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Lattice Boltzmann Method (LBM) is a powerful numerical simulation method of the fluid flow. With its data parallel nature, it is a
promising candidate for a parallel implementation on a GPU. The LBM, however, is heavily data intensive and memory bound. In
particular, moving the data to the adjacent cells in the streaming computation phase incurs a lot of uncoalesced accesses on theGPU
which affects the overall performance. Furthermore, the main computation kernels of the LBM use a large number of registers per
thread which limits the thread parallelism available at the run time due to the fixed number of registers on the GPU. In this paper,
we develop high performance parallelization of the LBM on a GPU by minimizing the overheads associated with the uncoalesced
memory accesses while improving the cache locality using the tiling optimization with the data layout change. Furthermore, we
aggressively reduce the register uses for the LBM kernels in order to increase the run-time thread parallelism. Experimental results
on the Nvidia Tesla K20 GPU show that our approach delivers impressive throughput performance: 1210.63Million Lattice Updates
Per Second (MLUPS).

1. Introduction

Lattice Boltzmann Method (LBM) is a powerful numerical
simulation method of the fluid flow, originating from the
lattice gas automata methods [1]. LBM models the fluid flow
consisting of particles moving with random motions. Such
particles exchange the momentum and the energy through
the streaming and the collision processes over the discrete
lattice grid in the discrete time steps. At each time step, the
particles move into adjacent cells which cause collisions with
the existing particles in the cells. The intrinsic data parallel
nature of LBM makes this class of applications a promising
candidate for parallel implementation on various High Per-
formance Computing (HPC) architectures including many-
core accelerators such as the Graphic Processing Unit (GPU)
[2], Intel Xeon Phi [3], and the IBM Cell BE [4].

Recently, the GPU is becoming increasingly popular
for the HPC server market and in the Top 500 list, in
particular. The architecture of the GPU has gone through
a number of innovative design changes in the last decade.
It is integrated with a large number of cores and multiple

threads per core, levels of the cache hierarchies, and the large
amount (>5GB) of the on-board memory.The peak floating-
point throughput performance (flops) of the latest GPU
has drastically increased to surpass 1 Tflops for the double
precision arithmetic [5]. In addition to the architectural
innovations, user friendly programming environments have
been recently developed such as CUDA [5] from Nvidia,
OpenCL [6] from Khronos Group, and OpenACC [7] from a
subgroup ofOpenMPArchitecture ReviewBoard (ARB).The
advanced GPU architecture and the flexible programming
environments have made possible innovative performance
improvements in many application areas.

In this paper, we develop high performance paralleliza-
tion of the LBM on a GPU.The LBM is heavily data intensive
and memory bound. In particular, moving the data to the
adjacent cells in the streaming phase of the LBM incurs
a lot of uncoalesced accesses on the GPU and affects the
overall performance. Previous research focused on utilizing
the shared memory of the GPU to deal with the problem
[1, 8, 9]. In this paper, we use the tiling algorithm along with
the data layout change in order to minimize the overheads
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of the uncoalesced accesses and improve the cache locality
as well. The computation kernels of the LBM involve a
large number of floating-point variables, thus using a large
number of registers per thread. This limits the available
thread parallelism generated at the run time as the total
number of the registers on the GPU is fixed. We developed
techniques to aggressively reduce the register uses for the
kernels in order to increase the available thread parallelism
and the occupancy on the GPU. Furthermore, we developed
techniques to remove the branch divergence. Our parallel
implementation using CUDA shows impressive performance
results. It delivers up to 1210.63 Million Lattice Update Per
Second (MLUPS) throughput performance and 136-time
speedup on theNvidia Tesla K20GPU comparedwith a serial
implementation.

The rest of the paper is organized as follows: Section 2
introduces the LBM algorithm. Section 3 describes the archi-
tecture of the latest GPU and its programming model.
Section 4 explains our techniques for minimizing the unco-
alesced accesses, improving the cache locality and the thread
parallelism along with the register usage reduction and the
branch divergence removal. Section 5 shows the experimen-
tal results on the Nvidia Tesla K20 GPU. Section 6 explains

the previous research on paralleling the LBM. Section 7wraps
up the paper with conclusions.

2. Lattice Boltzmann Method

Lattice Boltzmann Method (LBM) is a powerful numerical
simulation of the fluid flow. It is derived as a special case
of the lattice gas cellular automata (LGCA) to simulate the
fluid motion. The fundamental idea is that the fluids can be
regarded as consisting of a large number of small particles
moving with random motions. These particles exchange the
momentum and the energy through the particle streaming
and the particle collision. The physical space of the LBM
is discretized into a set of uniformly spaced nodes (lattice).
At each node, a discrete set of velocities is defined for the
propagation of the fluidmolecules.The velocities are referred
to as microscopic velocities which are denoted by 󳨀→𝑒𝑖 . The
LBM model which has 𝑛 dimensions and 𝑞 velocity vectors
at each lattice point is represented as DnQq. Figure 1 shows
a typical lattice node of the most common model in 2D
(D2Q9) which has two-dimensional 9 velocity vectors. In
this paper, however, we consider the D3Q19 model which
has three-dimensional 19 velocity vectors. Figure 2 shows a
typical lattice node of D3Q19 model with 19 velocities 󳨀→𝑒𝑖
defined by

󳨀→𝑒𝑖 =
{{{{
{{{{
{

(0, 0, 0) , 𝑖 = 0
(±1, 0, 0) , (0, ±1, 0) , (0, 0, ±1) 𝑖 = 2, 4, 6, 8, 9, 14
(±1, ±1, 0) , (0, ±1, ±1) , (±1, 0, ±1) 𝑖 = 1, 3, 5, 7, 10, 11, 12, 13, 15, 16, 17, 18.

(1)

(i) Each particle on the lattice is associatedwith a discrete
distribution function, called as particle distribution
function (pdf), 𝑓𝑖(𝑥⃗, 𝑡), 𝑖 = 0, . . . , 18.The LB equation
is discretized as follows:

𝑓𝑖 (𝑥⃗ + 𝑐󳨀→𝑒𝑖Δ𝑡, 𝑡 + Δ𝑡)

= 𝑓𝑖 (𝑥⃗, 𝑡) − 1
𝜏 [𝑓𝑖 (𝑥⃗, 𝑡) − 𝑓(eq)𝑖 (𝜌 (𝑥⃗, 𝑡) , 𝑢⃗ (𝑥⃗, 𝑡))]

(2)

where 𝑐 is the lattice speed and 𝜏 is the relaxation
parameter.

(ii) The macroscopic quantities are the density 𝜌 and the
velocity 𝑢⃗(𝑥⃗, 𝑡). They are defined as

𝜌 (𝑥⃗, 𝑡) =
18

∑
𝑖=0

𝑓𝑖 (𝑥⃗, 𝑡) (3)

𝑢⃗ (𝑥⃗, 𝑡) = 1
𝜌
18

∑
𝑖=0

𝑐𝑓𝑖󳨀→𝑒𝑖 (4)

(iii) The equilibrium function 𝑓(eq)𝑖 (𝜌(𝑥⃗, 𝑡), 𝑢⃗(𝑥⃗, 𝑡)) is de-
fined as

𝑓(eq)𝑖 (𝜌 (𝑥⃗, 𝑡) , 𝑢⃗ (𝑥⃗, 𝑡)) = 𝜔𝑖𝜌 + 𝜌𝑠𝑖 (𝑢⃗ (𝑥⃗, 𝑡)) (5)

where

𝑠𝑖 (𝑢⃗) = 𝜔𝑖 [1 + 3
𝑐2 (

󳨀→𝑒𝑖 ⋅ 𝑢⃗) + 9
2𝑐4 (

󳨀→𝑒𝑖 ⋅ 𝑢⃗)2 − 3
2𝑐2 𝑢⃗ ⋅ 𝑢⃗] (6)

and the weighting factor 𝜔𝑖 has the following values:

𝜔𝑖 =
{{{{{{
{{{{{{
{

1
3 , 𝛼 = 0
1
18 , 𝛼 = 2, 4, 6, 8, 9, 14
1
36 , 𝛼 = 1, 3, 5, 7, 10, 11, 12, 13, 15, 16, 17, 18.

(7)

Algorithm 1 summarizes the algorithm of the LBM. The
LBM algorithm executes a loop over a number of time steps.
At each iteration, two computation steps are applied:

(i) Streaming (or propagation) phase: the particles move
according to the pdf into the adjacent cells.
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(1) Step 1: Initialize macroscopic quantities, density 𝜌, velocity 𝑢⃗,
the distribution function 𝑓𝑖, and the equilibrium function 𝑓(eq)𝑖

(2) Step 2: Streaming phase: move 𝑓𝑖 → 𝑓∗𝑖 in the direction of 󳨀→𝑒𝑖
(3) Step 3: Calculate density 𝜌 and velocity 𝑢⃗ from 𝑓∗𝑖 using Equations (3) and (4)
(4) Step 4: Calculate the equilibrium function 𝑓(eq)𝑖 using Equation (5)
(5) Step 5: Collision phase: calculate the updated distribution function

𝑓𝑖 = 𝑓∗𝑖 − (1/𝜏)(𝑓∗𝑖 − 𝑓eq
𝑖 ) using Equation (2)

(6) Repeat Steps 2 to 5 𝑡𝑖𝑚𝑒𝑆𝑡𝑒𝑝𝑠-times

Algorithm 1: Algorithm of LBM.
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Figure 1: Lattice cell with 9 discrete directions in D2Q9model.

Table 1: Pull and push schemes.

Pull scheme Push scheme
+ Read distribution functions + Read distribution functions
from the adjacent cells from the current cell 𝑓𝑖(󳨀→𝑥𝑖, 𝑡)
𝑓𝑖 (󳨀→𝑥𝑖 − 𝑐󳨀→𝑒𝑖Δ𝑡, 𝑡 − Δ𝑡)
+ Calculate 𝜌, 𝑢⃗, 𝑓(eq)𝑖 + Calculate 𝜌, 𝑢⃗, 𝑓(eq)𝑖
+ Update values to the current
cell 𝑓𝑖(󳨀→𝑥𝑖, 𝑡)

+ Update values to the adjacent
cells 𝑓𝑖(󳨀→𝑥𝑖 + 𝑐󳨀→𝑒𝑖Δ𝑡, 𝑡 + Δ𝑡)

(ii) Collision phase: the particles collide with other parti-
cles streaming into this cell from different directions.

Depending on whether the streaming phase precedes or
follows the collision phase, we have the pull or the push
scheme in the update process [10].The pull scheme (Figure 3)
pulls the post-collision values from the previous time step
from lattice A and then performs the collision on these to
produce the new pdfs which are stored in lattice B. In the
push scheme (Figure 4); on the other hand, the pdfs of one
node (square with black arrows) are read from lattice A; then
collision step performs first. The post-collision values are
propagated to the neighbor nodes in the streaming step to
lattice B (red arrows). Table 1 compares the computation steps
of these schemes.

In Algorithm 2, we list the skeleton of the LBM algorithm
which consists of the collision phase and the streaming phase.
In the function LBM, the collide function and stream function
are called timeSteps-times. At the end of each time step,
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Figure 2: Lattice cell with 19 discrete directions in D3Q19model.

(a) Pull: lattice A (b) Pull: lattice B

Figure 3: Illustration of pull scheme with D2Q9 model [11].

(a) Push: lattice A (b) Push: lattice B

Figure 4: Illustration of push scheme with D2Q9 model [11].
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(1) void LBM(double *source grid, double

∗dest grid, int grid size, int timeSteps)

(2) {
(3) int i;

(4) double ∗temp grid;

(5) for (i = 0; i < timeSteps; i++)

(6) {
(7) collide(source grid, temp grid, grid size);

(8) stream(temp grid, dest grid, grid size);

(9) swap grid(source grid, dest grid);

(10) }
(11) }

Algorithm 2: Basic skeleton of LBM algorithm.

𝑠𝑜𝑢𝑟𝑐𝑒 𝑔𝑟𝑖𝑑 and 𝑑𝑒𝑠𝑡 𝑔𝑟𝑖𝑑 are swapped to interchange values
between the two grids.

3. Latest GPU Architecture

Recently, the many-core accelerator chips are becoming
increasingly popular for the HPC applications. The GPU
chips from Nvidia and AMD are representative ones along
with the Intel Xeon Phi. The latest GPU architecture is
characterized by a large number of uniform fine-grain pro-
grammable cores or thread processors which have replaced
separate processing units for shader, vertex, and pixel in
the earlier GPUs. Also, the clock rate of the latest GPU has
ramped up significantly. These have drastically improved the
floating-point performance of theGPUs, far exceeding that of
the latest CPUs. The fine-grain cores (or thread processors)
are distributed in multiple streaming multiprocessors (SMX)
(or thread blocks) (see Figure 5). Software threads are divided
into a number of thread groups (called WARPs) each of
which consists of 32 threads. Threads in the same WARP are
scheduled and executed together on the thread processors
in the same SMX in the SIMD (Single Instruction Multiple
Data) mode. Each thread executes the same instruction
directed by the common Instruction Unit on its own data
streaming from the device memory to the on-chip cache
memories and registers. When a running WARP encounters
a cache miss, for example, the context is switched to a new
WARP while the cache miss is serviced for the next few
hundred cycles, the GPU executes in a multithreaded fashion
as well.

The GPU is built around a sophisticated memory hier-
archy as shown in Figure 5. There are registers and local
memories belonging to each thread processor or core. The
local memory is an area in the off-chip device memory.
Shared memory, level-1 (L-1) cache, and read-only data cache
are integrated in a thread block of the GPU. The shared
memory is a fast (as fast as registers) programmer-managed
memory. Level-2 (L-2) cache is integrated on-chip and used
among all the thread blocks. Global memory is an area in the
off-chip device memory accessed from all the thread blocks,
throughwhich theGPUcan communicatewith the host CPU.
Data in the global memory get cached directly in the shared
memory by the programmer or they can be cached through

GPU chip

...

Shared memory

Thread
processor 1

Thread
processor 2

Thread
processor M Instruction

unit
RegistersRegistersRegisters

Level-1 cache

Read only data cache

Level-2 cache

Device memory
(Global memory, local memory,

texture memory, and constant memory)

Thread block (streaming multiprocessor)-N

Thread block (streaming multiprocessor)-2

Thread block (streaming multiprocessor)-1

Figure 5: Architecture of a latest GPU (Nvidia Tesla K20).

the L-2 and L-1 caches automatically as they get accessed.
There are constant memory and texture memory regions in
the device memory also. Data in these regions is read-only.
They can be cached in the L-2 cache and the read-only data
cache. On Nvidia Tesla K20, the read-only data from the
globalmemory can be loaded through the same cache used by
the texture pipeline via a standard pointer without the need
to bind to a texture beforehand. This read-only cache is used
automatically by the compiler as long as certain conditions
are met. restrict qualifier should be used when a variable
is declared to help the compiler detect the conditions [5].

In order to efficiently utilize the latest advanced GPU
architectures, programming environments such as CUDA
[5] from Nvidia, OpenCL [6] from Khronos Group, and
OpenACC [7] from a subgroup of OpenMP Architecture
Review Board (ARB) have been developed. Using these
environments, users can have a more direct control over the
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(1) int i;

(2) for(i = 0; i < timeSteps; i++)

(3) {
(4) collision kernel<<<GRID, BLOCK>>>

(source grid, temp grid, xdim, ydim,

zdim, cell size, grid size);

(5) cudaThreadSynchronize();

(6) streaming kernel<<<GRID, BLOCK>>>(temp grid,

dest grid, xdim, ydim, zdim, cell size,

grid size);

(7) cudaThreadSynchronize();

(8) swap grid(source grid, dest grid);

(9) }

Algorithm 3: Two separate CUDA kernels for different phases of LBM.

large number of GPU cores and its sophisticated memory
hierarchy. The flexible architecture and the programming
environments have led to a number of innovative perfor-
mance improvements in many application areas and many
more are still to come.

4. Optimizing Cache Locality and
Thread Parallelism

In this section, we first introduce some preliminary steps
we employed in our parallelization and optimization of the
LBM algorithm in Section 4.1. They are mostly borrowed
from the previous research such as combining the collision
phase and the streaming phase, a GPU architecture friendly
data organization scheme (SoA scheme), an efficient data
placement in the GPU memory hierarchy, and using the
pull scheme for avoiding and minimizing the uncoalesced
memory accesses. Then, we describe our key optimization
techniques for improving the cache locality and the thread
parallelism such as the tiling with the data layout change and
the aggressive reduction of the register uses per thread in
Sections 4.2 and 4.3. Optimization techniques for removing
the branch divergence are presented in Section 4.4. Our key
optimization techniques presented in this section have been
improved from our earlier work in [13].

4.1. Preliminaries

4.1.1. Combination of Collision Phase and Streaming Phase.
As shown in the description of the LBM algorithm in
Algorithm 2, the LBM consists of the two main com-
puting kernels: 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 𝑘𝑒𝑟𝑛𝑒𝑙 for the collision phase
and 𝑠𝑡𝑟𝑒𝑎𝑚𝑖𝑛𝑔 𝑘𝑒𝑟𝑛𝑒𝑙 for the streaming phase. In the
𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 𝑘𝑒𝑟𝑛𝑒𝑙, threads load the particle distribution func-
tion from the source grid (𝑠𝑜𝑢𝑟𝑐𝑒 𝑔𝑟𝑖𝑑) and then calcu-
late the velocity, the density, and the collision product.
The post-collision values are stored to the temporary grid
(𝑡𝑒𝑚𝑝 𝑔𝑟𝑖𝑑). In 𝑠𝑡𝑟𝑒𝑎𝑚𝑖𝑛𝑔 𝑘𝑒𝑟𝑛𝑒𝑙, the post-collision values
from 𝑡𝑒𝑚𝑝 𝑔𝑟𝑖𝑑 are loaded and updated to appropriate
neighbor grid cells in the destination grid (𝑑𝑒𝑠𝑡 𝑔𝑟𝑖𝑑). At
the end of each time step, 𝑠𝑜𝑢𝑟𝑐𝑒 𝑔𝑟𝑖𝑑 and 𝑑𝑒𝑠𝑡 𝑔𝑟𝑖𝑑 are
swapped for the next time step. This implementation (see

(1) int i;

(2) for (i = 0; i < timeSteps; i++)

(3) {
(4) lbm kernel<<<GRID, BLOCK>>>(source grid,

dest grid, xdim, ydim, zdim, cell size,

grid size);

(5) cudaThreadSyncronize();

(6) swap grid(source grid, dest grid);

(7) }

Algorithm 4: Single CUDA kernel after combining two phases of
LBM.

Algorithm 3) needs extra loads/stores from/to 𝑡𝑒𝑚𝑝 𝑔𝑟𝑖𝑑
which is stored in the global memory and affects the global
memory bandwidth [2]. In addition, some extra cost is
incurred with the global synchronization between the two
kernels (𝑐𝑢𝑑𝑎𝑇ℎ𝑟𝑒𝑎𝑑𝑆𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑖𝑧𝑒) which affects the overall
performance. In order to reduce these overheads, we can
combine 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 𝑘𝑒𝑟𝑛𝑒𝑙 and 𝑠𝑡𝑟𝑒a𝑚𝑖𝑛𝑔 𝑘𝑒𝑟𝑛𝑒𝑙 into one
kernel 𝑙𝑏𝑚 𝑘𝑒𝑟𝑛𝑒𝑙, where the collision product is streamed
to the neighbor grid cells directly after calculation (see
Algorithm 4). Compared with Algorithm 3, storing to and
loading from 𝑡𝑒𝑚𝑝 𝑔𝑟𝑖𝑑 are removed and the global synchro-
nization cost is reduced.

4.1.2. Data Organization. In order to represent the 3-
dimensional grid of cells, we use the 1-dimensional array
which has 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧 × 𝑄 elements, where 𝑁𝑥, 𝑁𝑦, 𝑁𝑧
are width, height, and depth of the grid and 𝑄 is the number
of directions of each cell [2, 14]. For example, if the model is
𝐷3𝑄19 with𝑁𝑥 = 16,𝑁𝑦 = 16, and𝑁𝑧 = 16, we have the 1D
array of 16×16×16×19 = 77824 elements.We use 2 separate
arrays for storing the source grid and the destination grid.

There are two common data organization schemes for
storing the arrays:

(i) Array of structures (AoS): grid cells are arranged
in 1D array. 19 distributions of each cell occupy 19
consecutive elements of the 1D array (Figure 6).
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Figure 6: AoS scheme.
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Figure 7: SoA scheme.

(ii) Structure of arrays (SoA): the value of one distribu-
tion of all cells is arranged consecutively in memory
(Figure 7). This scheme is more suitable for the GPU
architecture as we will show in the experimental
results (Section 5).

4.1.3. Data Placement. In order to efficiently utilize themem-
ory hierarchy of the GPU, the placement of the major data
structures of the LBM is crucial [5]. In our implementation,
we use the following arrays: 𝑠𝑟𝑐 𝑔𝑟𝑖𝑑, 𝑑𝑠𝑡 𝑔r𝑖𝑑, 𝑡𝑦𝑝𝑒𝑠 𝑎𝑟𝑟,
𝑙𝑐 𝑎𝑟𝑟, and 𝑛𝑏 𝑎𝑟𝑟. We use the following data placements for
these arrays:

(i) 𝑠𝑟𝑐 𝑔𝑟𝑖𝑑 and 𝑑𝑠𝑡 𝑔𝑟𝑖𝑑 are used to store the input
grid and the result grid. They are swapped at the
end of each time step by exchanging their pointers
instead of explicit storing to and loading from the
memory through a temporary array. Since 𝑠𝑟𝑐 𝑔𝑟𝑖𝑑
and 𝑑𝑠𝑡 𝑔𝑟𝑖𝑑 are very large size arrays with a lot of
data stores and loads, we place them in the global
memory.

(ii) In 𝑡𝑦𝑝𝑒𝑠 𝑎𝑟𝑟 array, the types of the grid cells are
stored. We use the Lid Driven Cavity (LDC) as the
test case in this paper. The LDC consists of a cube
filled with the fluid. One side of the cube serves
as the acceleration plane by sliding constantly. The
acceleration is implemented by assigning the cells
in the acceleration area at a constant velocity. This
change requires three types of cells: regular fluid,
acceleration cells, or boundary.Thus, we also need 1D
array, 𝑡𝑦𝑝𝑒𝑠 𝑎𝑟𝑟, in order to store the types of each cell
in the grid. The size of this array is 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧
elements. For example, if the model is D3Q19 with
𝑁𝑥 = 16,𝑁𝑦 = 16, and𝑁𝑧 = 16, the size of the array
is 16 × 16 × 16 = 4,096 elements. Thus, 𝑡𝑦𝑝𝑒𝑠 𝑎𝑟𝑟 is

a large array also and contains constant values. Thus,
they are notmodified throughout the execution of the
program. For these reasons, the texturememory is the
right place for this array.

(iii) 𝑙𝑐 𝑎𝑟𝑟 and 𝑛𝑏 𝑎𝑟𝑟 are used to store the base indices
for accesses to 19 directions of the current cell and
the neighbor cells, respectively. There are 19 indices
corresponding to 19 directions ofD3Q19model.These
indices are calculated at the start of the program
and used till the end of the program execution.
Thus, we use the constant memory to store them. As
standing at any cell, we use the following formula to
define the position in the 1D array of any direction
out of 19 cell directions: 𝑐𝑢𝑟𝑟 𝑑𝑖𝑟 𝑝𝑜𝑠 𝑖𝑛 𝑎𝑟𝑟 =
𝑐𝑒𝑙𝑙 𝑝𝑜𝑠 + 𝑙𝑐 𝑎𝑟𝑟[𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛] (for the current cell) and
𝑛𝑏 𝑑𝑖𝑟 𝑝𝑜𝑠 𝑖𝑛 𝑎𝑟𝑟 = 𝑛𝑏 𝑝𝑜𝑠 + 𝑛𝑏 𝑎𝑟𝑟[𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛] (for
the neighbor cells).

4.1.4. Using Pull Scheme to Reduce Costs for Uncoalesced
Accesses. Coalescing the global memory accesses can signifi-
cantly reduce the memory overheads on the GPU. Multiple
global memory loads whose addresses fall within the 128-
byte range are combined into one request and sent to
the memory. This saves the memory bandwidth a lot and
improves the performance. In order to reduce the costs for the
uncoalesced accesses, we use the pull scheme [12]. Choosing
the pull scheme comes from the observation that the cost
of the uncoalesced reading is smaller than the cost of the
uncoalesced writing.

Algorithm 5 shows the LBM algorithm using the push
scheme. At the first step, the pdfs are copied directly from
the current cell. These pdfs are used to calculate the pdfs
at the new time step (collision phase). The new pdfs are
then streamed to the adjacent cells (streaming phase). At
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(1) global void soa push kernel(float

*source grid, float *dest grid, unsigned

char* flags)

(2) {
(3) Gather 19 pdfs from the current cell

(4)
(5) Apply boundary conditions

(6)
(7) Calculate the mass density 𝜌 and the velocity u
(8)
(9) Calculate the local equilibrium distribution

functions 𝑓(eq) using 𝜌 and u
(10)
(11) Calculate the pdfs at new time step

(12)
(13) Stream 19 pdfs to the adjacent cells

(14) }

Algorithm 5: Kernel using the push scheme.

(1) global void soa pull kernel(float

*source grid, float *dest grid, unsigned

char* flags)

(2) {
(3) Stream 19 pdfs from adjacent cells to the

current cell

(4)
(5) Apply boundary conditions

(6)
(7) Calculate the mass density 𝜌 and the velocity u
(8)
(9) Calculate the local equilibrium distribution

functions 𝑓(eq) using 𝜌 and u
(10)
(11)
(12) Calculate the pdf at new time step

(13)
(14) Save 19 values of pdf to the current cell

(15) }

Algorithm 6: Kernel using the pull scheme.

the streaming phase, the distribution values are updated to
neighbors after they are calculated. All distribution values
which do not move to the east or west direction (𝑥-direction
values equal to 0) can be updated to the neighbors (write
to the device memory) directly without any misalignment.
However, other distribution values (𝑥-direction values equal
to +1 or −1) need to be considered carefully because of
their misaligned update positions. The update positions are
shifted to the memory locations that do not belong to
the 128-byte segment while thread indexes are not shifted
correspondingly. So the misaligned accesses occur and the
performance can degrade significantly.

If we use the pull scheme, on the other hand, the order
of the collision phase and the streaming phase in the LBM
kernel is reversed (see Algorithm 6). At the first step of the

pull scheme, the pdfs from adjacent cells are gathered to the
current cell (streaming phase) (Lines 3–5). Next, these pdfs
are used to calculate the pdfs at the new time step and these
new pdfs are then stored to the current cell directly (collision
phase). Thus, in the pull scheme, the uncoalesced accesses
occur when the data is read from the devicememory whereas
they occur when the data is written in the push scheme. As a
result, the cost of the uncoalesced accesses is smaller with the
pull scheme.

4.2. Tiling Optimization with Data Layout Change. In the
D3Q19 model of the LBM, as computations for the streaming
and the collision phases are conducted for a certain cell, 19
distribution values which belong to 19 surrounding cells are
accessed. Figure 8 shows the data accesses to the 19 cells when
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Figure 8: Data accesses for orange cell in conducting computations
for streaming and collision phases.

a thread performs the computations for the orange colored
cell. The 19 cells (18 directions (green cells) + current cell in
the center (orange cell)) are distributed on the three different
planes. Let 𝑃𝑖 be the plane containing the current computing
(orange) cell, and let 𝑃𝑖−1 and 𝑃𝑖+1 be the lower and upper
planes, respectively. 𝑃𝑖 plane contains 9 cells. 𝑃𝑖−1 and 𝑃𝑖+1
planes contain 5 cells, respectively. When the computations
for the cell, for example, (𝑥, 𝑦, 𝑧) = (1, 1, 1), are performed,
the following cells are accessed:

(i) 𝑃0 plane: (0, 1, 0), (1, 0, 0), (1, 1, 0), (1, 2, 0), (2, 1, 0)
(ii) 𝑃1 plane: (0, 0, 1), (0, 1, 1), (0, 2, 1), (1, 0, 1), (1, 1, 1),(1, 2, 1), (2, 0, 1), (2, 1, 1), (2, 2, 1)
(iii) 𝑃2 plane: (0, 1, 2), (1, 0, 2), (1, 1, 2), (1, 2, 2), (2, 1, 2)

The 9 accesses for 𝑃1 plane are divided into three groups
{(0,0,1), (0,1,1), (0,2,1)}, {(1,0,1), (1,1,1), (1,2,1)}, {(2,0,1),
(2,1,1), (2,2,1)}. Each group accesses the consecutivememory
locations belonging to the same row. Accesses of the different
groups are separated apart and lead to the uncoalesced
accesses on the GPU when 𝑁𝑥 is sufficiently large. In each
of 𝑃0 and 𝑃2 planes, there are three groups of accesses each.
Here, the accesses of the same group touch the consecutive
memory locations and accesses of the different groups are
separated apart in thememory which lead to the uncoalesced
accesses also. Accesses to the data elements in the different
planes (𝑃0, 𝑃1, and 𝑃2) are further separated apart and also
lead to the uncoalesced accesses when𝑁𝑦 is sufficiently large.

As the computations proceed, three rows in the 𝑦-
dimension of 𝑃0, 𝑃1, 𝑃2 planes will be accessed sequentially
for 𝑥 = 0 ∼ 𝑁𝑥 − 1, 𝑦 = 0, 1, 2, followed by 𝑥 = 0 ∼ 𝑁𝑥 − 1,
𝑦 = 1, 2, 3, . . ., 𝑥 = 0 ∼ 𝑁𝑥 − 1, 𝑦 = 𝑁𝑦 − 3,𝑁𝑦 − 2,𝑁𝑦 − 1.
When the complete 𝑃0, 𝑃1, 𝑃2 planes are swept, then similar
data accesses will continue for 𝑃1, 𝑃2, and 𝑃3 planes, and so
on. Therefore, there are a lot of data reuses in 𝑥-, 𝑦-, and 𝑧-
dimensions. As explained in Section 4.1.2, the 3D lattice grid

is stored in the 1D array. The 19 cells for the computations
belonging to the same plane are stored ±1 or ±𝑁𝑥 + ±1 cells
away. The cells in different planes are stored ±𝑁𝑥 × 𝑁𝑦 +
±𝑁𝑥 + ±1 cells away. The data reuse distance along the 𝑥-
dimension is short: +1 or +2 loop iterations apart. The data
reuse distance along the 𝑦- and 𝑧-dimensions is ±𝑁𝑥 + ±1 or
±𝑁𝑥 × 𝑁𝑦 + ±𝑁𝑥 + ±1 iterations apart. If we can make the
data reuse occur faster by reducing the reuse distances, for
example, using the tiling optimization, it can greatly improve
the cache hit ratio. Furthermore, it can reduce the overheads
with the uncoalesced accesses because lots of global memory
accesses can be removed by the cache hits. Therefore, we tile
the 3D lattice grid into smaller 3D blocks. We also change
the data layout in accordance with the data access patterns of
the tiled code in order to store the data elements in different
groups closer in the memory. Thus we can remove a lot of
uncoalesced memory accesses, because they can be stored
within 128-byte boundary. In Sections 4.2.1 and 4.2.2, we
describe our tiling and data layout change optimizations.

4.2.1. Tiling. Let us assume the following:

(i) 𝑁𝑥, 𝑁𝑦, and 𝑁𝑧 are sizes of the grid in 𝑥-, 𝑦-, and 𝑧-
dimension.

(ii) 𝑛𝑥, 𝑛𝑦, and 𝑛𝑧 are sizes of the 3D block in 𝑥-, 𝑦-, and
𝑧-dimension.

(iii) 𝑥𝑦-plane is a subplane which is composed of (𝑛𝑥×𝑛𝑦)
cells.

We tile the grid into small 3D blocks with the tile sizes of 𝑛𝑥,𝑛𝑦, and 𝑛𝑧 (yellow block in Figure 9(a)), where

𝑛𝑥 = 𝑁𝑥 ÷ 𝑥𝑐
𝑛𝑦 = 𝑁𝑦 ÷ 𝑦𝑐
𝑛𝑧 = 𝑁𝑧 ÷ 𝑧𝑐

𝑥𝑐, 𝑦𝑐, 𝑧𝑐 = [1, 2, 3, . . .) .

(8)

We let each CUDA thread block process one 3D tiled
block. Thus 𝑛𝑧 𝑥𝑦-planes need to be loaded for each thread
block. In each 𝑥𝑦-plane, each thread of the thread block
executes the computations for one grid cell.Thus each thread
deals with a column containing 𝑛𝑧 cells (the red column in
Figure 9(b)). If 𝑧𝑐 = 1, each thread processes 𝑁𝑧 cells and
if 𝑧𝑐 = 𝑁𝑧, each thread processes only one cell. The tile
size can be adjusted by changing the constants 𝑥𝑐, 𝑦𝑐, and 𝑧𝑐.
These constants need to be selected carefully to optimize the
performance. Using the tiling, the number of created threads
is reduced by 𝑧𝑐-times.

4.2.2. Data Layout Change. In order to further improve
benefits of the tiling and reduce the overheads associated
with the uncoalesced accesses, we propose to change the
data layout. Figure 10 shows one 𝑥𝑦-plane of the grid with
and without the layout change. With the original layout
(Figure 10(a)), the data is stored in the row major fashion.
Thus the entire first row is stored, followed by the second



Scientific Programming 9

x

y

zBlock

(a) Grid divided into 3D blocks (b) Block containing subplanes. The red 
column contains all cells one thread processes

Figure 9: Tiling optimization for LBM.
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Figure 10: Different data layouts for blocks.

row, and so on. In the proposed new layout, the cells in the
tiled first row in Block 0 are stored first. Then the second
tiled row of Block 0 is stored instead of the first row of
Block 1 (Figure 10(b)). With the layout change, the data cells
accessed in the consecutive iterations of the tiled code are
placed sequentially. This places the data elements of the
different groups closer. Thus, it increases the possibility for
these memory accesses to the different groups coalesced if
the tiling factor and the memory layout factor are adjusted
appropriately. This can further improve the performance
beyond the tiling.

The data layout can be transformed using the following
formula:

indexnew = 𝑥id + 𝑦id × 𝑁𝑥 + 𝑧id × 𝑁𝑥 × 𝑁𝑦 (9)

where 𝑥id and 𝑦id are cell indexes in 𝑥- and 𝑦-dimension on
the plane of grid and 𝑧𝑖𝑑 is the value in the range of 0 to 𝑛𝑧−1.𝑥id and 𝑦id can be calculated as follows:

𝑥id = (block index in 𝑥-dimension)
× (number of threads in thread block in 𝑥-dimension)
+ (thread index in thread block in 𝑥-dimension)

𝑦id = (block index in 𝑦-dimension)

× (number of threads in thread block in 𝑦-dimension)
+ (thread index in thread block in 𝑦-dimension)

(10)

In our implementation, we use the changed input data
layout stored offline before the program starts. (The original
input is changed to the new layout and stored to the input file.)
Then, the input file is used while conducting the experiments.

4.3. Reduction of Register Uses perThread. TheD3Q19 model
is more precise than the models with smaller distributions
such as D2Q9 orD3Q13, thus usingmore variables.This leads
to more register uses for the main computation kernels. In
GPU, the register use of the threads is one of the factors
limiting the number of active WARPs on a streaming mul-
tiprocessor (SMX). Higher register uses can lead to the lower
parallelism and occupancy (see Figure 11 for an example)
which results in the overall performance degradation. The
Nvidia compiler provides a flag to limit the register uses to a
certain limit such as −𝑚𝑎𝑥𝑟𝑟𝑒𝑔𝑐𝑜𝑢𝑛𝑡 or launch bounds ()
qualifier [5]. The −𝑚𝑎𝑥𝑟𝑟𝑒𝑔𝑐𝑜𝑢𝑛𝑡 switch sets a maximum
on the number of registers used for each thread. These
can help increase the occupancy by reducing the register
uses per thread. However, our experiments show that the
overall performance goes down, because they lead to a lot of
register spills/refills to/from the local memory.The increased
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(a) Eight blocks, 64 threads per block, and 4 registers per thread
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Thread 31
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· · ·

· · ·

(b) Eight blocks, 32 threads per block, and 8 registers per thread

Figure 11: Sharing 2048 registers among (a) a larger number of threads with smaller register uses versus (b) a smaller number of threads with
larger register uses.

memory traffic to/from the local memory and the increased
instruction count for accessing the local memory hurt the
performance.

In order to reduce the register uses per thread while
avoiding the register spill/refill to/from the local memory, we
used the following techniques:

(i) Calculate indexing address of distributions manually.
Each cell has 19 distributions; thus we need 38
variables for storing indexes (19 distributions × 2
memory accesses for load and store) in the D3Q19
model. However, each index variable is used only one
time at each execution phase. Thus, we can use only
two variables instead of 38, one for calculating the
loading indexes and one for calculating the storing
indexes.

(ii) Use the shared memory for the commonly used vari-
ables among threads, for example, to store the base
addresses.

(iii) Casting multiple small size variables into one large
variable: for example, we combined 4 char type vari-
ables into one integer variable.

(iv) For simple operations which can be easily calculated,
we do not store them to the memory variables.
Instead, we recompute them later.

(v) We use only one array to store the distributions
instead of using 19 arrays separately.

(vi) In the original LBM code, a lot of variables are
declared to store the FP computation results which
increase the register uses. In order to reduce the

register uses, we attempt to reuse variables whose
life-time ended earlier in the former code. This may
lower the instruction-level parallelism of the kernel.
However, it helps increase the thread-level parallelism
as more threads can be active at the same time with
the reduced register uses per thread.

(vii) In the original LBM code, there are some complicated
floating-point (FP) intensive computations used in a
number of nearby statements.We aggressively extract
these computations as the common subexpressions. It
frees the registers involved in the common subexpres-
sions, thus reducing the register uses. It also reduces
the number of dynamic instruction counts.

Applying the above techniques in our implementation,
the number of registers in each kernel is greatly reduced from
70 registers to 40 registers. It leads to the higher occupancy for
the SMXs and the significant performance improvements.

4.4. Removing Branch Divergence. Flow control instructions
on the GPU cause the threads of the same WARP to diverge.
Thus, the resulting different execution paths get serialized.
This can significantly affect the performance of the appli-
cation program on the GPU. Thus, the branch divergence
should be avoided as much as possible. In the LBM code,
there are two main problems which can cause the branch
divergence:

(i) Solving the streaming at the boundary positions

(ii) Defining actions for corresponding cell types
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Figure 12: Illustration of the lattice with a “ghost layer.”

(1) IF(cell type == FLUID)

(2) x = a;

(3) ELSE

(4) x = b;

Algorithm 7: Skeleton of IF-statement used in LBM kernel.

(1) is fluid = (cell type == FLUID);

(2) x = a * is fluid + b * (!is fluid);

Algorithm 8: Code with IF-statement removed.

In order to avoid using 𝐼𝐹-𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠 while streaming at
the boundary position, a “ghost layer” is attached in 𝑦- and
𝑧-dimension. If 𝑁𝑥, 𝑁𝑦, and 𝑁𝑧 are the width, height, and
depth of the original grid, 𝑁𝑁𝑥 = 𝑁𝑥, 𝑁𝑁𝑦 = 𝑁𝑦 + 1, and
𝑁𝑁𝑧 = 𝑁𝑧 + 1 are the new width, height, and depth of the
grid with the ghost layer (Figure 12). With the ghost layer, we
can regard the computations at the boundary position as the
normal oneswithoutworrying about running out of the index
bound.

As explained in Section 4.1.2, cells of the grid belong to
three types such as the regular fluid, the acceleration cells,
or the boundary. The LBM kernel contains conditions to
define actions for each type of the cell. The boundary cell
type can be covered in the above-mentioned way using the
ghost layer. This leads to the existence of the other two
different conditions in the same halfWARP of theGPU.Thus,
in order to remove 𝐼𝐹-𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 we combine conditions
into computational statements. Using this technique, the 𝐼𝐹-
𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡 in Algorithm 7 is rewritten as in Algorithm 8.

5. Experimental Results

In this section, we first describe the experimental setup.Then
we show the performance results with analyses.
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Figure 13: Performance (MLUPS) comparison of the serial and the
AoS with different domain sizes.

5.1. Experimental Setup. We implemented the LBM in the
following five ways:

(i) Serial implementation using single CPU core (serial),
using the source code from the SPEC CPU 2006
470.lbm [15] to make sure it is reasonably optimized

(ii) Parallel implementation on a GPU using the AoS data
scheme (AoS)

(iii) Parallel implementation using the SoA data scheme
and the push scheme (SoA Push Only)

(iv) Parallel implementation using the SoA data scheme
and the pull scheme (SoA Pull Only)

(v) SoAusing pull schemewith our various optimizations
including the tiling with the data layout change
(SoA Pull ∗)

We summarize our implementations in Table 2. We used
the D3Q19 model for the LBM algorithm. Domain grid sizes
are scaled in the range of 643, 1283, 1923, and 2563. The
numbers of time steps are 1000, 5000, and 10000.

In order to measure the performance of the LBM, the
Million Lattice Updates Per Second (MLUPS) unit is used
which is calculated as follows:

MLUPS = 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧 × 𝑁ts

106 × 𝑇 (11)

where𝑁𝑥,𝑁𝑦, and𝑁𝑧 are domain sizes in the 𝑥-, 𝑦-, and 𝑧-
dimension,𝑁ts is the number of time steps used, and 𝑇 is the
run time of the simulation.

Our experiments were conducted on a system incorpo-
rating the Intel multicore processor (6-core 2.0Ghz Intel
Xeon E5-2650) with 20MB level-3 cache and Nvidia Tesla
K20 GPU based on the Kepler architecture with 5GB device
memory. The OS is CentOS 5.5. In order to validate the
effectiveness of our approach over the previous approaches,
we have also conducted further experiments on anotherGPU,
Nvidia GTX285 GPU.

5.2. Results Using Previous Approaches. The average perfor-
mances of the serial and the AoS are shown in Figure 13.
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Table 2: Summary of experiments.

Experiment Description
Serial Serial implementation on single CPU core
Parallel
AoS AoS scheme
SoA Push Only SoA scheme + push data scheme
SoA Pull

SoA Pull Only SoA scheme + pull data scheme
SoA Pull BR SoA scheme + pull data scheme + branch divergence removal
SoA Pull RR SoA scheme + pull data scheme + register reduction
SoA Pull Full SoA scheme + pull data scheme + branch divergence removal + register usage reduction

SoA Pull Full Tiling SoA scheme + pull data scheme + branch divergence removal + register usage reduction + tiling with data
layout change
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Figure 14: Performance (MLUPS) comparison of the AoS and the
SoA with different domain sizes.

With various domain sizes of 643, 1283, 1923, and 2563, the
MLUPS numbers for the serial are 9.82MLUPS, 7.42MLUPS,
9.57 MLUPS, and 8.93 MLUPS. The MLUPS for the AoS
are 112.06 MLUPS, 78.69 MLUPS, 76.86 MLUPS, and 74.99
MLUPS, respectively. With these numbers as the baseline, we
alsomeasured the SoAperformance for various domain sizes.
Figure 14 shows that the SoA significantly outperforms the
AoS scheme. The SoA is faster than the AoS by 6.63, 9.91,
10.28, and 10.49 times for the domain sizes 643, 1283, 1923,
and 2563. Note that in this experiment we applied only the
SoA scheme without any other optimization techniques.

Figure 15 compares the performance of the pull scheme
and the push scheme. For fair comparison, we did not
apply any other optimization techniques to both of the
implementations.The pull scheme performs at 797.3MLUPS,
838.4 MLUPS, 849.8 MLUPS, and 848.37 MLUPS, whereas
the push scheme performs at 743.4 MLUPS, 780 MLUPS,
790.16 MLUPS, and 787.13 MLUPS for domain sizes 643,
1283, 1923, and 2563, respectively. Thus, the pull scheme is
better than the push scheme by 6.75%, 6.97%, 7.02%, and
7.2%, respectively.Thenumber of globalmemory transactions
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Figure 15: Performance (MLUPS) comparison of the SoA using
push scheme and pull scheme with different domain sizes.

observed shows that the total transactions (loads and stores)
of the pull and push schemes are quite equivalent. However,
the number of store transactions of the pull scheme is 56.2%
smaller than the push scheme. This leads to the performance
improvement of the pull scheme compared with the push
scheme.

5.3. Results Using Our Optimization Techniques. In this sub-
section, we show the performance improvements of our opti-
mization techniques compared with the previous approach
based on the SoA Pull implementation:

(i) Figure 16 compares the average performance of the
SoA with and without removing the branch diver-
gences explained in Section 4.4 in the kernel code.
Removing the branch divergence improves the per-
formance by 4.37%, 4.45%, 4.69%, and 5.19% for
domain sizes 643, 1283, 1923, and 2563, respectively.

(ii) Reducing the register uses described in Section 4.3
improves the performance by 12.07%, 12.44%, 11.98%,
and 12.58% as Figure 17 shows.
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Figure 16: Performance (MLUPS) comparison of the SoA with and
without branch removal for different domain sizes.
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Figure 17: Performance (MLUPS) comparison of the SoA with and
without reducing register uses for different domain sizes.

(iii) Figure 18 compares the performance of the SoA using
the pull scheme with optimization techniques such
as the branch divergence removal and the register
usage reduction described in Sections 4.3 and 4.4
(SoA Pull Full) and the SoA Pull Only. The opti-
mized SoA Pull implementation is better than the
SoA Pull Only by 16.44%, 16.89%, 16.68%, and 17.77%
for the domain sizes 643, 1283, 1923, and 2563,
respectively.

(iv) Figure 19 shows the performance comparison of
the SoA Pull Full and SoA Pull Full Tiling. The
SoA Pull Full Tiling performance is better than the
SoA Pull Full from 11.78% to 13.6%. The domain
size 1283 gives the best performance improvement of
13.6%, while the domain size 2563 gives the lowest
improvement of 11.78%. The experimental results
show that the tiling size for the best performance is
𝑛𝑥 = 32, 𝑛𝑦 = 16, and 𝑛𝑧 = 𝑁𝑧 ÷ 4.
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Figure 18: Performance (MLUPS) comparison of the SoA with and
without optimization techniques for different domain sizes.
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Figure 19: Performance (MLUPS) comparison of the SoA Pull Full
and the SoA Pull Full Tiling with different domain sizes.

(v) Figure 20 presents the overall performance of the
SoA Pull Full Tiling implementation compared with
the SoA Pull Only. With all our optimization tech-
niques described in Sections 4.2, 4.3, and 4.4, we
obtained 28% overall performance improvements
compared with the previous approach.

(vi) Table 3 compares the performance of four im-
plementations (serial, AoS, SoA Pull Only, and
SoA Pull Full Tiling) with different domain sizes.
As shown, the peak performance of 1210.63 MLUPS
is achieved by the SoA Pull Full Tiling with domain
size 2563, where the speedup of 136 is also achieved.

(vii) Table 4 compares the performance of our work with
the previous work conducted by Mawson and Revell
[12]. Both implementations were conducted on the
same K20 GPU. Our approach performs better than
[12] from 14% to 19%. Our approach incorporates
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Table 3: Performance (MLUPS) comparisons of four implementations.

Domain sizes TimeSteps Serial AoS SoA Pull Only SoA Pull Full Tiling

643
1000 9.89 111.73 759.52 1034
5000 9.75 112.24 814.01 1115.63
10000 9.82 111.73 818.36 1129.32

Avg. Perf. 9.82 112.41 797.30 1092.99

1283
1000 7.64 78.58 798.21 1115.2
5000 7.65 78.74 855.55 1189.15
10000 6.98 78.74 861.42 1199.33

Avg. Perf. 7.42 78.69 838.39 1167.69

1923
1000 9.47 76.79 811.35 1114.96
5000 9.69 76.89 866.76 1185.95
10000 9.56 76.91 871.39 1205.48

Avg. Perf. 9.57 76.86 849.83 1168.8

2563
1000 8.99 74.74 787.76 1113.77
5000 8.91 75.09 873.8 1182.33
10000 8.9 775.14 883.56 1210.63

Avg. Perf. 8.93 74.99 848.37 1168.91
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Figure 20: Performance (MLUPS) comparison of the
SoA Pull Only and the SoA Pull Tiling with different domain
sizes.

Table 4: Performance (MLUPS) comparison of our work with
previous work [12].

Domain sizes Mawson and Revell (2014) Our work
643 914 1129
1283 990 1199
1923 1036 1205
2563 1020 1210

more optimization techniques such as the tiling opti-
mization with the data layout change, the branch
divergence removal, among others compared with
[12].
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Figure 21: Performance (MLUPS) on GTX285 with different
domain sizes.

(viii) In order to validate the effectiveness of our approach,
we conducted more experiments on the other GPU,
Nvidia GTX285. Table 5 and Figure 21 show the
average performance of our implementations with
domain sizes 643, 1283, and 1603. (The grid sizes
larger than 1603 cannot be accommodated in the
device memory of the GTX 285.) As shown, our
optimization technique, SoA Pull Full Tiling, is bet-
ter than the previous SoA Pull Only up to 22.85%.
Alsowe obtained 46-time speedup comparedwith the
serial implementation. The level of the performance
improvement and the speedup are, however, lower on
the GTX 285 compared with the K20.
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Table 5: Performance (MLUPS) on GTX285.

Domain sizes Serial AoS SoA Push Only SoA Pull Only SoA Pull BR SoA Pull RR SoA Pull Full SoA Pull Full Tiling
643 9.82 45.22 240.97 257.36 268.45 283.24 296.73 328.87
1283 7.42 49.85 242.12 259.04 270.58 285.68 299.79 335.77
1603 9.57 50.15 237.58 254.18 266.25 279.59 294.26 328.62

6. Previous Research

Previous parallelization approaches for the LBM algorithm
focused on two main issues: how to efficiently organize the
data and how to avoid the misalignment in the streaming
(propagation) phase of the LBM. In the data organization,
the AoS and the SoA are two most commonly used schemes.
While AoS scheme is suitable for the CPU architecture, SoA
is a better scheme for the GPU architecture when the global
memory access coalition technique is incorporated. Thus,
most implementations of the LBM on the GPU use the SoA
as the main data organization.

In order to avoid the misalignment in the streaming
phase of the LBM, there are two main approaches. The first
proposed approach uses the shared memory. Tölke in [9]
used the approach and implemented the D2Q9 model.
Habich et al. [8] followed the same approach for the D3Q19
model. Bailey et al. in [16] also used the shared memory to
achieve 100% coalescence in the propagation phase for the
D3Q13 model. In the second approach, the pull scheme was
used instead of the push scheme without using the shared
memory.

As observed, the main aim of using the sharedmemory is
to avoid the misaligned accesses caused by the distribution
values moving to the east and west directions [8, 9, 17].
However, the shared memory implementation needs extra
synchronizations and intermediate registers. This lowers the
achieved bandwidth. In addition, using the shared memory
limits the maximum number of threads per thread block
because of the limited size of the shared memory [17] which
reduces the number of activeWARPs (occupancy) of the ker-
nels, thereby hurting the performance. Using the pull scheme,
instead, there is no extra synchronization cost incurred
and no intermediate registers are needed. In addition, the
better utilization of the registers in the pull scheme leads to
generating a larger number of threads as the total number
of registers is fixed. This leads to better utilization of the
GPU’s multithreading capability and higher performance.
Latest results in [12] confirm the higher performance of
the pull scheme compared with using the shared mem-
ory.

Besides the above approaches, in [12], the new feature
of the Tesla K20 GPU, shuffle instruction, was applied to
avoid the misalignment in the streaming phase. However, the
obtained results were worse. In [18], Obrecht et al. focused on
choosing careful data transfer schemes in the global memory
instead of using the shared memory in order to solve the
misaligned memory access problem.

There were some approaches to maximize the GPU
multiprocessor occupancy by reducing the register uses per
thread. Bailey et al. in [16] showed 20% improvement in

maximum performance compared with the D3Q19 model in
[8].They set the number of registers used by the kernel below
a certain limit using the Nvidia compiler flag. However, this
approach may spill the register data to the local memory.
Habich et al. [8] suggested a method to reduce the number of
registers by using the base index, which forces the compiler
to reuse the same register again.

A few different implementations of the LBM were at-
tempted. Astorino et al. [19] built a GPU implementation
framework for the LBM valid for the two- and three-
dimensional problems.The framework is organized in amod-
ular fashion and allows for easy modification. They used the
SoA scheme and the semidirect approach as the addressing
scheme.They also adopted the swapping technique to save the
memory required for the LBM implementation. Rinaldi et al.
[17] suggested an approach based on the single-step algorithm
with a reversed collision-propagation scheme. They used the
shared memory as the main computational memory instead
of the global memory. In our implementation, we adopted
these approaches for the SoA Pull Only implementation
shown in Section 5.

7. Conclusion

In this paper, we developed high performance paralleliza-
tion of the LBM algorithm with the D3Q19 model on the
GPU. In order to improve the cache locality and minimize
the overheads associated with the uncoalesced accesses in
moving the data to the adjacent cells in the streaming
phase of the LBM, we used the tiling optimization with
the data layout change. For reducing the high register
pressure for the LBM kernels and improving the available
thread parallelism generated at the run time, we developed
techniques for aggressively reducing the register uses for
the kernels. We also developed optimization techniques
for removing the branch divergence. Other already-known
techniques were also adopted in our parallel implementation
such as combining the streaming phase and the collision
phase into one phase to reduce the memory overhead, a
GPU friendly data organization scheme so-called the SoA
scheme, efficient data placement of the major data structures
in the GPU memory hierarchy, and adopting a data update
scheme (pull scheme) to further reduce the overheads of
the uncoalesced accesses. Experimental results on the 6-core
2.2 Ghz Intel Xeon processor and the Nvidia Tesla K20 GPU
using CUDA show that our approach leads to impressive per-
formance results. It delivers up to 1210.63MLUPS throughput
performance and achieves up to 136-time speedup com-
pared with a serial implementation running on single CPU
core.
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