 𝑉 is the set of vertex in
graph, while 𝐸 is the set of edges; that is, 𝐸(𝑢, V) = 1 means
𝑢 and V are connected. The parent [𝑘] gives the parent of
vertex 𝑘 in the BFS tree whose source vertex is 𝑠; when 𝑘 is
unreachable from 𝑠, parent [𝑘] = −1. V ∈ 𝑉; if V is in the
frontier queue, then next [V] = 1. The same meaning is given
to next (V) (next frontier for each BFS iteration) and visit (V)
(when visit (V) = 1, V has been visited). Array next, visit, and
frontier are stored as bitmap. A new vertex appears in the
search; then end = 0. When no new vertex appears in the
current iteration of BFS, the iteration will end.

4. Massive Parallel Coprocessor
System Architecture

Ourmassive parallel coprocessor system architecture is orga-
nized by a single master processing node and large numbers
of coprocessing nodes for special computation tasks. The
master processing node is an embedded system with ARM
processor as its core. The communication architecture of our
system is the IB communication network.

The coprocessor is a development board with FPGA
(Virtex-7), which is a reconfigurable processor for solving
graph problems. Two blocks of DDR3memory are integrated
on each board, and data are transferred by a memory con-
troller (MC).Wemodified theMC’s IP core so that two blocks
of DDR3 memory could be accessed in parallel. Any pro-
cessing node would assign the tasks and transfer data to all
coprocessors through the I/O interface and target channel
adapter (TCA), which is the communication interface we
implement based on the IB protocol. Communications data
from the TCA are sent to the IB switch interface through a
transmitter (TX) by the IB protocol, and the communication
data from IB switch interface are received by TCA through
the receiver (RX). The max theoretical line rate is 13.1 Gb/s,
and the actual line rate is 10Gb/s. We have four lines; thus,
the communication bandwidth is 40Gb/s. When the system
is initialized, the master node distributes data to the DDR3
memory of each coprocessor via PCI-E bus. After the system
has started, each processing node communicates through the
IB communication network whose interface is TCA.The pro-
gram in the master node sends its instructions or data after
address mapping (i.e., AM in Figure 1) and each coprocessor
communicates after the address mapping. Address mapping
is implemented by the FPGA, and the scheme is a functional
hardware unit for each node. The architecture is described in
Figure 1.

The core is a streaming processor that uses a multi-
threading vector. Cross-multithreading is a fine-grainedmul-
tithreading in which threads are executed alternately. Our
massive parallel coprocessor system is a scalable system
and a platform for parallel processing of big data applica-
tions.
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Input: 𝑉[1 ⋅ ⋅ ⋅ 𝑛], 𝐸[1 ⋅ ⋅ ⋅ 𝑛][1 ⋅ ⋅ ⋅ 𝑛], 𝑠 (source vertex)
Output: parent[1 ⋅ ⋅ ⋅ 𝑛].

(1) for ∀V ∈ 𝑉 do
(2) visit[V] = 0
(3) parent[V] = −1
(4) frontier[V] = 0
(5) next[V] = 0
(6) frontier[𝑠] = 1
(7) level = 0
(8) end = 0
(9) while 𝑓end ̸= 1 do
(10) end = 1
(11) if (level < 𝛼) or (level > 𝛽) then
(12) for ∀V ∈ 𝑉 do
(13) if f rontier[V] = 1 then
(14) for ∀𝑢 ∈ 𝐸(V) do
(15) if visit[𝑢] = 0 then
(16) visit[𝑢] = 1
(17) next[𝑢] = 1
(18) parent[𝑢] = V
(19) end = 0
(20) else
(21) for ∀V ∈ 𝑉 do
(22) if visit[V = 0] then
(23) for ∀𝑢 ∈ 𝐸(V) do
(24) if f rontier[𝑢] = 1 then
(25) visit[V] = 1
(26) next[V] = 1
(27) parent[V] = 𝑢
(28) end = 0
(29) BREAK
(30) BARRIER
(31) for ∀V ∈ 𝑉 do
(32) frontier[V] = next[V]
(33) next[V] = 0
(34) level = level + 1
(35)

Algorithm 1: Parallel 1-D BFS algorithm.

5. Binary Search Address Mapping Unit

Thearchitecture of our addressmapping is shown in Figure 2.
In our scheme, the memory of DDR3 is divided into two
areas: the local data blocks and the global translation blocks.
The local data blocks store the data that the program needs
from I/O requests and TCA. The global translation blocks
hold themapping of all data. Furthermore, the global transla-
tion blocks in each node are the same, and they are managed
in a fine-grained page.

The basic idea of binary search is as follows: In ascending
order of the tables, we take intermediate records as objects
of comparison. If the given item is equal to the intermediate
records, then the search is done. However, if the given item is
smaller than the intermediate records, then we have a binary
search in the first half of the ascending table; otherwise, we
have a binary search in the bottom half of the ascending table.

The implementation of the binary search address map-
ping is a pipeline in which the virtual address is the input,

and the output data are the physical address. We divided
the registers in the pipeline storage unit into three groups.
The first group contains the OMR, DVR, and MTR register,
which stores the status of data in RAM. The RAM stores the
addressmapping of the visited arrays (visited array in the BFS
algorithm). The input of the virtual address is the frontier
arrays (frontier array in the BFS algorithm). This situation
means that we could not find the corresponding mapping in
RAMandwewould obtain one of the addressmappings of the
frontier array from the DDR3memory to be stored in RAMs.
This situation is object missing (array missing) where no
object is missing in the beginning of a binary search and after
the first stack, but the data are missing. The range of virtual
address in the array would be entered in the range register
(RR). When the input address is not in the range of each
RR, a warning that an object is missing is triggered.Then, we
would update the data in RR; the order of updating uses the
least recently used mechanism. The pipeline then stalls, and
we acquire one dataset in the frontier array to continue the
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Figure 1: The overview of the system.

search.One data itemof the frontier array exists in the current
stack of RAMs. Thus, when searching the next stack, the
next data in RAMs are invalid. We would obtain the address
mapping data of the Frontier array from the DDR3 memory
to be stored in this RAMs, and the situation is that the data are
missing.The 𝑖thOMR is the objectmissing indicator of the 𝑖th
stack in pipeline. Furthermore, the MTR is the data missing
indicator. The 1 bit in DVR indicates the 64 bits of data in the
RAMs that are currently stacked. When an object is missing,
the DVR is 0. After updating in RAMs, the corresponding bit
would be set to 1.

The second group contains the VAR and DVR, which are
temporary storage that passes the data to the next stack when
the pipeline is running. The third contains the LBR, RBR,
and CAR. In the binary search algorithm, in each searching
step, the smaller value is in the LBR, and the larger value is in
the RBR. The output of the RAMs provides the intermediate
element, and CAR records the comparable results in all steps.
For instance, in a 𝑘th stack, when the virtual address is in the
range of LBR and output of RAMs, the 𝑘th bit in CAR is 1 and
the value of (𝑘 − 1)th to 1 bit is the same as the value in CAR
in the (𝑘 − 1)th stack. The number of stacks is equal to the
number of processors.

The LRU unit is implemented by a series of shift registers
(the number of bits width is the number of shift register
minus 1). When RR is updated, we set 1 to the corresponding

shift register, and each register shifts left. The register, which
is 0, is the least recently used. The LRU unit provides the
number, and the corresponding RR is waiting to be updated
in the next object missing.

Unlike time complexity 𝑂(𝑛) in direct search, the time
complexity of binary search is 𝑂(log 𝑛). When the value of
𝑛 increases, the advantages of the method are obvious.

6. Architecture of Streaming Processor

Our streaming processor design is on the basement of the
multithreading vector. Cross-multithreading is a fine-grained
multithreading, in which threads are executed alternately.
This design requires the switching of threads in each clock
whether the thread is stalling or not.Thismechanism ensures
that the pipeline constantly runs. When a stall exists in a
thread, the latter would initially have a request. Every time the
thread turns to use the pipeline, it would wait until the stall is
handled. The execution of the thread using a cycle mode and
its architecture is shown in Figure 3.

The architecture of the microprocessor without inter-
locked piped stages (MIPS) was simplified to efficiently
process graph searching problems. The pipeline was divided
into Thread Select (TS), Instruction Fetch (IF), Instruction
Decode (ID), Execute (EX), and Write Back (WB) sec-
tions.
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In the Thread Select section, a thread would be selected
and the value of the corresponding program counter (PC)
register is obtained as the address in the IF section. Each
thread has its corresponding PC register and the value in
the register is updated according to the Next Program (NPC,
in EX section). The update must be done before another
thread is selected. Eight threads are implemented and used
according to the instruction register in the cycle because of
the limitation of the FPGAs resources.

In the Instruction Fetch section, the pipeline obtained
the correct instruction according to the corresponding PC
value. Two instruction caches exist: L1 and L2 caches. The L1
cache is private for a process, and the L2 cache is shared given
more than one process. The L1 cache is 0.5 kB, and it adopts
fully associative mapping programs.The L2 cache is 4 kB and
adopts direct mapping programs. An instruction register is
designed for each thread to store the last instruction. When
the thread is blocked, it could take the last instruction from
the instruction register.

In the Instruction Decode section, the decode controller
matches the instruction and reads the correct data in the data
register.

Four types of operation exist in the Execute section: the
operation of arithmetic logic, load and store, access in stream
register and shared on-chip memory, and branches jump
instruction. In the Write Back section, the result in the
Execute section is written in the local register. The result
could be from LSU (load and store unit), ALU, and SSU
(stream register and shared on-chip memory unit). The
address is in the instruction.

Load and store unit (LSU) is designed for operation
access, which includes vector or scalar access. The load
operation is from thememory to the stream register.The store
operation is from the stream register to the memory. Shared
memory on-chip unit (SSU) is to perform operation accessed
stream register or shared on-chip memory. The structures of
LSU and SSU are similar.

7. Three-Level Memory Hierarchy

The stored data in the graph search problems has two charac-
teristics: sparsity of the storage and lack of locality inmemory
accessing. The optimization in cache cannot effectively use
the locality of the memory access. By drawing on the
experience of the design of stream architecture, a new three-
level memory hierarchy is proposed.

Figure 4 shows that the first-level memory is a local
register. Our architecture is a multicore and multithread
structure. The local register distributes in the inner part of
processor. When multithreads exist in the execution in each
process, the processor needs to protect the state. A distributed
thread registers to create each thread with its own private
registers to store their own states. As they have a local register,
no access conflicts occurred between the threads. Implement
register mapping is unnecessary. Thus, a small access in the
address space and low access delay and power exist.

The local register is implemented by a block RAM re-
source in FPGAs. In the multithread execution, the local reg-
ister would simultaneously process two requests of reading
from decoding and one request of writing from writing back.
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Considering that a single block RAM has read-and-write
ports, we copy a local register for each thread. When two
requests for reading exist, they could be read separately; how-
ever, if one request for writing exists, they would be written
simultaneously.

The second level is the stream register and the shared
memory on the chip. The stream register is a data buffer on
the chip that is implemented by block RAM and combined
with a bank of stream register to support multirequest from
the local register. A bank of stream register contains a bank
memory and a controller (as shown in Figure 4). The bank
memory provides two read-and-write ports (ports A and B),
and they are the interfaces of the local register and the off-chip
memory.

The controller of the stream register has three functions.
One is handling the data and the request from the local
register. Another is handling the data and request from off-
chip memory. The last is coordinating the read-and-write
ports that consume the data writing or reading in the stream
register with a correct sequence.

The shared on-chip memory is a special RAM on a
chip. Furthermore, it is controlled through software and is
programmable, which is different from cache. The data is
accessed by addresses, and it is shared by processors (if
we have) and threads. This study’s design of a shared on-
chip memory is a sharing and communicating interface for
the processors and threads. The function of the design is
data transaction and synchronization. The shared on-chip
memory is divided with the lock and data segments. When
more than one processor or thread exists to read and write
in the same address, the atomic lock is supported by the lock
segment to ensure correct program sequence. A base address
exists in the lock segment. The bits begin with the base
address, and one bit determines an atomic lock. Each process
or thread could read only one bit in a lock segment at a
time.The data segment is special shared data in amultithread
or multiprocess program execution. Barrier synchronous
counter is one of the special shared data items. The data
segment is divided into several 64 bits block, and one local
register is composed of 64 bits.

Owing to the width in a transaction burst at 512 bits, the
width between the interface of the off-chip memory and the
stream register is also 512 bits. The data width between the
local register and stream register is 64 bits, and it is the same
as the data in the local register. The valid data transaction
between the stream and local registers is identified by amask.
The mask is given by a program instruction and its range is
from 0 to 7.

The third-levelmemory hierarchy is the off-chipmemory.
Our off-chip memory is a dual-data rate (DDR3) and is
provided by FPGAs.

8. Results and Comparison

Theproposed scalable parallel distributed coprocessor system
has 8 cores, and each core has 8 threads. We used the 8 Xilinx
Virtex-7 FPGAVC709 evaluation board (xc7vx485t-2ffg1761)
and a commercial switchboard called Mellanox IS5030,
which is based on the IB protocol, to implement the system.

The Xilinx Virtex-7 FPGA VC709 evaluation board has 2
SODIMM DDR3 memory with a storage capacity of 4GB.
Eight channel PCIE interfaces and four lineGTH transceivers
are included.The communication bandwidth is 40GB/s, and
the memory bandwidth in each core is 10GB/s in theory.
Moreover, two computers that run Linux are used. One of
them is responsible for the initialization of the switchboard,
and the other is responsible for generating the BFS algorithm,
loading data, and receiving returned results. The number of
nodes in the system can be expanded as needed. We use
the Verilog HDL to achieve a parallel architecture system
in Xilinx Vivado 2013.4, which is written to the FPGA chip
through the JTAG interface.

In accordance with the Graph500 benchmark, we gen-
erated a series of information through a Kronecker graph
generator. Then, the information is converted to any type
of data structure, which is the input of the BFS algorithm.
We verified the results after execution. In the above steps,
the creation of the data structure and the design of the BFS
algorithm can be customized by the user.

In the Graph500, a fair comparison of the processor with
different test bench is obtained using TEPS. According to the
performance, which is calculated in Graph500, we proposed
a formula to calculate performance 𝑃. The details are shown
in (1). When the dataset and the root node are determined, 𝐸
is a constant.
𝐸 is the number of edges in the connected region of the

root node in the graph. 𝑓 is the working frequency, which is
200MHz in our implementation. 𝑇clk indicates the number
of clock cycles between the beginning and the end of the
program. We obtain the 𝑇clk through the chip scope. The test
dataset inGraph500 is used. Table 1 presents our performance
and comparison.

𝑃 =
𝐸 × 𝑓

𝑇clk
. (1)

We run the parallel BFS algorithm described as
Algorithm 1 on our prototype system for testing. The scale of
graph searching using the BFS is 19 to 23, which means that
the scale of graph data is 219 to 223, and the edge factor of the
graph is 16.

In the first experiment step, we use Vivado 2014.1 to load
the test data to FPGAs with a computer. The test data is from
Graph500. Then we run the BFS programme in Linux which
is running inARMcortex.TheARMcortex is provided by the
evaluation board. The ARM cortex initializes the searching
and gets the results from FPGAs through PCIE bus. Finally
we use ChipScope which is in Vivado 2014.1 to analyze the
performance.

As most works targeting high-performance BFS use
MTEPS as a metric, comparing raw traversal performance is
possible but the availablememory bandwidth in the hardware
platform sets a hard limit on achievable BFS performance.
Our experimental results are from a Virtex-7 platform with
much less (utilization of bandwidth is 64%, the theoretical
bandwidth is 10GB/s, the actual bandwidth is 6.4GB/s)
memory bandwidth and work frequency (200MHz) than
platforms in prior work; thus, it is comparatively slow. Our
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Table 1: Comparison to prior work.

Work Platform No. of parallel units Avg. MTEPS BW (GB/s) MTEPS/BW
[4] Convey HC-2 512 1600 80 20
[4] Convey HC-2 256 980 80 12.5
[4] Convey HC-2 128 510 80 6.375
[4] Convey HC-2 64 350 80 4.375
[4] Convey HC-2 32 210 80 2.625
[8] Convey HC-2 64 1900 80 23.75
[9] Nehalem + Fermi 32 800 128 6.25
This work Virtex-7 & InfiniBand 8 169 10 16.9
This work Virtex-7 & InfiniBand 64 763 80 9.54

system has 8 cores and supports 8 threads per core, which
is equivalent to 64 threads in parallel. Considering the
memory bandwidth, the traversals per unit bandwidth is
used as a metric to enable fair comparison with prior work.
Table 1 allows the comparison with several related works on
the average performance, available memory bandwidth, and
traversals per bandwidth over RMAT graphs.

9. Conclusions

We can draw the following conclusions:
(1) Compared with the approach of Betkaoui et al. [4],

our system is more efficient. The performance of 64 parallel
units is similar to that of approximately 256 parallel units in
[4]. Our data of traversals per unit bandwidth in 64 parallel
units are between 256 units and 128 parallel units in Betkaoui
et al. [4].
(2) Attia et al. [8] is on BFS algorithm optimization, and

our system is a scalable general processor platform that per-
forms instruction set decoding and the address mapping.
Attia et al. [8] is limited to scale, and it is a special acceleration
unit.
(3) Our data of traversals per unit are twice that of

Hong et al. [9], and the performance is approximately equal.
Moreover, our proposed system has the advantages of power
and scalability.
(4)The proposed system can be used as a scalable general

processing system for graph application with big data.
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