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The objective of this study is to evaluate the performances of Intel Xeon Phi hardware accelerators for Geant4 simulations,
especially for multithreaded applications. We present the complete methodology to guide users for the compilation of their Geant4
applications on Phi processors. Then, we propose series of benchmarks to compare the performance of Xeon CPUs and Phi
processors for aGeant4 example dedicated to the simulation of electron dose point kernels, the TestEm12 example. First, we compare
a distributed execution of a sequential version of the Geant4 example on both architectures before evaluating the multithreaded
version of the Geant4 example. If Phi processors demonstrated their ability to accelerate computing time (till a factor 3.83) when
distributing sequential Geant4 simulations, we do not reach the same level of speedup when considering the multithreaded version
of the Geant4 example.

1. Introduction

Monte Carlo simulations have become an indispensable tool
for radiation transport calculations in a great variety of
applications. The Geant4 simulation toolkit [1] has come
into widespread use in the field of high energy physics for
simulating detectors in the Large Hadron Collider (LHC)
experiments and also in the field of medical physics for
diagnostic applications (e.g., analysis of the radiation burden
to patients), for therapeutic applications (e.g., treatment
planning in radionuclide therapy and treatment verification
through emission scans), and for external beam therapy,
especially in emerging areas such as proton and light-ion
therapy [2–4]. The toolkit has demonstrated an attracting
increasing interest because of its great versatility. It con-
tains a comprehensive range of physics models for electro-
magnetic, hadronic, and optical interactions of a large set
of particles over a wide energy range. It furthermore offers

a diversity of tools for defining or importing the prob-
lem geometry, for modeling complex radiation sources and
detection systems, including electromagnetic fields, elec-
tronic detector responses, and time-dependencies, and for
exporting the required output data. The code is continuously
being improved and extended with new functionalities. Since
release 10.0, a multithreaded version of Geant4 provides the
possibility to manage simulations on different threads at the
event level. Through this new capacity and the market entry
of novel Intel Xeon Phi hardware accelerators [5, 6], it was
relevant to evaluate computing time performances of Geant4
10.0 with these new processors.

Some authors [7–11] already compared the performance
of Intel Xeon Phi accelerators with GP-GPU (General Pur-
pose Graphical Processing Unit) architectures; outcomes
about these studies lead to convergent arguments on the
necessity to initiate clever and optimized programming for
Intel Phi in order to achieve performances very close to
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GPUs. It has to be remarked that the portability of codes
on GP-GPU is not always feasible; and in case it is, it
demands greater code programming thanXeon Phi hardware
accelerators. Effectively, regarding GP-GPU, highly parallel
code sections have to be first identified in order to be fully
rewritten using the CUDA language [12, 13]. For Xeon Phi
hardware, simple rebuilding with correct memory usage is
enough for using it. Bernaschi et al. [7] evaluated CPU Sandy
Bridge, KeplerGPU, andXeonPhi processors for a simulation
in physics. In order to obtain good performances for their
application, they highly tuned their application. For Xeon Phi
hardware accelerators (5110P), they particularly worked on
the memory management regarding the inputs and outputs
used by their application and on the tuning of the C source
code. When no changes are made on the application, they
found that 1 GPGPU NVIDIA Kepler K20 is equivalent
to 1 Phi and to 5 CPUs (Intel E5-2687W), while with a
strong scaling (using MPI parallelization with asynchronous
communication primitives to overlap data exchangeswith the
computations) 1 GPU is equivalent to 1.5 to 3.3 Phi. Lyakh
[8] is more contrasted regarding this kind of comparisons by
arguing on the difficulty to scale correctly an application to
each architecture. Nevertheless, he obtained a steady x2-x3
speedup on GP-GPU architecture (Tesla K20X) compared to
Phi (5110P). For Murano et al. [9], GPUs (NVIDIA Kepler
K20) are constantly faster (between 12 and 27 times faster)
thanXeonPhi hardware accelerators (5110P)without any tun-
ing of the code (but using vectorization and adapted memory
management). Other authors [14] experienced unsatisfactory
performances when using Intel Xeon Phi accelerators for a
medical imaging benchmark using a simple data structure
and massive parallelism. In a recent study [15], we investi-
gated performances of 7120P Intel Xeon Phi by distributing
memory-bound Geant4 (version 9) simulation concerning
the tracking of muons through a volcano in order to produce
tomographic imaging. A maximum speedup of 2.56x was
obtained when compared to calculations performed on a
Sandy Bridge processor at 3.1 GHz.

In this paper, we describe very precisely the methodology
followed for the compilation of Geant4 software and depen-
dencies in the objective to guide any user willing to take part
in the expected Xeon Phi computing potentiality for time-
consuming simulations. Then, we propose as benchmarks a
set of computing tests performed for the Geant4 advanced
example “TestEm12” in the objective to conclude the suitabil-
ity of Xeon Phi architecture for such simulations.

2. Portability of Geant4 Software on Intel
Xeon Phi Coprocessor

2.1. Xeon Phi Cluster Characteristics. The simulations have
been performed on a machine having two Intel Xeon CPUs
E5-2690v2 (http://ark.intel.com/) (10 cores, 12MB Cache,
3.001 GHz,HyperThreading, 2 threads per core) each capable
of a theoretical 240.1 GFLOPS of double precision floating
point instructions with 59.7GB/sec memory bandwidth,
128GB of memory, and four Xeon Phi hardware accelerators
5110P (60 cores, 1.052GHz, 4 hardware threads per core) each
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Figure 1: Dependencies concerning Geant4 10.0.p01 software. Li-
braries in grey are not used for our parallel benchmark.

capable of theoretical 1010.5 GFLOPS of double precision
floating point instructions with 320GB/sec memory band-
width and 8GB of memory. If we consider the announced
performance in GFLOPS, the maximum speedup in favor
of Xeon Phi should be 4.2x. The Turbo frequency (reaching
3.6GHz) was kept inactivated for the reproducibility of the
benchmark computing times. The version of the dedicated
Linux distribution is 2.6.38.8+mpss3.4.1 for Xeon Phi specific
architecture and 2.6.32-504.1.3.el6.x86 64 (CentOS 6.6) for
Xeon CPU. In the whole paper, we simply refer to “Xeon”
for Intel Xeon CPU and to “Phi” for Xeon Phi hardware
accelerator.

2.2. Cross-Compilation of Geant4 Software and Dependencies.
The present work was performed with version 10.0p01 of
Geant4 [1] making use of CLHEP [16] libraries version
2.1.3.1, in order to handle pseudorandomnumbers, numerics,
points, vectors, planes, their transformations in 3D space,
and Lorentz vectors and their transformations in simulations.
Xerces 3.1.1 and Expat 2.1.0 libraries used to manage XML
files are also necessary to runGeant4 correctly.TheQt library
used for the OpenGL visualization has not been compiled
since the visualization option is not recommended when
using a parallel architecture for large computational tests (see
Figure 1). Source codes were compiled with the Intel C++
Composer XE 2013 compiler set to O2 optimization level in
order to avoid introducing uncontrolled bias when executing
the codes compared to the O3 level like it is specified in the
reference guide for Intel compilers (Quick-Reference Guide
to Optimization with Intel Compilers version 12; retrieved
from https://software.intel.com/sites/default/files/compiler
qrg12.pdf). The release of the CMake build system is version
2.8.

Each compilation process (native or cross-compilation)
has to be run on Xeon (x86 64) processor using the Intel C
Compiler (ICC) version 14.0.3 (compliant with GCC 4.8.1) in
order to be later launched on Phi coprocessor architecture.
For CMake compilation, the cross-compilation for Xeon Phi
accelerators is activated when using the CMake flag “-mmic”
for

(i) DCMAKE CXX FLAGS,

(ii) DCMAKE C FLAGS,DCMAKE EXE LINKER FLAGS,

(iii) DCMAKE MODULE LINKER FLAGS,

(iv) DCMAKE SHARED LINKER FLAGS options.
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#!/bin/sh

echo"Geant4"

PATH=/mic-install/geant4/geant4.10.0.p01install/bin/:$PATH
LDLIBRARYPATH=/mic-install/geant4/geant4.10.0.p01install/lib/:$LDLIBRARYPATH
G4LEDATA=/mic-install/geant4/geant4.10.0.p01install/share/Geant4-10.0/data/G4EMLOW6.35

G4LEVELGAMMADATA=/mic-install/geant4/geant4.10.0.p01install/share/Geant4-10.0/data/\

PhotonEvaporation3.0

G4NEUTRONXSDATA=/mic-install/geant4/geant4.10.0.p01install/share/Geant4-10.0/data/\

G4NEUTRONXS1.4G4NEUTRONHPDATA=/mic-install/geant4/geant4.10.0.p01install/share/Geant4-10.0/

data/G4NDL4.4

G4RADIOACTIVEDATA=/mic-install/geant4/geant4.10.0.p01install/share/Geant4-10.0/data/\

RadioactiveDecay4.0

G4ABLADATA=/mic-install/geant4/geant4.10.0.p01install/share/Geant4-10.0/data/G4ABLA3.0

G4PIIDATA=/mic-install/geant4/geant4.10.0.p01install/share/Geant4-10.0/data/G4PII1.3

G4REALSURFACEDATA=/mic-install/geant4/geant4.10.0.p01install/share/Geant4-10.0/data/\

RealSurface1.0

G4INSTALL=/mic-install/geant4/geant4.10.0.p01/share/Geant4-10.0/geant4make

G4INCLUDE=/mic-install/geant4/geant4.10.0.p01/include/Geant4

G4LIBUSEGDML=1

G4LIB=/mic-install/geant4/geant4.10.0.p01/lib64/Geant4-10.0

G4LIBBUILDSHARED=1

G4WORKDIR=/home/user/geant4workdir

echo"CLHEP"

PATH=/mic-install/clhep/clhep-2.1.3.1install/bin/:$PATH
LDLIBRARYPATH=/mic-install/clhep/clhep-2.1.3.1install/lib/:$LDLIBRARYPATH
echo"XERCES"

PATH=/mic-install/xerces/xerces-c-3.1.1install/bin/:$PATH
LDLIBRARYPATH=/mic-install/xerces/xerces-c-3.1.1install/lib/:$LDLIBRARYPATH
echo"EXPAT"

PATH=/mic-install/expat/expat-2.1.0install/bin/:$PATH
LDLIBRARYPATH=/mic-install/expat/expat-2.1.0install/lib/:$LDLIBRARYPATH
echo"Intel"LDLIBRARYPATH=/mic-install/lib/mic/:$LDLIBRARYPATH
exportPATH=$PATH
exportLDLIBRARYPATH=$LDLIBRARYPATH
exportG4LEDATA=$G4LEDATA
exportG4LEVELGAMMADATA=$G4LEVELGAMMADATA
exportG4NEUTRONXSDATA=$G4NEUTRONXSDATA
exportG4NEUTRONHPDATA=$G4NEUTRONHPDATA
exportG4RADIOACTIVEDATA=$G4RADIOACTIVEDATA
exportG4ABLADATA=$G4ABLADATA
exportG4PIIDATA=$G4PIIDATA
exportG4REALSURFACEDATA=$G4REALSURFACEDATA
exportG4INSTALL=$G4INSTALL
exportG4INCLUDE=$G4INCLUDE
exportG4LIB=$G4LIB

Script 1: Environment variables defined in env.sh file before launching compilation process.

For libraries built using a configure script, the cross-
compilation for Xeon Phi accelerators is activated when using
the flag “-mmic” and when specifying that the x86 64 host
machine is unknown in order to be sure that the compilation
process does not refer to the current Linux version installed
on the machine hosting the compiler.

2.2.1. Definition of Environment Variables. In order to com-
pile Geant4 toolkit and dependencies, it is necessary to set
specific environment variables. It is mandatory to append the
corresponding libraries to the LD LIBRARY PATH variable
and the executable binaries to the PATH variable. For our

compilation, we created a mic-install repository where all
the libraries were downloaded, built, and installed.

All variables starting their name with G4 are used for
setting the Geant4 data libraries paths (photon evapora-
tion data, radioactive decay data, particle cross sections for
different energy ranges, cross section data for impact ion-
ization, nuclear shell effects, optical surface reflectance, and
nuclide state properties). It has to be noticed that as the bash
and tcsh Unix shells are not supported on Phi coprocessor,
environment variables have to be set using a basic sh
script file; this file is then sourced using the command line
“source env.sh” (Script 1).
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cd xerces-c-3.1.1 build

CC=/opt/intel/bin/icc CFLAGS="-ansi -fp-model precise -mmic -static-intel" CXXFLAGS= \

"-ansi -fp-model precise -mmic \

-static-intel" CXX=/opt/intel/bin/icpc../xerces-c-3.1.1 src/configure \

--prefix=/mic-install/xerces/xerces-c-3.1.1 install/ --host=x86 64-unknown-linux-gnu

make -j40

make install

Script 2: Cross-compilation instructions to build xerces library using a configure script.

cd expat-2.1.0 build

CC=/opt/intel/bin/icc CFLAGS="-ansi -fp-model precise \

-mmic -static-intel"../expat-2.1.0 src/configure \

--prefix=/mic-install/expat/expat-2.1.0 install/ \

--host=x86 64-unknown-linux-gnu

make -j40

make install

Script 3: Cross-compilation instructions to build expat library using a configure script.

cd clhep-2.1.3.1 build

cmake \

-DCMAKE CXX COMPILER=/opt/intel/bin/icpc \

-DCMAKE CXX FLAGS="-ansi -fp-model precise -mmic -static-intel -gxx-name=g++-4.4" \

-DCMAKE C COMPILER=/opt/intel/bin/icc \

-DCMAKE C FLAGS="-ansi -fp-model precise -mmic -static-intel -gcc-name=gcc-4.4" \

-DCMAKE EXE LINKER FLAGS="-ansi -fp-model precise -mmic -static-intel" \

-DCMAKE INSTALL PREFIX=/mic-install/clhep/clhep-2.1.2.3 install \

-DCMAKE MODULE LINKER FLAGS="-ansi -fp-model precise -mmic -static-intel" \

-DCMAKE SHARED LINKER FLAGS="-ansi -fp-model precise -mmic -static-intel" \

../clhep-2.1.2.3 src/CLHEP

make -j40

make install

Script 4: CMake instructions for CLHEP library compilation.

2.2.2. Cross-Compilation of Geant4 Toolkit and Dependen-
cies. The methodology followed for cross-compiling Geant4
toolkit and dependencies is inspired from a preliminary work
[17] tested for a previous Geant4 version (9.6 p02) which was
not developed for multithreaded execution. The methodol-
ogy has been improved and lightened especially regarding the
ROOT compilation, which is included in Geant4 since 10.0
release.

Xerces and Expat libraries have been compiled using the
configuration instructions specified in Scripts 2 and 3.

Script 4 details the CMake instructions for the compila-
tion of the CLHEP library.

Finally, Script 5 describes the CMake instructions for
compiling Geant4 on Xeon Phi coprocessors.

It has to be remarked that we used the “-fp-model
precise” flag making ICC compiler fulfill the IEEE 754
standard for floating point number representation and com-
putation. This flag also prevents compiler optimizations that

could introduce numerical errors according to the current
floating point standard.

2.2.3. Compilation Test. The Geant4 extended example Tes-
tEm12 migrated to enable multithread computing (accessible
at $G4INSTALL/examples/extended). To compile TestEm12
for Xeon Phi coprocessors, the listed CMake instructions
have to be used (see Script 6).

This example, already validated by authors against other
Monte Carlo codes [18], enables scoring the energy deposited
per source particle in thin, concentric, spherical shells around
an isotropic, monoenergetic, electron point source of 4MeV
(Mega Electron-Volt) centered in spherical geometry. The
material of the sphere was chosen to be liquid water (density
1 g⋅cm−3); the radius of the sphere was set to 3 cm and the
number of shells was fixed to 150. The standard electro-
magnetic (EM) physics list option 3, describing electron and
photon interactions between ∼1 keV and 100 TeV, was used
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cd geant4.10.0.p01 build

cmake \

-DGEANT4 USE GDML=ON \

-DXERCESC ROOT DIR=/mic-install/xerces/xerces-c-3.1.1 install \

-DXERCESC LIBRARY=/mic-install/xerces/xerces-c-3.1.1 install/lib/libxerces-c.so \

-DXERCESC INCLUDE DIR=/mic-install/xerces/xerces-c-3.1.1 install/include \

-DCLHEP ROOT DIR=/mic-install/clhep/clhep-2.1.2.3 install \

-DGEANT4 USE QT=OFF \

-DEXPAT INCLUDE DIR=/mic-install/expat/expat-2.1.0 install/include \

-DEXPAT LIBRARY=/mic-install/expat/expat-2.1.0 install/lib/libexpat.so \

-DGEANT4 INSTALL DATA=ON \

-DGEANT4 BUILD EXAMPLES=ON \

-DGEANT4 BUILD MULTITHREADED=ON \

-DCMAKE INSTALL PREFIX="/mic-install/geant4/geant4.10.00.p01 install" \

-DCMAKE C COMPILER="/opt/intel/bin/icc" \

-DCMAKE CXX COMPILER="/opt/intel/bin/icpc" \

-DCMAKE C FLAGS="-ansi -fp-model precise -mmic" \

-DCMAKE CXX FLAGS="-ansi -fp-model precise -mmic" \

-DCMAKE SHARED LINKER FLAGS="-ansi -fp-model precise -mmic -Wl, \

-rpath,$LD LIBRARY PATH -Wl,-rpath-link,$LD LIBRARY PATH"\

-DCMAKE EXE LINKER FLAGS="-ansi -fp-model precise -mmic -Wl, \

-rpath,$LD LIBRARY PATH -Wl,-rpath-link,$LD LIBRARY PATH"\

-DWITH ANALYSIS USE=ON \

-DCMAKE VERBOSE MAKEFILE=OFF -Wno-dev \

../geant4.10.0.p01 src

make -j40

make install

Script 5: CMake instructions for Geant4 software compilation.

cd TestEm12MT build

cmake \

-DCMAKE CXX COMPILER=/opt/intel/bin/icpc \

-DCMAKE CXX FLAGS="-ansi -fp-model precise -mmic -static-intel -gxx-name=g++-4.4" \

-DCMAKE C COMPILER=/opt/intel/bin/icc \

-DCMAKE C FLAGS="-ansi -fp-model precise -mmic -static-intel -gcc-name=gcc-4.4" \

-DCMAKE EXE LINKER FLAGS="-ansi -fp-model precise -mmic -static-intel"../TestEm12MT

make -j40

Script 6: CMake instructions for compiling Geant4 TestEm12 example.

for all simulations, taking into account electron impact ion-
ization, multiple scattering, and Bremsstrahlung generation.
In Script 7 is presented a TestEm12 macro file example.
When using the multithreaded mode, the command line
“/run/numberOfThreads 10” has to be added with the
corresponding number of threads (in this example: 10
threads). The macro file is launched on coprocessors with
the executable generated after the compilation using “./exe
TestEm12.mac”.

In order to verify the correct cross-compilation of Geant4
and dependencies, we tested the reproducibility of results
for TestEm12 electromagnetic example on 1 Xeon and its
multithreaded version TestEm12MT running on 40 Xeon
threads and 240 Phi threads using or not the optimized com-
pilation flag “-fp-model precise”. Figure 2 represents the
energy deposited per source particle for the four test cases.

Each test case has been repeated 5 times. As it can be noticed,
if the compilation flag “-fp-model precise” is omitted
during the compilation procedure of Geant4 and CLHEP,
then the energy deposition profile is shifted to significantly
smaller radial distances which leads to a bad agreement with
other configurations. If we quantify the difference between
energy (𝐸

𝐴

) at distance 𝑟 calculated with Xeon CPU and the
energy (𝐸

𝐵

) at the same distance calculated with Phi without
applying any optimized compilation process, as a percentage
of the maximum value max(𝐸

𝐴

; 𝐸
𝐵

) of the two calculated
energy distributions, then differences between 𝑟/𝑟

0

= 0 and
𝑟/𝑟
0

= 2.0 up to 40% are found when a threshold less than
3% is usually accepted. No other optimized compilation flags
were tested as we achieved a very good agreement with
“-fp-model precise” flag.
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/control/verbose 0

/run/verbose 0#

/testem/det/setMat G4 WATER

/testem/det/setRadius 3 cm#

/testem/phys/addPhysics emstandard opt3 # em physics

/run/numberOfThreads 10

/run/initialize

/gun/particle e-

/gun/energy 4 MeV

/analysis/setFileName test

/analysis/h1/set 1 150 0. 3. cm #edep profile

/analysis/h1/set 3 100 0. 3. cm #true track length

/analysis/h1/set 8 120 0. 1.2 none #normalized edep profile

/testem/applyAutomaticStepMax true

/run/beamOn 1000000

Script 7: TestEm12 macro file example (TestEm12.mac).
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Figure 2: Comparison of energy depositions for monoenergetic
electrons with initial energy of 4MeV using TestEm12 Geant4
example calculated using a single Xeon CPU (black line), the mul-
tithreaded TestEm12 Geant4 example calculated using 40 Xeon
threads (grey dashed line), using 240 Phi threads (grey circles),
and using 240 threads on a Phi accelerator with an optimized
compilation process (black circles). A perfect agreement is noticed
between the example of reference on a single CPU and the optimized
compilation process on Phi accelerator.

3. Performance Evaluations

3.1. Benchmark Descriptions. Geant4 simulations, through
TestEm12 extended example, have been tested on Xeon Phi
accelerators using distributed (TestEm12) and multithreaded
(TestEm12MT) modes. Prior to any computational tests, we
profiled TestEm12 example using the Intel VTune toolkit
in order to quantify memory bandwidth consumption. We
could conclude that the simulation is highly compute-bound.

In this study, we consider that the “distributed” mode
means launching several independent simulation instances

Table 1: Description of number of partitions (or threads) used for
benchmarking on Xeon and Phi coprocessors.

Number of
partitions Xeon Phi

TestEm12
example 1 10 20 1 60 240 960

TestEm12MT
example 10 20 40 10 20 40 60 120 240 960

at the same time without involving any communication
between instances. Concerning the “multithreaded” mode,
simulations are launched using the pthread library. In both
cases, simulations are balanced regarding the number of
particles equally spread among worker nodes.

For the distributed mode, the total number of particles
is split between the multiple instances of runs like described
by authors in [19, 20]. The postprocessing time due to the
merging of results has been evaluated and represents a neg-
ligible percentage (less than 0.5%) of the total execution time
measured.

Table 1 is listing the number of partitions used for speedup
calculations. For each benchmark, simulations were repeated
five times; mean time values have been used for all the results.
Standard deviations for all recovered time values do not
overlap 1%. The standard EM option 3 used 4MeV electron
point sources. All times are wall clock times, measured by the
internal clock of the host machine. Distributed simulations
used the Mersenne Twister pseudorandom number gener-
ator (PRNG). The pseudorandom numbers were generated
using a sequence splitting method ensuring a sufficiently
large sequence of 3.1010 nonoverlapping random numbers in
order to not reproduce any particle event. When using the
multithreaded version of Geant4, nothing was modified to
the process of partitioning; the Mersenne Twister PRNG was
used.

The Xeon Phi hardware was used with a “native mode,”
meaning whole simulations were executed on the Xeon Phi
or directly started on the Xeon Phi using SSH.
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Figure 3: Computing time in minutes of TestEm12 Geant4 example
running on 1 Xeon thread (blue) and 1 Phi thread (green) coproces-
sors for generated source particles going from 103 to 107. Speedup
(red) is indicated for each number of particles.
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Figure 4: Computing time in minutes of TestEm12 Geant4 example
distributed on 10 Xeon (blue) cores and 60 Phi (green) cores for
generated source particles going from 103 to 107. Speedup (red) is
indicated for each number of particles.

3.2. Xeon versus Phi for Distributed Geant4 Simulations (Tes-
tEm12). Speedup was evaluated for distributed TestEm12
simulations for generated source particles going from 103 to
108. Figure 3 presents execution times in minutes obtained
for one Xeon thread and one Phi thread as the speedup
reached. It can be observed that the speedup keeps constant
(∼0.38) whatever the number of particles selected. This result
was expected since the ratio of intrinsic frequencies between
Xeon and Phi is about 3 (3.001GHz for Xeon compared to
1.052GHz for Phi).

In order to verify the Intel claimed performances for Xeon
and Phi [5], we represented on Figure 4 execution times in
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Figure 5: Computing time in minutes of TestEm12 Geant4 example
running on 20 Xeon (blue) threads and 240 Phi (green) threads for
generated source particles going from 103 to 108. Speedup (red) is
indicated for each number of particles.

minutes obtained for 10 Xeon versus 60 Phi hardware cores. It
can be observed that when using a higher number of particles
(107), we reach a speedup of 2.18. For this benchmark, it
appears that Phi coprocessors are more suitable than Xeon
coprocessors for number of particles higher than 105.

When using the total amount of threads available on
1 Xeon and 1 Phi, respectively, 20 and 240 threads (see
Figure 5), we reach a speedup of 3.83 for 108 particles, which
is close to the expected Intel maximum speedup of 4.2, when
comparing the announced GFLOPS performances. Since
we have selected limited optimization and a floating point
precision flag, this result is very satisfying.

3.3. Distributed (TestEm12) versus Multithreaded (Tes-
tEm12MT) Geant4 Simulations on Xeon Processors. Speedup
was evaluated for three different numbers of threads: 10,
20, and 40 corresponding, respectively, to the number of
hardware cores for one Xeon CPU, the number of hardware
cores for 2 Xeon CPUs, and the number of threads for 2
Xeon CPUs. The goal was to evaluate the potential impact of
using a multithreaded version compared to a distributed one
on Xeon processors. This case study presented on Figure 6
demonstrates that TestEm12MT, the multithreaded version
of TestEm12 Geant4 example, is slower than TestEm12
(speedup between 1.08 and 1.33) whatever the number of
threads used.

3.4. Impact of the Number of Phi Threads for Multithreaded
(TestEm12MT) Geant4 Simulations. In the objective to eval-
uate if a high number of threads reduces significantly the
execution time of TestEm12MT on Phi whatever the number
of particles generated, we plotted on Figure 7 the different
computing times obtained for generated source particles
going from 105 to 108 and a number of Phi threads going from
10 to 240.
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Figure 7: Comparison of computing times in minutes of Tes-
tEm12MT Geant4 example running on 10, 20, 40, 60, 120, and 240
Phi threads for generated source particles going from 105 to 108.

We can remark that the higher the number of generated
source particles is, the higher the number of threads must be
to reduce the execution times. For 108 particles, we obtain an
almost linear diminution of computing timewith the number
of threads (till 60 threads), as it is also shown in Table 2
representing the speedups obtained for 10, 20, 40, 60, 120,
and 240 Phi threads for 108 particles compared to one Phi
thread. For source particles inferior to 105, the initialization
process to fix physics datasets and geometry is of the same
order of duration as the emission and tracking of particles
which explains that in this case we obtain the best computing
time for a lower number of threads (20 threads).
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Figure 8: Computing time in minutes of TestEm12MT Geant4
example running on 40 Xeon threads (blue) and the best computing
time obtained with Phi threads (green) for generated source par-
ticles going from 105 to 108. Speedup (red) is indicated for each
number of particles.

Table 2: Speedups obtain for 10, 20, 40, 60, 120, and 240 Phi threads
for 108 particles compared to 1 Phi thread.

Number of threads 10 20 40 60 120 240
Speedup 10.00 19.96 39.83 60.11 94.02 114.20

Table 3: Computing time obtained for 108 and 109 particles on 40
Xeon threads and 960 Phi threads.

Number of particles Computing time (mins)
40 Xeon threads 960 Phi threads

108 40.6 49.9
109 407.5 390.4

3.5. Xeon versus Phi for Multithreaded (TestEm12MT) Geant4
Simulations. The speedup was evaluated for TestEm12MT
simulations using the standard EM physics list for generated
source particles going from 105 to 108 running on 40 Xeon
threads and the best computing time obtained for Phi threads.
It can be observed that whatever the number of particles
generated, Phi provides longer execution times (see Figure 8).
The speedup is nevertheless increasing in function of the
number of particles generated to reach 0.25 for 108 particles.

In Table 3, we listed the computing time obtained on 40
Xeon threads and 960 Phi threads for 108 and 109 particles.

When using 960 Phi threads, the computing time reaches
49.9 minutes for 108 particles, which is 23% higher than when
using 40 Xeon threads (computing time corresponding to
40.6minutes). But when reaching 109 particles the computing
time is finally reduced on 960 Phi threads compared to Xeon;
for this last configuration, we obtain a speedup of 1.04.

4. Conclusion

Theobjective of this paperwas to first detail a clear andunder-
standable methodology to compile and execute any Geant4
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application on Xeon Phi accelerators. Special attention
should be paid for using the optimization compilation flag
“-fp-model precise” in order to obtain identical results
compared to an execution on CPUs.

Then, the ambition of authors was to evaluate the per-
formance of Xeon Phi accelerators for such applications
especially due to the availability of the multithreaded version
of the Geant4 toolkit. We have to remind the reader that, in a
first instance, no tuning of the source code has been initiated
in this study. Regarding the different outcomes obtained, we
may conclude that

(i) when distributing sequential Geant4 simulations (40
Xeon threads compared to 240 Phi threads), Phi
(5110P at 1 GHZ) are faster than Xeon CPUs (E5-
2690v2 at 3GHZ), almost reaching the maximum
speedup (3.83x versus 4.2x) though limited optimiza-
tion was considered to save the precision of the final
results;

(ii) when considering multithreaded Geant4 simulations
on Xeon CPUs, we can remark that this version is
unfortunately slightly slower than the classical distri-
bution of the sequential Geant4 simulations whatever
the number of threads used;

(iii) even if we observe a loss of performance for the mul-
tithreaded version of Geant4 on Phi compared to
Xeon CPUs, it has to be noticed that, using a high
number of particles in simulations (corresponding to
more than 6 hours of computing on 40 Xeon CPUs
for 109 particles), we finally reach a very tiny speedup
of 1.04 using 960 Phi threads.

For the moment, we can state that the multithreaded
version of Geant4 is not yet optimized to compete with a
distributed submission of simulations on a farm of CPU
clusters, on a cluster of Phi hardware accelerators, or on a
grid infrastructure. It would certainly necessitate tuning dras-
tically the source code and suppressing any verbose display,
in order to make such applications fully compliant with Xeon
Phi architectures. One would expect that the next generation
of theGeant toolkit (Geant5)would answer such problematic.
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