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Characterizing the preferences of a decision maker in a multicriteria decision is a complex task that becomes even harder if the
information available is limited. This paper addresses a particular case of project portfolio selection; in this case, the measures of
project impacts are not assumed, and the available information is only projects’ ranking and costs. Usually, resource allocation
follows the ranking priorities until they are depleted.This action leads to a feasible solution, but not necessarily to a good portfolio.
In this paper, a good portfolio is found by solving amultiobjective problem. To effectively address such dimensionality, the decision
maker’s preferences in the form of a fuzzy relational system are incorporated in an ant-colony algorithm. The Region of Interest
is approached by solving a surrogate triobjective problem. The results show that the reduction of the dimensionality supports the
decision maker in choosing the best portfolio.

1. Introduction

Resource allocation in institutions should address the proper
distribution of a given budget among a set of available
projects [1]. The type of projects can vary according to the
area, and they might be involved in a wide range of tasks or
activities, such as improving the skills of a professional sports
team, the selection of R&D project portfolios in enterprises,
the founding of projects by a government program, and
supporting environmental regulations [2].

The construction of the best portfolio that accomplishes a
certain balance among the selected projects and that is subject
to a budget has been approached in the scientific literature
(e.g., [3–8]). This problem can be defined as follows:

max
𝑥∈𝑅𝐹

{⟨𝑧1 (𝑥) , 𝑧2 (𝑥) , . . . , 𝑧𝑝 (𝑥)⟩} , (1)

where 𝑅𝐹 is the space of feasible portfolios and 𝑧(𝑥) =
⟨𝑧1(𝑥), 𝑧2(𝑥), . . . , 𝑧𝑝(𝑥)⟩ represents the functions 𝑧𝑖 that char-
acterize the impact of a portfolio 𝑥 over the considered
criteria.

Problem (1) has evolved in different particular cases. For
example, recently, the Portfolio Selection Problem on a Set
of Ordered Projects, or PSPSOP, has been reported to focus
on the construction of a portfolio from a set of projects
subject to a limited budget (cf. Bastiani et al. [9]). This case
also involves a distinctive feature, which is that the only
information available about the projects is their rank; that
is, they are ordered according to the decision maker’s (DM)
preferences. The importance of the study of this problem
arises from the fact that in most situations a DM prefers
simple decision methods, and the decision process in such
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methods has conditions that involve limited resources such
as time and information.

The task in PSPSOP is closely related to R&D projects
funded by enterprises; it can be seen in the discussion
presented in Cooper et al. [10]. Particularly, in govern-
ment organizations, R&D projects pursue the satisfaction of
the citizenship, and, for this purpose, they try to identify
programs that focus on the priorities of social sectors.
The participatory budgeting aids in the definition of such
priorities, and it combines the efforts of both citizens and
government to establish them (cf. Fernandez and Olmedo
[11]). With a proper definition of priorities, all that remains
is the construction of a portfolio in which the costs of the
projects adjust to the approved budget. This last task remains
a challenge in the general case, and it has been studied from
different approaches in the literature.

The construction of portfolios from projects that include
information on ranking and costs is a problem that has been
addressed in the scientific literature. The Ranking method
is commonly used, and it involves the ordered selection of
projects, previously ranked by priorities established by a DM,
according to an available budget. This method has been criti-
cized because the final portfolio that it creates only guarantees
that the most important projects will be supported without
considering a balance between the priorities and costs, which
usually increases the number of supported projects and
their impact in society (cf. [12, 13]). Additionally, it could
be possible that a DM becomes reluctant to follow such a
construction if he considers that the ranking information is
not reliable [14].

Bastiani et al. [9] propose a method to solve PSPSOP
based on the cardinality and the discrepancies present in
a portfolio, where cardinality refers to the total number of
projects involved in it, and the term discrepancy is a concept
that reflects the negative effect that is applied over the DM’s
thinking because one of the projects, when it is compared
against others, seems to have merits that belong to the
portfolio but it is not in it.The strategy balances the priorities
and the number of projects in the final portfolio through a
model that minimizes discrepancies concerning the ranking
and costs and maximizes its cardinality, all of which are
defined in ten objectives. Given that this model handles a
large number of objective functions, this paper proposes a
method to reduce the original many-objective problem to
a surrogate one with three-objective functions. The reduced
problem can be easily solved by an ant-colony algorithm that
incorporates a knowledge mechanism (like the one proposed
by Cruz et al. [15]).

This paper is organized into six sections. Section 2
presents a criticism of previous related approaches and
describes the many-objective optimization model proposed
by Bastiani et al. [9] for PSPSOP. Section 3 details the
decision-support mechanisms used for the PSPSOP; this
mechanism is based on DM preferences. Section 4 describes
the metaheuristic optimization method. Finally, the experi-
ments and results and conclusions are shown in Sections 5
and 6, respectively.

2. A Brief Outline of Previous Approaches

According to the reviewed scientific literature, there are dif-
ferent approaches that solve PSPSOP with a lack of available
information. The works of [16–18] are similar to Scoring and
Ranking methods [10] or additive functions [12, 19] in that
they prioritize projects according to a certain utility function
to measure their importance. Alternatively, the use of proxy
variables [9, 11, 14] has offered versatile and satisfactory
results that extend the information derived from a ranking of
projects. However, none of those approaches offer a strategy
that incorporates theDM’s preferences, the key element in the
present work that guides the construction of better solutions.
Table 1 analyzes the state of the art related to the research
proposed in these works. The first column presents the work,
and the second column describes it.

From the information provided in Table 1, all the strate-
gies followed to solve PSPSOP are based on ranking, costs,
discrepancies, and cardinality. Our interest is focused on the
definition and management of such elements given by the
work of Bastiani et al. [9]. The remainder of this section
briefly discusses their definition, but it is left up to the reader
whether to get a deeper understanding of the concepts by
reviewing the work in [9].

The model proposed by Bastiani et al. [9] defines three
objectives per category plus one for the power indicator 𝑃.
Hence, the number of proxy variables is 𝑀 + 1, where 𝑀
is the number of categories in the instance of PSPSOP that
is solved. The model uses a reference portfolio 𝐶ref to reflect
the DM’s disappointment in combination with the statement
“rank(𝑥) is better than rank(𝑦) ⇒ (𝑦 ∈ 𝐶ref ⇒ 𝑥 ∈ 𝐶ref )”
to define three types of discrepancies over a built portfolio
C, which are initially based on the idea that a discrepancy
occurs when in such a portfolio 𝑎 ∈ 𝐶ref but 𝑎 ∉ 𝐶. These
discrepancies are as follows: (a) weak discrepancy 𝑛𝑤𝑘 that
occurs when the budget of a project 𝑥 ∈ 𝐶ref , which is not
in C, is much higher than the average budget in category k;
(b) strong discrepancy 𝑛𝑠𝑘 that occurs when the budget of a
project 𝑥 ∈ 𝐶ref , which is not in C, is considerably higher
than the average budget in category k; and (c) unacceptable
discrepancy that occurs whenever a project 𝑥 ∈ 𝐶ref , which
is not in C, has a budget that is not significantly higher than
the average budget in category k, or the budget required by
another project 𝑦 ∈ 𝐶 that has a lower rank than 𝑥. The first
two discrepancies, in combination with the cardinalities per
category and the power of the set of objectives to the model,
are proposed in [9]. The unacceptable discrepancy is used to
constrain the feasible region of PSPSOP.

The model of Bastiani et al. [9], referred to as Bastiani’s
model in this work, succeeds in providing more information
to a DM related to the construction of a particular portfolio.
The success is derived from the specialization per category of
the information derived from the ranking. However, due to
this situation, the number of objectives involved in themodel
is not fixed, and it varies with the number of considered
categories.This situation allows growth in the dimensionality,
which in turn increases the difficulty in approximating the
Region of Interest, that is, the zone in the Pareto frontier
that fits a DM’s preferences. For this reason, the question of
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Table 1: Optimization models for PSPSOP based on proxy variables.

Research work Description

Fernandez et al. [14]

To the best of our knowledge, this is the first published article
that employs a set of proxy variables to solve PSPSOP. The
model proposed works on discrepancies𝐷𝑆,𝐷𝑊 and
cardinality𝑁𝐶 of portfolios 𝐶; it is as follows:
min
𝐶∈𝑅𝐹

(𝐷𝑆, 𝐷𝑊), max
𝐶∈𝑅𝐹

𝑁𝐶.

Fernandez and Olmedo [11]

This work also uses the cardinality of the portfolio 𝑛𝑝𝑟 but it
extends the types of discrepancies used in [14] to include the
set of absolute discrepancies 𝑛𝑎, which considers the absolute
difference between the considered categories. The model is as
follows:
max
𝐶∈𝑅𝐹

{⟨𝑛𝑝𝑟⟩},min
𝐶∈𝑅𝐹

{𝑛𝑎, 𝑛𝑠, 𝑛𝑤}.

Bastiani et al. [9]

This work improves the multicriteria description of the
portfolio qualities, provided by approaches such as [11, 14],
through the incorporation of cardinality and discrepancy
information per category. Additionally, it includes the power
score 𝑃, an indicator of the number of high-rank projects in a
portfolio. The proposed model is as follows:

Optimize
𝐶∈𝑅𝐹

{⟨𝑁1, 𝑛wd1, 𝑛sd1, . . . , 𝑁𝑀, 𝑛wd𝑀, 𝑛sd𝑀, 𝑃⟩},

where the power 𝑃 and cardinalities𝑁1, 𝑁2, . . . , 𝑁𝑀 are
maximized and the discrepancies are minimized.

whether it is possible to keep the same level of information
in the construction of a portfolio through an optimization
approach but reduce the dimensionality remained open.
Our work in this paper is dedicated to answering this
question positively. The proposed approach is presented in
the following section.

3. Proposed Surrogate Model for PSPSOP

According to Cruz et al. [15], metaheuristic approaches are a
viable strategy to solvemultiobjective optimization problems.
These approaches rely on their ability to approximate the
Pareto frontier to provide a set of solutions (or popula-
tions) that might satisfy complex constraints and objectives
functions, a feature rarely shared with approaches based on
mathematical programming, which normally yield a single
solution and are limited to a narrower range of variations in
the definition of an optimization problem.

During the optimization, it is possible to find somepitfalls
derived from a problem with many objectives. One of the
pitfalls arises if it is difficult to generate a proper population
that lies on the Pareto frontier. Another pitfall corresponds
to the increments in the number of Dominance Resistant
Solutions, that is, solutions that are hard to dominate even
though they are not Pareto optimal and are hard to take out
of the final set of solutions. Another concern is related to the
appropriate selection of one solution from the set given by
metaheuristics. This situation leads to a process in which a
human must perform a cognitive effort to choose the desired
alternative. However, according to Miller [20], the human
mind’s capacity to handle information is diminished when
it increases, for example, when the number of objectives

that he/she must use to make a decision increases. All these
drawbacks have been observed and/or discussed in several
research studies, as shown in [21–24].

The high dimensionality of a problem can be addressed
through the incorporation of preference information.
According to the work in [15], a DM that is willing to provide
his/her preferences aids in the localization of the Pareto
frontier zone known as the Region of Interest (RoI); this
zone can be understood as a relaxation of the feasible region
defined by the multiobjective optimization problem that
only covers solutions that are of interest for a DM. Several
research papers, such as the one by Fernandez et al. [25],
present strategies that address multiobjective problems using
surrogate models that approximate the RoI. The remaining
part of this section presents the adaptation of such model to
solve the PSPSOP.

The research work in [25] proposes a surrogate model
based on the credibility index 𝜎(𝑥, 𝑦) of the statement “𝑥
is at least as good as 𝑦.” The value of 𝜎(𝑥, 𝑦) is computed
using the method ELECTRE (cf. [26, 27]), and it is integrated
into a relational system of preferences (as described by Roy
[26]) to model the DM preferences. The preferences defined
in [27] for pairs of alternatives 𝑥 and 𝑦 are as follows: (1) strict
preference 𝑥𝑃𝑦; (2) indifference 𝑥𝐼𝑦; (3) weak preference
𝑥𝑄𝑦; (4) incomparability 𝑥𝑅𝑦; and (5) k-preference 𝑥𝐾𝑦.

To define a surrogate model for PSPSOP, this work uses
the net flow score defined through the objectives of Bastiani’s
model, as shown in Table 2. The net flow score, denoted
𝐹𝑛(𝑥) or NF, was introduced in Fernandez et al. [25] as a
measure to enhance preference information towards a better
characterization of the DM preferences in the nonstrictly
outranked set, denoted by NS. Based on the elements 𝑦 ∈ NS,
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Input: 𝑃𝑟, 𝐵, max iter, 𝑛𝑎
Output: The new set of portfolios NS
Begin PROCEDURE

(1) Initialize Iter = 0, pheromone matrix and𝑁𝑆 = 0
(2) Construct an initial portfolio 𝐶ref
(3) Repeat
(4) Initialize 𝑆𝐹 = 0
(5) 𝑆𝐹 <- GenerateFeasibleSolutions(𝑃𝑟, 𝐵, 𝑛𝑎)
(6) 𝑆∗𝐹 <- Perform local search to the set 𝑆𝐹
(7) Calculate objective functions of Problem (2) on the set 𝑆𝐹
(8) 𝐹 <- Generate non-dominated fronts on 𝑆∗𝐹
(9) Updating the pheromone matrix with the set 𝐹0
(10) Assign𝑁𝑆 = 𝑁𝑆 ∪ 𝐹0
(11) iter = iter + 1
(12) until (iter = max iter)
(13) 𝐹∗ <- Generate non-dominated fronts on𝑁𝑆
(14) return 𝐹0∗

End PROCEDURE

Algorithm 1: ACO-SOP.

Table 2: Computation of the net flow score.

Set/measure Conditions
𝑆 𝑆 (𝑂, 𝑥) = {𝑦 ∈ 𝑂 | 𝑦𝑃𝑥} .
NS NS (𝑂) = {𝑥 ∈ 𝑂 | 𝑆 (𝑂, 𝑥) = Ø} .
𝑊 𝑊(𝑂, 𝑥) = {𝑦 ∈ NS (𝑂) | 𝑦𝑄𝑥 ∨ 𝑦𝐾𝑥}

Net flow score (NF)
𝐹𝑛(𝑥) = ∑

𝑦∈NS(𝑂)\{𝑥}
[𝜎(𝑥, 𝑦) − 𝜎(𝑦, 𝑥)],

where 𝐹𝑛(𝑥) > 𝐹𝑛(𝑦) denotes a certain
preference of 𝑥 over 𝑦

𝐹 𝐹 (𝑂, 𝑥) = {𝑦 ∈ NS (𝑂) | 𝐹𝑛 (𝑦) > 𝐹𝑛 (𝑥)}

the following sets are defined: (a) the set 𝑆 of alternatives
𝑦 that strictly outrank 𝑥; (b) the set 𝑊 of portfolios 𝑦 that
weakly outrank a given portfolio 𝑥; and (c) the set 𝐹 of
alternatives 𝑦 with greater net flow score. All the previous
elements are defined in Table 2, where 𝑂 is the set of feasible
portfolios.

The combination of the net flow score 𝐹𝑛(𝑥) with the
definition of the sets 𝑆 and 𝑊 allows the formulation of the
optimization problem defined in

min
𝑥∈𝑂

{⟨|𝑆 (𝑂, 𝑥)| , |𝑊 (𝑂, 𝑥)| , |𝐹 (𝑂, 𝑥)|⟩} . (2)

With the previous problem, it is demonstrated that Bas-
tiani’s model can be mapped to problem (2) independently
of the original objective space dimension. The approach by
Fernandez et al. [25] was successfully applied to Problem
1 in [15]. Combined with an ant-colony metaheuristic, the
approach in Bastiani et al. [9] is extended here to solve
PSPSOP thru the optimizationmodel defined in problem (2).
To summarize, the contribution of this work is the solution of
PSPSOP with lack of information using a surrogate objective
model (which is of smaller dimension than those reported
in previous approaches) and the incorporation of DM’s
preferences in the search process to approximate the RoI.The

details of the algorithm and each component of theACO-SOP
are presented in the next section.

4. An Ant-Colony Optimization Algorithm

Thiswork proposes an approach based on an ant-colony opti-
mization, denoted by ACO-SOP (Ant-Colony Optimization
for Solving Portfolio Problems with Ordinal Information about
Projects). The approach takes ideas from Dorigo’s ACS [28],
Cruz et al. [15], and Bastiani et al. [9] to solve PSPSOP, first
searching in the wider feasible region defined by Bastiani’s
model and then searching in the smaller space defined by the
model in problem (2).

The core strategy of ACO-SOP uses the pheromone
representation, selection rule, and local search function
defined in the algorithm ACO-SPRI proposed by Bastiani
et al. [9], with a small variation in the construction of the
nondominated fronts used in their computations.The general
idea of ACO-SOP is depicted inAlgorithm 1.The algorithm is
characterized by five elements: (a) the initialization function;
(b) the construction of a feasible set of solutions; (c) the
improvement phase based on local search; (d) the construc-
tion of nondominated fronts; and (e) the updating of the
pheromone matrix. These elements are briefly defined in this
section (cf. Bastiani et al. [9] for further details).

The algorithm ACO-SOP requires as input the set 𝑃𝑟
of ranked projects, the budget 𝐵, the maximum number of
iterations max iter, and the maximum number of ants 𝑛𝑎.
Inside this algorithm, the initialization function constructs
the reference portfolio 𝐶ref (see Line (2)); it is done by
the ordered selection of projects from 𝑃𝑟 by rank and in
agreement with the available budget 𝐵 (ties are broken
arbitrarily).

The phase of construction of feasible solutions (see Line
(5)) involves the construction of one portfolio by each of the
𝑛𝑎 ants. Each ant starts with an empty portfolio𝐶 and adds to
it one project at a time based on the budget, global knowledge
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Step 1 Step 2
Instance

Project Cost P Category
1 100 10

Priority2 50 9
3 90 8
4 150 7

Satisfactory5 85 6
6 73 5
7 68 4

Acceptable8 23 3
9 35 2
10 160 1

Pheromone table
1 2 10

1 0.5 0.3 0.4
2 1 2 1

10 0.2 0.4 0.8

feasible solutions

1 1 1 0 1 0 0

1 0 1 1 1 0 0

0 1 1 1 0 1 0

Evaluation with
Bastiani’s model

1 1 1 0 1 0 0

1 0 1 1 1 0 0

0 1 1 1 1 1 0

Step 3 Step 4

Apply local search in feasible 
solutions

1 1 1 1 1 0 0

1 0 1 1 1 1 0

0 0 1 1 1 1 1

Input:

／ＪＮＣＧＣＴ？
C∈R

{⟨N1, nwd1, nsd1, . . . , NM, nwdM, nsdM, P⟩ }

N



1

N



1

 = {, , , }

Budget for portfolio = 400

· · ·

· · ·

· · ·

· · ·

· · ·· · ·· · ·· · ·

· · ·

· · ·

· · ·

· · ·

· · ·· · ·

· · ·

· · ·
· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

1



N

{⟨, , , , , , , , , ⟩}

{⟨, , , , , , , , , ⟩}

{⟨, , , , , , , , , ⟩}

{⟨, , , , , , , , , ⟩}

{⟨, , , , , , , , , ⟩}

{⟨, , , , , , , , , ⟩}

1 {⟨, , , , , , , , , ⟩}

 {⟨, , , , , , , , , ⟩}

N {⟨, , , , , , , , , ⟩}

1 {⟨, , ⟩}

 {⟨, , ⟩}

N {⟨, , ⟩}

ＧＣＨ
x∈O

{⟨ |S (O, x)| , |W(O, x)| , |F (O, x)|⟩}

Generated set O of

surrogate model
Evaluation with

Figure 1: Schematic example of construction process of ACO-SOP.

derived from the pheromone matrix, and local knowledge
obtained from the preferences of the DM, as defined in the
selection rule by Bastiani et al. [9]. At the end of this phase, a
set 𝑆𝐹 of feasible portfolios is delivered.

Following the process of forming 𝑆𝐹, the algorithmACO-
SOP performs a local search over each 𝐶 in 𝑆𝐹, just as it
is done by Bastiani et al. [9] in their local search scheme.
The algorithm creates a new portfolio 𝐶󸀠new with every
combination derived from the inclusion and/or exclusion of
V projects of 𝑃𝑟 chosen at random. Each portfolio 𝐶󸀠new is
repaired such that constraints in rank and budget are held.
Finally, the best portfolio 𝐶∗new is chosen as the local search
improvement for𝐶.The union of all the new portfolios𝐶∗new
will form the new set of feasible portfolios 𝑆∗𝐹.

The construction of nondominated fronts (see Line (8))
is based on the objectives defined in problem (2). The output
of the algorithm in this phase is the set of fronts 𝐹 =
{𝐹0, 𝐹1, . . . , 𝐹𝑘} obtained from 𝑆∗𝐹. Each set 𝐹𝑖 is composed of
a subset of portfolios in 𝑆∗𝐹 that are exclusively dominated by
exactly 𝑖portfolios, where 0 ≤ 𝑖 ≤ 𝑘 (following the dominance
criterion established in Cruz et al. [15]). Instead of computing

the dominance from the objectives of Bastiani’s model, this
work uses the objectives of problem (2), a key feature in this
research because it makes it more manageable for algorithms
to address large dimensions.

Finally, the last and most important element that defines
ACO-SOP is the pheromone matrix, and the process to con-
struct it and update it is described herein. The bidimensional
matrix 𝜏 represents the knowledge that the ants have gained
during the construction of portfolios. They represent that
knowledge in the formof pairs of projects (𝑖, 𝑗) and the gain of
having them together in the same portfolio (denoted as 𝜏𝑖,𝑗).
Theportfolios 𝑆∗𝐹 constructed by the ants at each iteration are
used to update 𝜏 (see Line (9)) based on the number of fronts
𝑘 constructed and in the front where each portfolio is found.
This strategy and the one incorporated to prevent premature
convergence are detailed in Bastiani et al. [9].

The algorithm ACO-SOP accumulates in 𝑁𝑆 the front
𝐹0 constructed at each iteration (see Line (10)). Then, using
the last set 𝑁𝑆 it forms the final set of fronts 𝐹∗ and
returns as its solution the front 𝐹∗0. Figure 1 presents a
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Table 3: Parameters of the outranking model.

Values of the preference model

W 𝑄 𝑃 𝑈 𝑉
Indifference thresholds Strict preference threshold Pre-veto threshold Veto threshold

𝑊1 0.21 𝑄1 0 𝑃1 1 𝑈1 2 𝑉1 3.5
𝑊2 0.14 𝑄2 0 𝑃2 1 𝑈2 2.5 𝑉2 5.5
𝑊3 0.21 𝑄3 0 𝑃3 1 𝑈3 1.5 𝑉3 3
𝑊4 0.14 𝑄4 0 𝑃4 1 𝑈4 8 𝑉4 11.5
𝑊5 0.05 𝑄5 0 𝑃5 1 𝑈5 - 𝑉5 -
𝑊6 0.12 𝑄6 0 𝑃6 1 𝑈6 - 𝑉6 -
𝑊7 0.04 𝑄7 0 𝑃7 1 𝑈7 - 𝑉7 -
𝑊8 0.01 𝑄8 0 𝑃8 2 𝑈8 - 𝑉8 -
𝑊9 0.04 𝑄9 0 𝑃9 1 𝑈9 - 𝑉9 -
𝑊10 0.04 𝑄10 0.5 𝑃10 1.5 𝑈10 - 𝑉10 -
Credibility threshold 𝜆 = 0.67
Unacceptability threshold 𝛾 = 0.20
Note. Veto power is not allowed in criteria 5–10.

brief example of the construction process of ACO-SOP. Step
1 shows how the instance information is transformed with
the aid of the pheromone matrix into a set of 𝑁 feasible
solutions 𝑂 = {Sol1, Sol2, . . . , Sol𝑁}, where each solution
Sol𝑖 is binary vector representing the projects in a portfolio.
Step 2 shows the computed values of the 10 objectives from
Bastiani’s model for each solution. After that, in step 3, ACO-
SOP shows an improved set of 𝑁 solutions from the local
search. Finally, step 4 presents the transformation of 𝑂 into
the surrogate model, that is, a set 𝑂 with the objective values
defined in problem (2). To exemplify the transformation, let
us take the values of the solution 𝑥 = Sol1 = ⟨0, 0, 1⟩, which
indicate that there is no other solution 𝑦 = Sol𝑖, for 𝑖 ̸= 𝑗, that
is strictly or weakly preferred over 𝑥; that is, there is no𝑦 such
that 𝑦𝑃𝑥 or 𝑦𝑄𝑥 or 𝑦𝐾𝑥, and there is only one solution that
has greater net flow score than𝑥; that is,𝐹𝑛(𝑦) > 𝐹𝑛(𝑥), taking
into account the fact that 𝑦 is in the nonstrictly outranked set
NS(𝑂).

The following section presents the experimental design
performed to evaluate the performance of ACO-SOP when
solving problem (2). The following section also shows the
versatility of the approach to tackle cases of large dimensions.

5. Solving Some Computer Experiments

In this section, we develop a set of experiments to verify
the validity of and to validate the advantages gained by our
solution method, especially addressing problems with many
objectives. Based on these goals, the exposure and resolution
of two different cases of study are presented in the following
paragraphs.

To test the performance of ACO-SOP, the algorithm was
implemented using the programming language Java. The
experimental design was made using a computer with an
Intel Core i7 2.8GHz CPU, 4GB of RAM, and Mac OS
X Lion 10.7.5 (11G63b) as operating system. The instance
used for the experimentation is the one defined in Bastiani
et al. [9]. The tuning process involved selecting different

combinations of values similar to those previously reported
for these parameters. According to the results of the fine-
tuning process, the best configuration of values was as
follows: tot iter = 200 iterations, 𝑛𝑎 = 300 ants, 𝑤 = 0.63,
𝜂 = 0.1, 𝜌 = 0.9, 𝛼1 = 0.65, and 𝛼2 = 0.75. These parameter
values were used to obtain the experimental results reported
in this section. The incorporation of preferences through the
outranking model is basic in order to map the problem in
Bastiani et al. [9] into problem (2). The parameters of the
outranking model were set as provided in Table 3.

The ACO-SOP strategy requires, besides the ranking
information and costs of the PSPSOP instance, the definition
of a reference portfolio𝐶ref and the definition of the projects’
categories. The heuristic followed to construct 𝐶ref is based
on the traditional Scoring and Ranking method and takes
the projects one at a time in order of their rank until the
available budget is consumed. The categories considered
during the experiment were (1) priority, (2) satisfactory, and
(3) acceptable, and the projects were distributed uniformly
among them based on their ranks.

5.1. Analysis of Results. The results from the experiments
performed on the proposed approach (ACO-SOP) are ana-
lyzed from three points of view.The first analysis involves the
quality of the solutions provided by ACO-SOP in relation to
their meaning to a DM and his/her preferences. The second
and third analyses study the performance of ACO-SOP in
comparison with a similar approach of the state of the art.
These experiments differ on the quality indicator used during
the comparison. Let us indicate that the considered budget
was 2,500 units and that the reference portfolio𝐶ref is formed
by the first 22 best ranked projects in the instance taken from
Bastiani et al. [9].

The indicators used to measure the results from the
experiment were 𝐼1, 𝐼2, and 𝐼3. The indicator 𝐼1 =
{|𝑆(𝑂, 𝑥)|, |𝑊(𝑂, 𝑥)|, |𝐹(𝑂, 𝑥)|} uses the three objectives asso-
ciated with the preference information derived from the
proposed surrogate model (see problem (2)). The indicator
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Table 4: Nonstrictly outranked solutions.

Solution
𝑥

𝐼1 𝐼2
|𝑆 (𝑂, 𝑥)| |𝑊 (𝑂, 𝑥)| |𝐹 (𝑂, 𝑥)| 𝑁1 𝑛wd1 𝑛sd1 𝑁2 𝑛wd2 𝑛sd2 𝑁3 𝑛wd3 𝑛sd3 𝑃 Card

ACO-SOP1 0 0 0 27 2 0 1 0 0 0 0 0 85.10 28
ACO-SOP2 0 0 1 27 4 0 6 0 0 0 0 0 81.03 33
ACO-SOP3 0 2 2 27 2 1 3 0 0 0 0 0 83.5 30

Table 5: Solutions suggested in [11] and the two best solutions to the problem in Bastiani et al. [9].

Solution 𝑁1 𝑛wd1 𝑛sd1 𝑁2 𝑛wd2 𝑛sd2 𝑁3 𝑛wd3 𝑛sd3 𝑃 Card (𝐶)
Sol1 24 0 0 0 0 0 0 0 0 87.62 24
Sol2 25 0 0 0 0 0 0 0 0 86.96 25
ACO-SOP1 27 2 0 1 0 0 0 0 0 85.10 28
ACO-SOP2 27 4 0 6 0 0 0 0 0 81.03 33

𝐼2 = {𝑁1, 𝑛wd1, 𝑛sd1, 𝑁2, 𝑛wd2, 𝑛sd2, 𝑁3, 𝑛wd3, 𝑛sd3, 𝑃} uses the
ten objectives associated with ranking and derived from the
Bastiani model (see Section 2). Finally, the indicator 𝐼3 is the
content of the portfolio, that is, the projects that are included
in it.

The first analysis involved the solution of the instance
with ACO-SOP, and its results are summarized in Table 4.
This table provides the values of the indicators 𝐼1 and 𝐼2
computed from the three best nonstrictly outranked solutions
that were consistently obtained in 30 runs (the average
computer time required for this experimentwas 130minutes).
The solutions ACO-SOP1, ACO-SOP2, and ACO-SOP3 of
Table 4 are ordered according to the indicator 𝐼1; in this
ordering, ACO-SOP1 is the best because it reduced all the
values of the indicator to zero, while ACO-SOP2 did it only
for the metrics |𝑆(𝑂, 𝑥)| and |𝑊(𝑂, 𝑥)| but it improves ACO-
SOP3 in the last one, |𝐹(𝑂, 𝑥)|. This relation of order is
associated with the DM’s preferences, and evidence of that
can be supported by analyzing the values of the indicator 𝐼2,
regarding the number of projects involved in the solutions.

First, it is possible to observe a great level of dissatisfaction
in the DM when the provided solutions have strong discrep-
ancies (see value 𝑛sd1 of ACO-SOP3), because it means that
some important projects that are in the reference portfolio
𝐶ref are left out of the solution when they could have been
included in place of others that were less relevant. Second, the
DM could have a low level of dissatisfaction if the solutions
only have weak discrepancies (see value 𝑛wd1 of ACO-
SOP2), because it means that only a rather small number of
important projects had been left out. Third, an almost null
level of dissatisfaction can be noted in the DM when the
solution involved a small number of weak discrepancies and
a high power (see values 𝑛wd1 and 𝑃 of ACO-SOP1), because
this is an indicator that an adequate number of high-ranked
projects are in the solution.

The second analysis compares the two best solutions
ACO-SOP1 and ACO-SOP2 against the solutions Sol1 and
Sol2, as reported in [11]. Table 5 summarizes these results,
with each of its columns representing a metric used by
indicator 𝐼2. Observe that the lack of discrepancies on Sol1

and Sol2 (see 𝑛wd1, 𝑛sd1, 𝑛wd2, 𝑛sd2, 𝑛wd3, and 𝑛sd3) could
allow the DM to make a decision using only two criteria, the
power 𝑃 and the cardinality𝑁1; this is a convenient situation
for a DM that willingly accepts a solution with only high-
ranked projects, or with a large cardinality, but does not care
about their balance (because high values in 𝑃 are normally
associatedwith small cardinalities and high-ranked but costly
projects). But what happens if the DM has a different point
of view? For example, how are these solutions affected if, for
the DM, the objectives are not equally important? The latter
case involves considering solutions, such as ACO-SOP1 and
ACO-SOP2, with an acceptable level of discrepancies and
a better balance between 𝑃 and the cardinalities (e.g., 𝑁1
and 𝑁2); these solutions slightly increase the discrepancies
(as in metric 𝑛wd1). Hence, while approaches such as the
ones presented in [11] or in Bastiani et al. [9] succeeded
in managing problems with limited information, they do
not include DM preferences. This analysis showed evidence
that the solutions provided by the proposed model allow the
inclusion of DM’s preferences through the parameters of the
outranking model (see Table 3).The preference model can be
used to redefine what is acceptable or not as a solution for a
DM; for example, the solutions Sol1 and Sol2 donot satisfy the
DM’s preferences in Table 3 because they have unacceptable
discrepancies that cause great discomfort to the DM; this
situation is detailed in the following analysis.

Table 6 allows the analysis of the configurations of the
portfolios obtained from Sol1, Sol2, ACO-SOP1, and ACO-
SOP2; it shows the projects in each solution and in bold
those in Category 1. One important difference between these
solutions is the situation of Project 20 (or Pj20); while it
appears on the portfolio of ACO-SOP1 and ACO-SOP2, it
does not in Sol1 and Sol2.The relevance of this project is that it
belongs to the reference portfolio 𝐶ref = {1, 2, 3, . . . , 22}, and
the fact that it does not appear in Sol1 and Sol2 constitutes
an unacceptable discrepancy for the DM characterized in
Table 3.

To explain this situation, let us note that Pj20 is in
Category 1 and has an average cost of Cost(𝑃𝑗20) = 97.5
and the projects of Sol1 that are in the same category
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Table 6: Projects of the portfolios created from solutions Sol1, Sol2, ACO-SOP1, and ACO-SOP2.

Solution Projects in the portfolio Avg (Cat1)
Sol1 {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 24, 25, 26, 27} 102.19
Sol2 {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 24, 25, 26, 27, 28} 99.55
ACO-SOP1 {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 22, 25, 26, 27, 28, 29, 30, 33, 34} 91.29
ACO-SOP2 {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39} 85.31

have an average cost of Avg(Cat1) = 102.19. Hence, the
unacceptability level of 𝑃𝑗20 is UNAc(𝑃𝑗20) = (Cost(𝑃𝑗20) −
Avg(Cat1))/Avg(Cat1) = −0.04. The value of UNAc(𝑃𝑗20) is
smaller than the unacceptability threshold 𝛾 = 0.20 defined
for the DM; that is, the projects in the portfolio are too costly
to exclude𝑃𝑗20 from𝐶ref and possibly some others, a situation
that occurs with Sol1 and Sol2 and that generally does not
satisfy the DM’s preferences. Such solutions where the DM’s
preferences are not considered can be constructed using
approaches from [9, 11], but the present approach overcomes
it by including preferences during the search process; as a
result, the solutions contain portfolios more convenient for
the DM, because they include an increment in the number of
projects of up to 20%,with the guarantee that this still satisfies
his/her preferences.

To summarize, this section has presented the results
from the experiment to analyze the quality of the solutions
provided by ACO-SOP and their robustness. The robustness
was demonstrated by providing evidence that ACO-SOP pro-
vides solutions of the same quality as the other approaches,
whenever they satisfy the DM’s preferences; evidence of this
is provided in Table 4, where solutions of similar quality are
presented, solutions that are in the RoI for a DM. In general,
whenever a solution fits the interest of the DM expressed in
the parameter values of the preference model, this solution
can be found in the search space, showing that the present
approachmaintains the same level of information. Finally, the
lack of preferences on approaches such as [11] or [9] can lead
to the construction of solutions that are not in the RoI for a
DM, that is, solutions the DM is not interested in.

6. Some Conclusions

This paper proposes a knowledge-based decision-support
system for the Portfolio Selection Problem on a Set of
Ordered Projects.This problem commonly has a lack of avail-
able information, which is why the incorporation of knowl-
edge mechanisms in the solution strategies can improve the
quality of the solutions.

This work is a crucial refinement from a recent proposal
that modeled the DM’s attitude through a many-objective
optimization problem. The high dimensionality of this prob-
lem is a great concern for metaheuristic approaches in gen-
erating an acceptable approximation to the Pareto frontier,
and it is also a great concern for the DM in making the final
decision due to human cognitive limitations. Here, we have
presented a method that incorporates the DM’s preferences
through a fuzzy outranking-based relational model. This
allows mapping the original many-objective problem into

a surrogate three-objective problem. With this transforma-
tion, the process of identifying the Region of Interest (the
preference privileged zone of the Pareto frontier) becomes
easy. Another advantage of the proposal is to be very robust
with respect to an increasing number of objective functions.
Robustness is important to make a finer representation of the
DM’s preferences, including project synergic effects. So this
contribution should be significant in this particular field of
project portfolio optimization.

The strongly nonlinear surrogate problem is solved by
using an ant-colony algorithm. This algorithm includes
a knowledge and learning mechanism in the form of a
pheromone matrix and integrates a decision-support mecha-
nismbased on theDM’s preferences.The experimental results
show its capacity to obtain consistent solutions in the Region
of Interest.These solutions surpass in quality others obtained
by alternative proposals taking into account the amount and
impact of the supported projects.

Let us observe that the surrogate model not only reduces
the dimensionality of the problem but also reduces the
number of alternatives that result from the multiobjective
optimization process, because it provides only nonoutranked
solutions that are on the privileged zone of the known
Pareto frontier. Comparisons between pair of alternatives
are not so difficult as the number of objectives seems to
suggest. Note that the objectives 𝑁1 and 𝑛sd1 are strongly
more important than the remaining ones. So, the DM can
apply a sort of lexicographic priority that allows a radical
reduction of the set of solutions. Even though it is possible
that ACO-SOP produces a number of portfolios that could
not be easily handled by the DM, this situation can be
addressed by the support of an expert analyst who, using a
multicriteria decision method, provides a sufficiently small
set of alternatives that can be handled by the DM.

Another point that is worthy of discussion is that the
projects might involve objectives that are hard to judge,
as is the case of the risk, because they are complex in
both quantitative and qualitative elements. However, it is
important to note that such cases are handled in the present
approach through the ranking. Following this idea, let us
note that this work addresses the special case of PSPSOP
that has as the only available information the ranking of the
projects and their costs and that it is the rank that integrates
all the previous existing information about the criteria that
characterized the projects. In other words, the instances
of PSPSOP already capture information about criteria such
as risk in the rank, and the methodology followed to do
such integration is out of the scope of the present research.
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However, if it were the case that an alternative to solve the
problem of integrating objectives into ranking should be
proposed, it could be done through the family of ELECTRE
methods [26], which can address qualitative and quantitative
information in a unique aggregation model of preferences.

Finally, some situations that can be present in the
instances of the special case of PSPSOP studied here are
the existence of interdependence among criteria and/or
projects. Fuzzy multicriteria methods derived from outrank-
ing approaches can handle interdependence among criteria
and reflect it on the rank ordering of candidate projects (cf.
[29]). So, the rank used by our proposal takes into account
the criterion interdependence. On the other hand, the project
interdependence remains a challenge for the proposedmodel;
it is defined as part of the future work of this research to
explore the possibility of integrating synergy negative and
positive effects among projects through the incorporation of
artificial projects that are related to their interdependence.
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