Hindawi Publishing Corporation
Scientific Programming

Volume 2015, Article ID 937694, 20 pages
http://dx.doi.org/10.1155/2015/937694

Research Article

Hindawi

Cache Locality-Centric Parallel String Matching on Many-Core

Accelerator Chips

Nhat-Phuong Tran,' Myungho Lee,' and Dong Hoon Choi’

!Department of Computer Science and Engineering, Myongji University, 116 Myongji Ro, Cheo-In Gu, Yong In,

Kyungki Do 449-728, Republic of Korea

*Korea Institute of Science and Technology Information (KISTI), 245 Dae Hak Ro, Yu Seong Gu, Daejeon 305-806, Republic of Korea

Correspondence should be addressed to Myungho Lee; myunghol@mju.ac.kr

Received 2 April 2015; Revised 6 August 2015; Accepted 7 September 2015

Academic Editor: Bronis R. de Supinski

Copyright © 2015 Nhat-Phuong Tran et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Aho-Corasick (AC) algorithm is a multiple patterns string matching algorithm commonly used in computer and network security
and bioinformatics, among many others. In order to meet the highly demanding computational requirements imposed on
these applications, achieving high performance for the AC algorithm is crucial. In this paper, we present a high performance
parallelization of the AC on the many-core accelerator chips such as the Graphic Processing Unit (GPU) from Nvidia and the
Intel Xeon Phi. Our parallelization approach significantly improves the cache locality of the AC by partitioning a given set of string
patterns into multiple smaller sets of patterns in a space-efficient way. Using the multiple pattern sets, intensive pattern matching
operations are concurrently conducted with respect to the whole input text data. Compared with the previous approaches where
the input data is partitioned amongst multiple threads instead of partitioning the pattern set, our approach significantly improves
the performance. Experimental results show that our approach leads up to 2.73 times speedup on the Nvidia K20 GPU and 2.00
times speedup on the Intel Xeon Phi compared with the previous approach. Our parallel implementation delivers up to 693 Gbps

throughput performance on the K20.

1. Introduction

Recently, many-core accelerator chips such as the Graphic
Processing Units (GPUs) from Nvidia and AMD and Intel’s
Many Integrated Core (MIC) architectures, among others,
are becoming increasingly popular. The influence of these
chips is rapidly growing in the High Performance Computing
(HPC) server market and in the Top 500 list, in particular.
They have a large number of cores and multiple threads per
core, levels of cache hierarchies, large amounts (>5GB) of
the on-board memory, and >1 Tflops peak performance for
the double precision arithmetic per chip. They are mostly
utilized as coprocessors and execute parallel program kernels
commanded by the host CPU with respect to the input data
provided from the host memory to the on-board device
memory. Using the many-core accelerators, a number of
innovative performance improvements have been reported
for HPC applications and many more are still to come.

String matching is an important algorithm in computer
and network security [1-6], bioinformatics [7, 8], and so
forth. Among many string matching algorithms, Aho-Coras-
ick (AC) [9] is a multiple patterns string matching algorithm
which can simultaneously match a number of patterns for
a given finite set of strings (or dictionary). A Deterministic
Finite Automata (DFA) is first constructed for the given
set of pattern strings. Then the pattern matching operations
are conducted with respect to the input text data while
referencing the DFA. The input data is accessed sequentially;
thus, the access pattern is quite predictable. However, the
access to the DFA is irregular as there are a lot of jumps
from one state to another state of the DFA when processing
the input characters sequentially for possible matches. As the
number of pattern strings increases, for example, up to several
dozens of thousands of virus pattern strings in the computer
virus scan [1], the number of states in the DFA increases

accordingly. The large number of states in the DFA data
structure with irregular access leads to the poor data locality
and high cache misses. Therefore, in order to speed up the
pattern matching and meet the performance requirements
imposed on the AC, optimizing the cache locality is crucial.

In this paper, we develop a high performance paralleliza-
tion for the AC string matching algorithm which significantly
improves the cache locality for the irregular DFA access on
the many-core accelerator chips such as the Nvidia Tesla K20
GPU and the Intel Xeon Phi. Previous research to parallelize
the AC [4-6] partitions the input data amongst multiple
threads and conducts intensive pattern matching operations
in parallel while referencing the single DFA. This approach,
however, leads to a large number of cache misses for the DFA
access with the increase in the number of pattern strings.
Our parallelization approach, instead, partitions the given set
of pattern strings into multiple sets of a smaller number of
pattern strings in a space-efficient way. Thus, multiple small
DFAs are constructed instead of the single large DFA of the
previous approach. Using the multiple small DFAs, intensive
pattern matching operations are concurrently conducted
with respect to the common input text string. This leads
to significantly smaller cache footprints in each core’s cache
for referencing the partitioned DFAs which have irregular
access patterns. Thus, it results in lower cache miss ratios
and impressive performance improvements. Experimental
results on the Nvidia Tesla K20 GPU based on the Kepler
GK110 architecture show that our approach leads up to
2.73 times speedup compared with the previous input data
partitioning approach. The throughput performance reaches
up to 693 Gbps. Compared with single CPU core (out of 6-
core 2.0 Ghz Intel Xeon E5-2650), we obtained a speedup
in the range of 127~311. The speedup over the parallelized
CPU version using 6 threads is in the range of 86~183.
Experimental results on the Intel Xeon Phi with 61 x-86
cores also show up to 2.00 times speedup compared with the
previous input data partitioning approach.

The rest of the paper is organized as follows. Section 2
describes the architectures of the latest many-core accelerator
chips such as the Nvidia Tesla K20 GPU and the Intel
Xeon Phi. Section 3 introduces the AC algorithm. Section 4
describes our parallelization approach which improves the
cache locality for accessing the DFA. Section 5 shows the
experimental results on the Nvidia Tesla K20 and on the Intel
Xeon Phi. Section 6 explains the previous related research on
parallelizing the AC algorithm. Section 7 wraps up the paper
with conclusions.

2. Latest Many-Core Accelerator
Chip Architectures

Recently, many-core accelerator chips are becoming increas-
ingly popular for the HPC applications. Representative chips
are the Nvidia Tesla K20 based on the Kepler GK110 archi-
tecture and the Intel Xeon Phi based on the Many Integrated
Core (MIC) architecture. In the following subsections, we
describe these architectures.

Scientific Programming

2.1. Nvidia Tesla K20 GPU. The latest GPU architecture is
characterized by a large number of uniform fine-grain pro-
grammable cores or thread processors which have replaced
separate processing units for shader, vertex, and pixel in
the earlier GPUs. Also, the clock rate of the latest GPU has
ramped up significantly. These have drastically improved the
floating point performance of the GPUs, far exceeding that of
the latest CPUs. The fine-grain cores (or thread processors)
are distributed in multiple streaming multiprocessors (SMX)
(or thread blocks) (see Figure 1). Software threads are divided
into a number of thread groups (called WARPs) each of
which consists of 32 threads. Threads in the same WARP are
scheduled and executed together on the thread processors
in the same SMX in the SIMD (Single Instruction Multiple
Data) mode. Each thread executes the same instruction
directed by the common Instruction Unit on its own data
streaming from the device memory to the on-chip cache
memories and registers. When a running WARP encounters
a cache miss, for example, the context is switched to a new
WARP while the cache miss is serviced for the next few
hundred cycles. Thus, the GPU executes in a multithreaded
fashion as well.

The GPU is built around a sophisticated memory hier-
archy as shown in Figure 1. There are registers and local
memories belonging to each thread processor or core. The
local memory is an area in the off-chip device memory.
Shared memory, level-1 (L1) cache, and read-only data cache
are integrated in a thread block of the GPU. The shared
memory is a fast (as fast as registers) programmer-managed
memory. Level-2 (L2) cache is integrated on the GPU chip
and used amongst all the thread blocks. Global memory is
an area in the off-chip device memory accessed from all the
thread blocks, through which the GPU can communicate
with the host CPU. Data in the global memory get cached
directly in the shared memory by the programmer or they
can be cached through the L2 and L1 caches automatically
as they get accessed. There are constant memory and texture
memory regions in the device memory also. Data in these
regions is read-only. They can be cached in the L2 cache and
the read-only data cache. On Nvidia Tesla K20, the read-
only data from the global memory can be loaded through the
same cache used by the texture pipeline via a standard pointer
without the need to bind to a texture beforehand. This read-
only cache is used automatically by the compiler as long as
certain conditions are met. The __restrict__ qualifier should be
used when a variable is declared to help the compiler detect
the conditions [10].

In order to efficiently utilize the latest advanced GPU
architectures, programming environments such as CUDA
[10] from NVidia, OpenCL [11] from Khronos Group, and
OpenACC [12] from a subgroup of OpenMP Architecture
Review Board (ARB) have been developed. Using these
environments, users can have a more direct control over the
large number of GPU cores and its sophisticated memory
hierarchy. The flexible architecture and the programming
environments have led to a number of innovative perfor-
mance improvements in many application areas and many
more are still to come.

Scientific Programming

FIGURE 1: Architecture of a latest GPU (Nvidia Tesla K20).

2.2. Intel Xeon Phi. The Intel Xeon Phi (codenamed Knights
Corner) is based on the Intel Many Integrated Core (MIC)
architecture which combines multiple x86 cores on a single
chip. This chip can run in either the native mode where
an application runs directly on it or in the offload mode
where the application runs on the host side and only the
selected regions (compute-intensive regions) are oftloaded to
the Xeon Phi. For the oftload mode, the Xeon Phi is connected
to a host Intel Xeon processor through a PCI-Express bus.

In this paper, we use the Xeon Phi 5120D for our parallel
implementation of the AC:

(i) This coprocessor has 60 in-order compute cores
supporting 64-bit x86 instructions. These cores are
connected by a high performance bidirectional ring
interconnect (see Figure 2). It also has one service
core, thus a total of 61 cores on the chip.

(ii) Each core is clocked at 1053 Mhz and offers the four-
way multithreading (hyperthreading), 512-bit wide
SIMD vectors which corresponds to eight double
precision or sixteen single precision floating point
numbers.

(iii) Each core has a 32KB Ll data cache, a 32KB L1
instruction cache, and a 512 KB unified L2 cache.
Thus, 60 cores have a combined 30 MB L2 cache. L2
cache is fully coherent using the hardware support.

(iv) The Xeon Phi chip has 16 memory channels delivering
up to 5 GT/s (Gigatransfer per second) transfer speed.
The total size of the on-board system memory is 8 GB.

Programmers can use the same programming languages
and models on the Xeon Phi as the Intel Xeon Processor. It
can run applications written in Fortran, C/C++, and so forth
and parallel models such as OpenMP, MPI, Pthreads, Intel
Clik Plus, and Intel Thread Building Block [13].

3. Aho-Corasick (AC) String
Matching Algorithm

The Aho-Corasick (AC) is a multiple patterns string matching
algorithm which can simultaneously match multiple patterns
for a given finite set of strings (or dictionary). The AC
algorithm consists of two phases. In the first phase, a pattern
matching machine called the AC automaton (machine) is
constructed from a given finite set of pattern strings. In the
second phase, the constructed AC machine is used to find the
locations of the string patterns in the given input text [9].

Once the AC automaton is constructed, it invokes three
functions in performing the pattern matching in its second
phase: a goto function g, a failure function f, and an output
function output. Figure 3 shows these functions for a given
set of patterns {“he”, “she”, “his”, “hers”} [9]:

4 Scientific Programming
PCle Core| |Core Core| |Core
client
logic L2 L2 L2 L2
R

GDDR MC %

[TD] ITDWTD‘ [TD] \'M

'_TTD_‘ D] - i) D

GDDR MC F
(&

% GDDR MC
TN J

Core| |Core

Core| |Core

1L L2

1L 1L

FIGURE 2: Architecture of Intel Xeon Phi.

(a) Goto function: g

900 jINEEEERERERERER

(b) Failure function: f

(c) Output function: out-

put

FIGURE 3: Functions used in AC algorithm [9].

(i) The directed graph in Figure 3(a) represents the goto
function g. The g function maps a pair consisting of
a state and an input symbol into a state or a message
fail. For example, the edge labeled h from state 0 to 1
indicates that g(0, ‘h’) = 1. (=(‘h}, °s’) denotes all input
symbols other than %} °s). The absence of an arrow
indicates failure. The AC machine has the property

that g(0, o) # fail for all input symbols o.

(ii) The failure function f (Figure 3(b)) maps a state
into another state. It is consulted whenever the goto
function reports a “fail.”

(iii) The output function output (Figure 3(c)) maps a set of
keywords to output at the designated states.

The AC algorithm can be implemented as Nondeter-
ministic Finite Automata (NFA) or Deterministic Finite
Automata (DFA). In this paper, we implement the AC
algorithm as a DFA which represents all of the possible states
of the machine along with the information of the acceptable
state transitions of the system [14]. The DFA consists of a finite
set of states S and a next move function § such that, for each
state s and input symbol a, §(s, a) is a state in S. Thus, the next
move function ¢ is used in place of both the goto function
and the failure function introduced in Figure 3. The output
function is also incorporated in the DFA. Figure 4 shows the
AC machine for a set of patterns {he, she, his, and hers}, where
the three functions g, f, and output are integrated in a DFA.

Starting from the initial state, the AC machine accepts an
input character and moves from the current state to the next
correct state.

Pseudocode 1 shows how the AC machine works as a
DFA. In this pseudocode, # characters of the input text string
are read sequentially while executing the for-loop. The next
move function § gets the new state from the current state and
the character i. At the new state, the algorithm checks if there
exists any match (if (output(state) != empty). If so, the output
function is executed to print out the matched patterns. In
this code, we only use two functions: the next move function
d and the output function. The failure function is removed
while converting the NFA to the DFA. Assume that we have
the pattern set {he, she, his, and hers} and the input text string
“ushers” The DFA works in the following manner:

(i) Since 6(0, ‘«’) = 0, the AC machine feeds back to state
0.
(ii) Since 6(0, s’) = 3, 8(3, ‘K’) = 4, and &(4, ‘€’) = 5, the
AC machine emits output(5) = {he, she}.
(iii) Since 8(5, ‘) = 8 and 6(8, s’) = 9, the AC machine
emits output(9) = {hers}.

The complexity of the AC algorithm is O(n + m + z),
where » is the sum of the length of the patterns, m is
the length of the input text, and z is the number of the
pattern occurrences in the input text. The construction of

Scientific Programming

FIGURE 4: AC machine implemented as a DFA for a set of patterns f{he, she, his, and hers}.

/*input: input text x, n = length of input text
output: locations at which keywords occur in x */
procedure DFA_AC(char *x, int n)
begin
int state = 0;
for (inti = 0;i < 1 i++)
begin
state = (state, x[i]);
if (output(state) != empty)
begin
print i
print output(state)
end
end
end

PseuDOCODE 1: Pseudocode of the AC machine implemented as
DFA.

the automaton takes O(n). The pattern matching operations
based on the automaton take O(m + z). When the set of
patterns is known in advance and does not change at the run
time such as in the computer virus scan, the construction
of the automaton can be conducted once oft-line and the
automaton is used multiple times for the pattern matches in
the second phase. In this case, the complexity is O(m + z).

4. Cache Locality-Centric Parallelization

In this section, we explain our parallelization approach.
We first describe preliminary steps. Then, we describe our
approach which partitions the DFA into multiple smaller
pieces for improving the cache locality.

4.1. Preliminaries

4.1.1. Execution Scenario of AC Algorithm. As explained in
Section 3, the AC pattern matching DFA for a given finite set
of strings (or dictionary) is constructed in the first phase. We
assume that the constructed DFA is fixed in the second phase
of the AC where the DFA is used to find the locations of the
string patterns in the given input text. A good example case
is the antivirus software where a virus database (or DFA) is
constructed from a given set of several dozens of thousands
of known viruses [1] in the first phase. Then, intensive pattern
matching operations are conducted to detect the viruses in
the hard disk image using the virus database in the second
phase. The latter phase is time-consuming and is repeated
multiple times using the same virus database before the user
updates it. Therefore, in this paper, we assume that the AC
DFA is constructed once on single CPU core of the host
processor in the first phase and a parallel string matching is
conducted on the GPU using the DFA in the second phase
where our parallelization is conducted.

4.1.2. Constructing DFA. The AC pattern matching DFA is
constructed in the first phase as a 2-dimensional matrix
called the State Transition Table (STT) (see Figure 5). The
rows of the STT represent the states in the DFA and the
columns represent the input characters. Thus, for a given state
i and an input character j, an entry STT[i][j] denotes the
corresponding next state or the failure state. Suppose that we
have 256 input characters (mapped to 256 characters of the
extended ASCII table), and then the STT needs 257 columns:
256 columns for characters and 1 column indicating if the
current state is a matched state, where the output function
is executed to print positions and patterns found in the input
data at the state.

4.1.3. Data Placements. Once the STT is constructed by the
host CPU and stored in the host memory, we copy it to

Input symbols (ASCII code)
A

States

FIGURE 5: State Transition Table (STT).

the device memory of the GPU along with the input data.
When copying these data, we need to carefully decide where
in the device memory of the GPU (global memory, constant
memory, or texture memory) we need to store them. A large
amount of data access is generated for both the input data
and the STT data while the pattern matching operations are
conducted. The input data is accessed sequentially from the
beginning. On the other hand, the STT shows different access
patterns. Starting from the initial state of the DFA, a character
of the input data is looked up for the current state to find the
next state. This state transition information is not known at
compile-time; thus, it leads to close to random data access
patterns for the STT.

Considering the above data access characteristics, we
place the input data in the global memory so that it can
be automatically loaded into the L1 cache (through the on-
chip L2 cache) or explicitly loaded into the shared memory
of the GPU by the programmer to minimize the access
latencies. We attach the STT data in the texture memory so
that the actively used part during the random access can be
automatically cached in the L2 and the read-only caches of
the GPU. This separates the access paths of the input and
the STT so that they do not directly interfere with each
other. Thus, it minimizes the memory access delays and uses
the available memory bandwidths more efficiently. Figure 6
shows the resulting data access generated from the multiple
threads assigned to the multiple thread processors (or fine-
grain cores) of the thread blocks on the GPU when the
pattern matching operations are performed based on our data
placement scheme.

4.1.4. Other Considerations for Efficient Parallelization. With
the input data and the STT data stored in the global memory
and the texture memory, respectively, we consider the follow-
ing for an efficient parallelization and high performance for
the pattern matching operations:

(i) Asstated above in Section 4.1.3, each input data chunk
is assigned to a thread on the thread block. When

Scientific Programming

the pattern matching operations are conducted, we
span each thread’s input chunk by X — 1 characters,
where X is the maximum pattern length in the set
of pattern strings. By doing this, we avoid to miss
a pattern match when a pattern string lies on the
boundary of the two adjacent data chunks for two
different threads.

(ii) A software thread block running on the same hard-
ware thread block (at the unit of WARP) generates a
number of access to the input data and to the STT. As
the GPU executes in the multithreaded fashion, the
long global memory latencies for accessing the input
data or the STT data for a WARP can be masked off
or hidden by the pattern matching operations of other
WARPs belonging to the same thread block or other
thread blocks.

(iii) The global memory access overheads for loading
the input data can be further reduced by efficiently
utilizing the on-chip shared memory. We first divide
the input data into a number of blocks. Each data
block is assigned to each thread block. All threadsina
block cooperate to load the corresponding data block
from the global memory to the shared memory before
the pattern matching operations are performed. The
pattern matching operations for a block of threads
are executed in a multithreaded fashion at the unit
of WARP with the input data loads and the STT
data loads from the global memory for some other
WARPs. In order to use the shared memory in an
optimal way, we need to carefully decide the number
of thread blocks and the number of threads per each
thread block. We will explain this in more detail in
Section 4.3.

(iv) While loading the data into the shared memory, an
important performance consideration is to coalesce
the global memory access. In our parallel implemen-
tation, we let multiple threads of a block cooperate to
load one chunk of data after another to fully load a
data block for the thread block. We will describe our
global memory access coalescing technique in more
detail in Section 4.3.

(v) When the input data chunk is loaded from the global
memory to the shared memory, we need a careful
store scheme to avoid or minimize the shared mem-
ory bank conflicts when the stored data get accessed
by multiple threads simultaneously which are also
spread over multiple banks. We use a store scheme
where the input data loaded from the global memory
is divided up into a small number of bytes and stored
to different banks to avoid any bank conflicts. We will
describe our scheme in more detail in Section 4.3.

4.2. Parallelization Based on DFA Partitioning. Once the
input data and the STT data are placed in the global
memory and the texture memory, intensive pattern matching
operations are conducted in the second phase of the AC while
referencing these data. In the previous researches [4-6], they

Scientific Programming

GPU

Thread | Thread | Thread | Thread Thread
0 1 2 3 n-1

STT
IR Input symbols
\'\ -\r"\ A= B
MGG G G Cass
State 1 \\O X X '-" x X X
State2 1 xx% x x x
State 3 x4

)
Chunk

il Input text

FIGURE 6: Data access patterns in the parallel AC algorithm on GPU.

parallelized the second phase by partitioning the input data
into multiple pieces and assigning each piece to different pro-
cessor cores or threads. Then, each core or thread conducts
pattern matching operations in parallel while referencing the
single large STT. This approach, however, incurs large cache
miss overheads for accessing the STT as the STT access
is quite irregular. Furthermore, as the number of pattern
strings increases, the size of the STT increases accordingly.
Thus, a large STT randomly accessed in parallel by multiple
cores or threads leads to the poor cache locality and the low
performance.

In order to significantly reduce the overheads associated
with the irregular STT access with the high cache misses,
we partition the given set of patterns into multiple small
pattern sets. Then, for each small pattern set, we construct
a corresponding DFA in the first phase of the AC which are
represented as multiple small STTs (see Figure 7(b)). In the
second phase, the whole input data is loaded by multiple
cores or threads using the same STT for the pattern matching.
Figure 8 compares our parallelization approach (Figure 8(b))
with the previous approach (Figure 8(a)). Previous approach
[4-6] uses the partitioned input data amongst multiple cores
or threads and the common large STT. Our approach uses
the partitioned small STTs (STT1,...,STT4) from multiple
cores or threads and the common whole input data. Thus,
our approach significantly reduces the cache footprints for
referencing the STT for each core or thread. Our approach,
on the other hand, loads the whole input data for each core
or thread. Since the input data is accessed sequentially, it
can be efficiently loaded from the global memory into the
on-chip shared memories of the GPU by the programmer.
Thus, our approach leads to better cache hit ratio and overall
performance as we will show later in Section 5 (Experimental
Results).

When we partition the given set of patterns into multiple
small pattern sets, we use an algorithm consisting of two
parts:

(i) Part 1 (Algorithm 1) distributes the pattern strings
with the same starting characters into one STT. It
distributes the patterns in a round-robin way from the
patterns sets with the largest number of occurrences
to the least number of occurrences. In lines 5~6,
we count the number of patterns whose starting
character is c;. This step forms the X set containing
256 elements corresponding to the 256 characters in
the C set. Then, the X set and the C set are arranged
in descending order (lines 7 and 8). Through this
arrangement, the characters with the larger number
of occurrences are placed towards the first position of
the X set. From lines 9~13, the algorithm calculates
the position of sets which the patterns are assigned to.
These positions are calculated using the round-robin
distribution. While part 1 helps distribute approxi-
mately the same number of patterns amongst STTs,
there could be some variances in the resulting STT
sizes.

(ii) Part 2 (Algorithm 2) balances the number of patterns
in each STT by redistributing some patterns among
STTs. A number of patterns are moved from the STT
with the largest number of patterns to the STT with
the least number of patterns. The nested while loops
(lines 5~11) are used to make this transition. When
entering the inner while loop, we check whether the
length difference between two sets (S pmax> Spmin) With
the maximum length and the minimum length is
larger than a threshold value (o /lpmin) — 1.0 >
threshold). If so, we move one pattern from S,

8 Scientific Programming

. I

Pattern 1 |

------- » STT 1

I P tt il
>» BigSTT <[> :

Pattern n \Pattern n, » _ STT M

N _/ NG _J
(a) (b)

FIGURE 7: (a) Generating one large STT in previous approaches. (b) Generating multiple small STTs in our approach.

g g 7
7 7 I
g g g

(@ (b)

FIGURE 8: Comparison of our approach with previous approach: (a) previous approach using single large STT and input data partitioning;
(b) our approach using multiple small STTs and no input data partitioning.

Input: n > 0,m > 0, P, where,
n: number of pattern strings
m: number of STTs we want to generate (rm: a multiple of 2)
P={p,,..., p,}, asetof pattern strings
Output: S, where,
S={sy,...,s,} and s, includes pattern strings belong to STT
(1) GivenC = {c,..., 056} a set of 256 characters in ASCII table
(2) Let
(3) (i) x; be the number of pattern strings in P which starts with character ¢
(4) (ii) x; € Xand X = {x,..., X556}
(5) foreach ¢;eCdo
(6) Calculate x;
(7) Sort X in the descending order
(8) Arrange position of ¢; € C based on the order of x; € X
(9) foreach p; € P which starts with character c; € C do
(10) if j+m =0 then
(11) Assign p; to s, where k = j mod m
(12) else
(13) Assign p; to s, where k = max((j mod m), (m — (j mod m) — 1))

ALGoRrITHM l: Generating multiple small ST Ts.

Scientific Programming 9

(1)
()
A3)
(4)
(5)
(6)
(7)
(8)
)

Input: S, where,

S={sy,...,s,} and s; includes pattern strings belong to STT;
Output: S, where,
S={sy,...,s,} and s; has balanced length of patterns

Let
(i) I; be the total length of patterns in STT;, where 0 <i <m
(ii) pmax and pmin be the positions of has-maximum-length s and has-minimum-length s, respectively
(iii) threshold be the limit on the difference between the length of two STTs
do
while (((lpmax/lpmin) —1.0) > threshold) do
Move one pattern at the last position from S, t0 Spimin
Update [0 and [,

Update the total length of patterns in sets of S

(10) Update the pmax and pmin
(11) while (((ymax/Tpmin) — 1.0) > threshold);

ALGORITHM 2: Balancing length of patterns in STTs.

to S,nin and update [, and [, ;. We repeat this
step until ((ymax/lpmin) — 1.0) is equal to or less
than the threshold. After the inner while loop exits,
the positions and the total length of patterns of all
sets are updated (lines 9~10). The threshold value
is used again in the outer while loop to check the
size difference of STTs. If the size difference between
S pmax and Sy, is larger than the threshold, we enter
the inner loop to rebalance the ., and S,;,. The
threshold value is chosen after conducting extensive
experiments. We set the threshold = 15% for the total
number of patterns smaller than 20,000 and 10% for
the number of patterns larger than 20,000, respec-
tively. Thus, using our algorithm, all the resulting
STTs differ in size no larger than 15% for <20,000
patterns and 10% for >20,000 patterns.

An optimal distribution would generate the same number
of patterns in all STTs and the sizes of all STTs get equal. Also
the combined sum of all STTs gets minimized (as small as or
close to the size of the original single large STT generated in
the previous approach). Using our algorithm, the combined
size of the multiple DFAs generated closely matches the size
of the single large DFA which we will show in Section 5.4.
Thus, our approach constructs multiple DFAs in a space-
efficient way. Furthermore, it takes less time to construct
multiple small DFAs compared with the time building one
large STT using the previous approach which we will also
show in Section 5.4.

Our DFA partitioning algorithm is time efficient because
of the linear complexity of both Algorithms 1 and 2. Let us
assume the following:

(1) n: the number of patterns;

(2) m: the number of parts (DFAs or STTs) we want to
partition.

Algorithm 1 consists of four tasks:

(i) calculate values in X (lines 5~6),

(ii) sort values in set X (line 7),

(iii) sort values in C (line 8),
(iv) assign patterns to sets (lines 9~13).

We can calculate the execution times of the tasks as
follows:

(1) (ii) and (iii) are always constants O(1) (In fact their
time complexities are 256 x log(256) = O(1).)

(2) (i) and (iv) = 256 x n, thus O(n).

Thus, the complexity of Algorithm 1is O(n).
After Algorithm 1 is executed, we divide the number of
patterns into m parts. Thus,

(1) each part has n/m patterns in the best case,
or

(2) one set is close to n patterns and the others are almost
empty for the worst case.

Algorithm 2 has two loops. In the worst case, the inner loop
executes n/2 times, because one STT is close to n patterns
and the other STT is almost empty. In the outer loop, we
need to update the length of sets and select two sets with the
maximum length and the minimum length for the next step.
This process selects two sets from m sets. Thus, the execution
time is proportional to m x (m — 1). Total of execution time =
m x (m — 1) x (n/2). Thus, the complexity of Algorithm 2 is
O(n), because m is a constant (number of STTs).

4.3. Further Performance Optimizations. Besides the DFA
partitioning based parallelization approach described above,
we apply further performance optimization techniques to our
GPU implementation. They are mostly taken from our earlier
work [15].

(i) The input data is stored in a sequential fashion in the
global memory. While loading a data block, we let
multiple threads generate memory access which fall
within the 128-bytes range so that these access get
combined into one request and sent to the memory
[10]. This saves the memory bandwidth a lot and
improves the performance [15].

10

(ii) After the input data gets loaded from the global
memory, each thread accesses a chunk of the input
stored in the shared memory. When multiple threads
attempt to read their own data chunk simultaneously
which are spread over multiple banks of the shared
memory, it will result in a lot of bank conflicts. We
use a store scheme through which a chunk of data
loaded from the global memory gets divided up into
4-bytes units and stored in the shared memory at
the addresses which are mapped to the consecutive
shared memory banks in a diagonal way. This store
scheme avoids any bank conflicts and results in a
conflict-free load from the shared memory banks [15].

(iii) The GPU is executing in multithreaded fashion.
Having multiple threads available for the simulta-
neous execution can theoretically tolerate the off-
chip memory (global memory, texture memory, etc.)
access latencies which take a few hundred cycles.
The bandwidth to the off-chip memory, however,
has a limit. If there are too many concurrent access
to the off-chip memory, it can lead to congestion
in the memory access paths and further lengthen
the latencies. Furthermore, the increased number
of threads leads to the increased cache misses [16].
Therefore, finding an optimal number of threads to
effectively hide the off-chip memory latencies while
efficiently utilizing the large number of thread pro-
cessor cores and the memory bandwidth is crucial for
obtaining high performance. We attempt to find and
schedule an optimal number of parallel threads onto
the hardware thread blocks and the thread processor
cores by almost exhaustively searching various input
chunk sizes to be assigned to each thread [15].

We will show the performance benefits of the above optimiza-
tion techniques besides our multiple STTs based approach
later in Section 5.2.2.

5. Experimental Results

In this section, we first explain our implementation details
for the DFA partitioning based parallel AC algorithm. Then,
we present the experimental results on the Tesla K20 GPU
and the Intel Xeon Phi. In order to prove the space efficiency
of our approach, we also compare the size of the single
STT (previous approach) versus the sum of multiple smaller
STTs (our approach). We also show the cost comparisons of
building multiple ST'Ts in our approach compared with one
large STT in the previous approach. Thus, we prove the time
efficiency of our approach in building the STT also.

5.1. Implementation Details. Our experiments were con-
ducted on a system incorporating the host Intel Xeon
multicore processor (6-core 2.0 Ghz Intel Xeon E5-2650)
with 20 MB level-3 cache, the Nvidia Tesla K20 GPU with
5GB device memory, and the Intel Xeon Phi with 61 x-
86 cores with 8 GB on-board memory. We also used the
Centos 5.5 Linux. In the following subsections, we describe
the methodology to generate the test input data and the

Scientific Programming

TaBLE 1: Input types.

Contents Size
Random text input taken from
magazines such as TIME and

Input

Random text 20~500 MB

input BRC
Dictionary
input
All pattern strings in the
. dictionary are listed once in
Dict.Input.§ the Dict_Input_S after 1~512K8B
shuftling
Dict_Input_S is replicated and
Dict_Input_ L concatenated to form 20~500 MB

Dict_Input_L

pattern data. We also explain details about our parallel imple-
mentations.

5.1.1. Test Data Generation. In order to generate the random
input data sets and the reference pattern data sets used in
our experiments, we first collected 50 GB of the data from
a variety of English magazines such as TIME and BBC,
among many others. Then, we extracted the random input
data and the pattern data from the collected data. We used
the input data sizes in the range of 20 MB~500 MB. The
number of patterns used is in the range of 100~50,000. We
also generated a special input data, Dict_Input. There are two
kinds of Dict_Input: (1) Dict_Input_S, where the contents of
the input data are generated directly from all pattern strings
in the dictionary. Thus, the Dict_Input_S has a small size. For
example, when the number of patterns in the dictionary is
100 (50,000) and the average pattern length is 10 characters,
the size of Dict_Input_S is around 1KB (512KB). (2) In
Dict_Input_L, the contents of the input are generated by
copying and concatenating all patterns in the dictionary to
make the input size large. Information about the input data is
summarized in Table 1. The characteristics of the pattern sets
are given in Table 2.

5.1.2. Parallel Implementations. For the implementation on
the Tesla K20 GPU, we used the shared memory to load the
input text data. We also show the implementation without
using the shared memory in order to quantify the benefit of
using the shared memory. We describe both implementations
below:

(i) P-1: the global memory only (or no shared memory)
implementation (see Figure 9) copies the input text
data into the global memory. Then, the actively used
portion of the input data is cached into the on-
chip caches (L2 and LI caches) automatically, but it
is not cached in the shared memory explicitly. The
STT data is attached to the texture memory and the
actively used portion of the STT data is cached in
the L2 cache and the read-only data cache. In this
implementation, the L2 cache is used by both the
input data and the STT data. Thus, the performance
effects of our cache locality-centric parallelization
approach are more distinguished as the effective L2

Scientific Programming 11
memory memory
FIGURE 9: Illustration of global memory only (P-1) implementation.
TABLE 2: Characteristics of pattern sets.
Number of Avg, length 1STT 4 STTs 8 STTs
patterns Number of states Size (KB) Number of states/STT Size (KB) =~ Number of states/STT Size (KB)
148 148.6 80 803
78 78.3
146 146.6 76 763
75 75.3
100 7.58 bytes 573 575.5
142 142.6 74 743
72 72.3
142 142.6 72 72:3
70 70.3
Sum: 578 Sum: 580.25 Sum: 597 Sum: 599.33
2177 21855 1104 1108.3
1088 1092.3
2167 21755 1086 1090.2
1082 1086.2
5000 8.28 bytes 8606 8640.0
2145 2153.4 1076 1080.2
1077 1081.2
2139 21474 1082 1086.2
1069 1073.2
Sum: 8628 Sum: 8661.7 Sum: 8664 Sum: 8697.84
6612 66378 3412 3425.3
3406 3419.3
6610 6635.8 3366 3379.1
3298 3310.9
50000 8.58 bytes 26369 26471.2
6608 6633.8 3286 3298.8
3282 3294.8
6603 6628.8 3278 3290.8
3237 3249.6
Sum: 26433 Sum: 26536.25 Sum: 26565 Sum: 26668.77

12 Scientific Programming
Thread block 0 Thread block 1 Thread block M-1
Read-only|| Shared L1 Read-only| Shared L1 IRead-onl};” Shared
data cache|| memory data cache|| memory data cache|| memory
T T
[|
L v v
— Global memory

FIGURE 10: Illustration of shared memory (P-2) implementation.

cache sizes used by the input data and the STT data
get reduced.

(ii) P-2: the shared memory implementation (see
Figure 10) loads the input data from the global
memory into the on-chip shared memories explicitly
by the programmer. The STT data is placed in
the texture memory and the actively used portion
is loaded into the L2 cache first and then in the
read-only data cache. Thus, the L2 cache is used by
the STT data only. In this implementation, the input
data caching is more efficient compared with the
P-1 implementation which relies on the automatic
caching. The STT data caching also becomes more
efficient because the L2 cache is now dedicated to the
STT data.

In order to implement the multiple STTs based string
matching of the AC algorithm, we use the CUDA stream
feature. Unlike the stream feature in the Fermi architecture
where only 16-way concurrency is supported and the streams
are multiplexed into a single queue, the Kepler K20 allows
32-way concurrency and one work queue per each stream.
This leads to the concurrency at the full-stream level and
no inner-stream dependency [17]. Thus, we create multiple
CUDA streams equal to the number of STTs (4 or 8 streams
in our case) and assign each stream to each pattern matching
task where a smaller STT is referenced for possible matches
with the whole input data. This makes sure that the pattern
matching tasks can be performed concurrently using multiple
STTs. In order to store the STTs in the texture memory, we use
a new feature called the texture objects (or bindless textures
since they do not require the manual binding/unbinding)
from the Kepler architecture (with CUDA 5.0 or later). The
number of texture objects created is equal to the number of
STTs. We only pass these texture objects to the kernel for use.

Pseudocode 2 shows the pseudocode of our implementa-
tion on the K20 GPU. First, the texture objects are created
to bind to the STTs (lines 2~7). Next, we create a number of
streams (lines 9~14). Then, the streams cooperate to copy the

input data to the device memory. (Each stream copies one
data segment (lines 16~19).) After the input data is copied,
each stream performs the pattern matching task using its
input data and the STT data (lines 21~23). In the end, the
results are copied back to the host side, and then the streams
are destroyed (lines 25~31).

5.2. Performance Comparisons on K20 GPU. We show per-
formance results of our approach compared with previous
approaches. In all experiments conducted, we show the time
in conducting pattern matching operations only because the
second phase of the AC algorithm was parallelized.

5.2.1. Performance Benefit of Our Approach over the Previous
Approach. Figure 11 shows the throughput performance of
the P-1 (global memory only) implementation for a range
of input data sizes (20~500 MB) and for a range of the
numbers of patterns (100, 5000, and 50000) measured in
Gbps. For performance comparisons, we also implemented
the previous approach where single large STT and the
partitioned input text data pieces are used for conducting
the parallel pattern matches. (The graph marked with 1 STT
shows the performance for the previous approach.)

(i) Our new approach (using 4, 8 STTs) outperforms the
previous approach where single large STT is used.
As the input data size increases, the performance
of our approach improves steadily up to 100 MB
and then starts to saturate. In P-1 approach, the L2
cache is shared by both the input data and the STT;
therefore, as the input data size increases, the pressure
at the L2 cache increases accordingly and leads to
performance saturations. However, the performance
gap between our approach and the previous approach
gets widened. (We will show later that. In the P-2
experimental results, the performance saturation with
the increase in the input data size disappears as the L2
cache is used by the STTs only.)

Scientific Programming

(1)
2
3)

)
©)

(6)
)
®)
)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
17)
(18)

19)
(20
@1
(22)

(23)
(29)
(25)
(26)
(27)

(28)
(29)
(30)
(31
(32)

cudaArray *cuda_arrays = (cudaArray+**) malloc (num_of_stts * sizeof (cudaArrayx*))
cudaTextureObject_t* textObj = (cudaTextureObject_t*) malloc (num_of_stts * sizeof
(cudaTextureObject_t));
for (int i = 0; i < num_of_stts; i++) {
cuda_arrays[i] = generate_cuda_array (get_dfamatrix(i), get_dfa_width(i),
get_dfa height(i));
textObj[i] = generate_texture_objects (cuda.arrays[i]);

}

cudaStream_t *streams =
(cudaStream_t*) malloc (nstreams * sizeof (cudaStream_t));
/* create multiple CUDA streams ™/
for (int i = 0; i < nstreams; i++) {
cudaStreamCreate (&(streams[i]));
}
//copy data to GPU memory, each stream copies one segment
for (int i = 0; i < nstreams; i++) {
long in offset = i * input_len/nstreams;
cudaMemcpyAsync (d-input + in_offset, h_input + in_offset, input_len * sizeof
(char) /nstreams, cudaMemcpyHostToDevice, streams[i]);
}

/* each stream processes input data with each dfa (texObj [i]) */

for (int i = 0; i < nstreams; i++) {
matching <<<blocks, threads, sm size, streams[i]>>>(tex0bj[i], d-input,
input_len, patternmax_len, d_output, output_len);

/* copy results back to host CPU, each stream copies one segment */
for (int i = 0; i < nstreams; i++) {
long out_offset = i * output_len/nstreams;
cudaMemcpyAsync (h_output + out_offset, d_output + out_offset, output._len * sizeof
(int) /nstreams, cudaMemcpyDeviceToHost) ;
}

for (int i = 0; i < nstreams; i++) {
cudaStreamDestroy (streams[i]);

}

Throughput (Gbps)

80
70
60
50
40
30
20
10

PSEUDOCODE 2: Pseudocode using multiple CUDA streams to implement our approach.

70 45
A—\ 60 9
2 2 35
3 >0 5 30
g 40 g 25
230 220
=1 2 15
2 20 2
= g 10
10 5
0 0
(=3 (=3 (=3 (= (=3 (=3 (=3 (=] (=3 (=3 (=3 (=] (=3 (=3 (=1 (=3 (=3 f=}
$ 8§ § 8 § 8 g § § 8 8§ E g &8 § § § 8
Q I o = =) — S = a S 5 s S = N <+ N IS
— o o wn — o o (Vo) — o on n
Input data sizes (KB) Input data sizes (KB) Input data sizes (KB)
—eo— GM (1STT) —-o— GM (1STT) —eo— GM (1STT)
—o— GM (4 STTs) —o— GM (4 STTs) —eo— GM (4 STTs)
GM (8 STTs) GM (8 STTs) GM (8 STTs)
(a) 100 patterns (b) 5,000 patterns (c) 50,000 patterns

FIGURE 11: Throughput (Gbps) comparisons using P-1 implementation.

13

14 Scientific Programming
800 700 600
5 i ///4'4 - 80 2 500
17 w
a, 600 o o
b= 2" 500 3
S 500 /r/*—ké‘ = 0 %3/ 400
2400{ 4 o oo g, e 2,300
£ 5 300 =y —
% 300 3 2 200
= 2 200 =
£ 200 = E
100
100 100
j=] (=3 (=] f=] (=3 (=3 (=] (=1 (=1 (=] (=3 (=l
$§ § § § § 8 § £ § 8 E B § § § 8 8 &
f=} — [\ < [y N o — I < o~ IS} j=} — [\ < [N
N wn (=) (=) (=] — IS wn l=) [} [=) — N (e} (=) (=) [=} —
— N o [Te} — IS o [T} — N o wn
Input data sizes (KB) Input data sizes (KB) Input data sizes (KB)
—eo— SM (1STT) —e— SM (1STT) —e— SM (1STT)
—eo— SM (4 STTs) —e— SM (4 STTs) —eo— SM (4 STTs)
—o— SM (8 STTs) —o— SM (8 STTs) —o— SM (8 STTs)

(a) 100 patterns

(b) 5,000 patterns

(c) 50,000 patterns

FIGURE 12: Throughput (Gbps) comparisons using P-2 implementation.

Speedup

(=3 [=3 (=3
(=] [=3 (=3
— N wn

1,000
2,000
5,000
10,000
20,000
30,000
40,000
50,000

Number of patterns

= 20MB = 200 MB
= 50MB = 300 MB
= 100 MB = 500 MB

()

Speedup

(=3 (=3 (=3 (=3 [=3 (=3 (=3 (=3 (=3 (=3 (=3
(=] (=} (=3 (=3 (=3 (=3 (=3 (=3 (=3 (=3 (=3
= & ®» 3 S 3 & & & & &
— N (e} [} (=} (=3 (= (=3
— N o < [Ya}
Number of patterns
= 20MB = 200 MB
= 50 MB = 300 MB
= 100 MB = 500 MB

(®)

FIGURE 13: Speedup comparisons: (a) using global memory only (P-1) implementation and (b) using shared memory (P-2) implementation.

(ii) When the number of patterns increases, the through-
put performance gets lower in all the cases because the
cache misses increase with the increase in the number
of patterns. The larger number of patterns affects the
performance of the previous approach more. Thus,
the performance gap is widened.

Figure 12 shows the throughput performance of the P-2
(using the shared memory) implementation for a range of
input data sizes (50~500 MB) and for a range of the numbers
of patterns (100, 5000, and 50000) measured in Gbps.

(i) As in the P-1 results, the new approach (using 4, 8
STTs) outperforms the previous approach (1 STT).
As the input data size increases, the performance gap
gets larger. Our approach improves the performance
further with the increase in the input data sizes up to
500 MB.

(ii) With the increase in the number of patterns, the
throughput performance gets lower in all the cases.
However, the performance gap between our approach
and the single STT approach gets larger as in the P-1
implementation.

(iii) The best performance for the P-1 implementation is
75.8 Gbps and for the P-2 it is 692.7 Gbps. Thus, the
shared memory implementation gives up to ~9.14
times better performance than the P-1 implementa-
tion.

Figure 13 shows the speedup of our approach over the
previous approach.

(i) Figure 13(a) shows that, using the P-1implementation,
our approach gives the speedup in the range of 1.47~
2.73 for the data sizes ranging from 20 MB to 500 MB

Scientific Programming

350 1
300 1
250 1
200 1

150 1

Speedup

100 1

50 1

100
200
500
1,000
2,000
5,000
10,000
20,000
30,000
40,000
50,000

Number of patterns

= 20MB = 200 MB
= 50MB = 300 MB
= 100MB = 500 MB

(a)

15

200 1
180 1
160 -
140 -

—
8]
(=}

Speedup
S
(=}

80 -
60 -
40 -
20 A

100
200
500
1,000
2,000
5,000
10,000
20,000
30,000
40,000
50,000

Number of patterns

= 20MB = 200 MB
= 50 MB = 300 MB
= 100 MB = 500 MB

(b)

FIGURE 14: Speedup of our approach using the shared memory (P-2) implementation (a) over single CPU run (b) over 6-thread parallel

version.

and the number of patterns ranging from 100 to
50,000. As the input data size increases, the speedup
improves also. The number of patterns has direct
performance impacts for all the input sizes up to
500 MB.

(ii) Figure 13(b) shows the speedup of our approach
using the shared memory (P-2) implementation. Our
approach results in the speedup of 1.34~1.86 for the
data sizes ranging from 20 MB to 500 MB and the
number of patterns ranging from 100 to 50,000. As
the data size increases, the speedup increase shows
up to 200 MB. Beyond 200 MB, the speedup increase
saturates. As the number of patterns increases, the
speedup increases accordingly.

(iii) The overall speedup for P-2 is lower, however, than the
speedup for P-1. In the P-2 using the shared memory,
the L2 cache is dedicated to the STT access. Thus, it
can capture larger portions of the working set for the
large single STT of the previous approach used in the
P-2 implementation. When the number of patterns
increases to 50,000, however, we see a sudden increase
in the speedup. The working set of the large single
STT used in the previous approach starts to overflow
the L2 cache. This shows that the effectiveness of
our approach is the larger for the larger number of
patterns.

Figure 14(a) shows the speedup results of the P-2 imple-
mentation over single CPU core (out of 6-core 2.0 Ghz Intel
Xeon E5-2650) run. The speedup ranges within 127~311. The
speedup of P-2 implementation over the 6-thread parallel
version ranges within 86~183 as shown in Figure 14(b).

Figures 15(a) and 15(b) present the run times of using
1 STT (previous approach) and 4, 8 STTs (our approach)
as we use the Dict Input.S for both the P-1 and P-2

implementations. The results show that the run time of
our approach (multiple STTs) is smaller than the previous
approach (single STT) for both implementations P-1 and P-
2. For P-1 implementation, the performance of using 4 STTs
is better than 1 STT by 18.15%, 23.41%, and 30.14% for 100,
5,000, and 50,000 patterns. The performance of 8 STTs is
better than 1 STT by 20%, 29.9%, and 35.4% for 100, 5,000, and
50,000 patterns. Figure 16 shows the throughput performance
compared with the previous approach as we use Dict_Input_S
for the P-1 and the P-2 implementations, respectively.

Also, Figures 17 and 18 show the throughput performance
as we use Dict_Input L for the P-1 implementation and
the P-2 implementation, respectively. As shown in both
figures, our approach outperforms the previous approach. In
fact, the performance improvements of our approach show
the similar trends that we observed when using the random
input data.

5.2.2. Effectiveness of Further Performance Optimization Tech-
niques. As mentioned in Section 4.3, further performance
optimization techniques are also applied in our implemen-
tation besides the ST'T partitioning technique.

(i) Figure 19 shows the speedup of the P-2 implemen-
tation with and without the shared memory bank
conflicts. As shown, the bank conflicts affect the
performance for the P-2 implementation. Avoiding
the bank conflicts, the performance improves by
1.72x~4.48x for the number of patterns in the range
0£100~50000.

(ii) In order to maximize the performance benefits of the
multithreading capability of the GPU, we attempt to
find the best number of threads/block for a given
data size. For this, we conducted extensive perfor-
mance tests. For the P-1 implementation, we changed

16

Throughput (GBps)

Run time (millisecs)

80
70
60
50
40
30
20
10

Scientific Programming

0.6 - 0.05 -
0.045 1
051 0.04 -
04 - g 0.035
= 0.03 -
£
0.3 1 o 0.025 A
£
‘é 0.02 ~
021 % 0.015 A
.01
0.1 A 0.0
0.005 A
0 - 0 -
100 5000 50000 100 5000 50000
Number of patterns Number of patterns
m 1STT m 1STT
m 4STTs m 4STTs
u 8STTs u 8STTs
(a) P-1implementation (b) P-2 implementation
FIGURE 15: Run time comparisons for Dict_Input_S: (a) P-1 implementation; (b) P-2 implementation.
12 120
10 100
& 2
8 80
< <
E 6 Z 60
B 2
® ®
1‘59‘ 4 ﬁe 40
2 20
0 0
100 5000 50000 100 5000 50000
Number of patterns Number of patterns
- 1STT —o— 1STT
- 4STTs —m— 4STTs
A 8STTs —A— 8STTs
(a) P-1implementation (b) P-2 implementation
FIGURE 16: Throughput comparisons for Dict_Input_S using P-1 and P-2 implementations.
60 80
""'/\.———o\‘ —~ 50 ./0/\‘\'—__' 70 D’/"/’\'___.\.
2 2 60
~m
’h/_\’ g “ .‘/\\‘\’ Eg .
= -
£ 30 é 0] e
2 2 30
2 20 8
=] £ 20
o — ¢ ——o o
10 10
0 0 j=3 (=3 f=3 (=3 [=3 (=3
(=3 (=3 [=3 (=3 (=3 (=3 (=3 o [l (=3 (=3 (=3
¢ § § § § B g § § 8§ § g $§ § § § % E
& & & £ s = R 2 2 s = T &5 8 3 & =
— N (32} wn — N [} wn — [\l o wn
Input data size (KB) Input data size (KB) Input data size (KB)
—-o— 1STT —-o— 1ISTT -o— 1STT
—e— 4STTs —e— 4STTs —o— 4STTs
~o- 8STTs ~o- 8STTs ~o— 8STTs

(a) 100 patterns

(b) 5,000 patterns

(c) 50,000 patterns

FIGURE 17: Throughput comparisons for Dict_Input_L using P-1 implementation.

Scientific Programming

17

700 700 500
600 //\fa—* 600 450
= . — 400
§ 500 /./»_*__‘ 2 500 //\f_fa § 350
S0 T < 400 3w
£ 300 B L £ §§8 —
3 Ed 3
2 200 g 200 = 150
: 100 = 100 : 100
50
F 8 § & 8 8 ¥ & § & & 8 g 8 § & & 8
S 5 & & 5§ 8 S = ¢ & &5 8 S = g £ 5 ¢
— (ol o wn — N o wn — N o L
Input data size (KB) Input data size (KB) Input data size (KB)
- 1STT —-o— 1STT -o— 1STT
—o— 4STTs —o— 4STTs —o— 4STTs
~o- 8STTs ~o- 8STTs ~o- 8STTs
(a) 100 patterns (b) 5,000 patterns (c) 50,000 patterns
FIGURE 18: Throughput comparisons for Dict_Input_L using P-2 implementation.
57 fashion on the same hardware thread block.) Through
45 experiments, we observed that setting the shared
memory size as 8 KB gives the best performance.
4] Figure 21 presents the results for the P-2 implemen-
3.5 1 tation. We chose the number of threads/block in the
5] range of 32~512. With 100 and 5000 patterns, 256
) threads/block gives the best performance (Figures
g 251 21(a) and 21(b)) while 512 threads/block gives the best
R performance for 50000 patterns (Figure 21(c)). Thus,
L5] we use these numbers.
] 5.3. Performance Comparisons on Xeon Phi. For the imple-
0.5 1 mentation on the Xeon Phi, we first construct the STT(s) on
0 the host Intel CPU. Since the memory hierarchy of the Xeon
20480 51200 102400 204800 307200 512000 Phi is not as sophisticated as the GPU’s memory hierarchy,
Input data size (KB) both the input data and the STT data are copied directly to
= 100 the on-board memory of the Xeon Phi. As explained earlier
= 5000 in Section 2, the Xeon Phi has two working modes: native
= 50000 mode and offload mode. We use the offload mode in our

FIGURE 19: Speedup of avoiding bank conflicts using P-2 implemen-
tation.

the number of threads/block while keeping the same
data size. Figure 20 presents the run time of the P-
1 implementation with different numbers of threads/
block. The results show that 128 threads/block gives
the best performance for all the numbers of patterns
(100, 5000, and 50000). For the P-2 implementation,
the number of threads/block depends on the size of
the shared memory. Thus, we need to carefully decide
the size of shared memory. (The physical shared
memory size is set to 48 KB in our experiments.
However, we set a logical shared memory size for a
block of threads smaller than 48 KB considering that
the multiple blocks will execute in the multithreaded

experiments. In the offload mode, a program running on the
host can optionally launch or “offload” portions of the code
to the Xeon Phi coprocessor. The programmer can identify
which lines or portions of the code should be offloaded and
can invoke the OpenMP threads. While conducting the AC
algorithm, we offloaded the pattern matching procedure to
the Xeon Phi coprocessor to take advantage of the coproces-
sor’s multithreading capability. The input data and the STT
data are used from the beginning and not changed during the
program execution. Thus, their memories are allocated and
copied to the coprocessor only one time at the offload stage. In
addition, they are shared among multiple running threads by
using shared clause. A large number of threads were created to
process pattern matching tasks where each thread processes
one chunk of input text. We used the dynamic scheduling to
balance the workload among threads. In order to distribute
the threads as evenly as possible across the entire system, the
scatter affinity was applied.

18

Scientific Programming

0.25 0.25 0.3
0.2 0.2 0.25
o R g 02
2 015 2 015 3
o g 2 0.15
£ o g 0.1 g
& 0.05 % 0.05 & 005
[=3 [=3 (=3 (=3 (=3 (=3 (=3 (=3 (=3 (=3 (=3 (=3
¥ 8 § & 8 8 F &8 § & & S ¥ 8 § & & 8
[=3 — [\ < [N (=} — [\ < [N =3 — N ey SN N
N e} (=] — N wn (=] — N n (= [=3 [=3 —
— N (32} wn — N [} n — N o wn
Input data size (KB) Input data size (KB) Input data size (KB)
Number of threads/block Number of threads/block Number of threads/block
u 32 m 256 m 32 m 256 m 32 m 256
u 64 m 512 u 64 512 u 64 512
= 128 = 128 = 128
(a) 100 patterns (b) 5,000 patterns (c) 50,000 patterns
FIGURE 20: Run time of P-1 with different numbers of threads/block.
0.035 0.03 0.035
0.03 0.025 0.03
g 0.025 8 002 2 0.025
Z 00 b T 0.02
£ g 0015 g
‘«Z 0.015 ‘é’ i 0.015
0.01
2 001 4 2 001
0.005 0.005 0.005
0 0 0
[=3 [=3 (=3 (=3 (=3 [=3 (=3 (=3 (=3 [=3 [=3 (=3 (=) [=) [=) o =) (=)
¥ 8 § 8 & 8 T 8§ § 8 8§ 8 E & § & & 8
&S & & & 5 = S & g 2 s = T & 8 2 858 =
— N o wn — N o [fe} — N n
Input data size (KB) Input data size (KB) Input data size (KB)
Number of threads/block Number of threads/block Number of threads/block
u 32 m 256 u 32 m 256 m 32 m 256
u 64 m 512 u 64 m 512 u 64 m 512
= 128 = 128 = 128
(a) 100 patterns (b) 5,000 patterns (c) 50,000 patterns
FIGURE 21: Run time of P-2 using shared memory with different numbers of threads/block.
Figure 22 shows the speedup of our approach using 4 251
STTs over the previous approach on the Intel Xeon Phi. The
speedup ranges within 1.60~2.00. The speedup increases with 21
the increase in the input data sizes. The Xeon Phi results
confirm the benefit of our approach to reduce the working o 15
set size of individual STT which has irregular access patterns. 2
Therefore, the partitioning of the STT significantly reduces &]
the number of cache misses and leads to the improved perfor-
mance. The Xeon Phi supports up to 4-way multithreading; 05
thus, we can exercise up to 240 threads for the experiments ’
considering that there are 60 compute cores. However, the
-) ’ 0-
best Perforrpance was obtained when we used 2- or 3-way 50 100 200 300 500
multithreading per core. ,
Input data sizes (MB)
5.4. STT Size and Building Cost Comparisons. In order to = 100
evaluate the space efficiency of our approach, we measured : 260880

the size of the single large STT in the previous approach
and the sum of the multiple small STTs generated using our

FIGURE 22: Speedup of our approach on the Intel Xeon Phi.

Scientific Programming

TABLE 3: Size comparison of single STT and 4 STTs.

Number of patterns 100 5000 50,000
Size of single STT 576 KB 8,640 KB 26,472 KB
Combined size of 4 STTs 580 KB 8,662 KB 26,537 KB

TABLE 4: The building time of the single STT, 4 STTs, and 8 STTs in
second.

Number of patterns Single STT 4 STTs 8 STTs
100 0.2249 0.1195 0.099
200 0.3883 0.2209 0.1828
500 0.8046 0.4383 0.3716
1000 1.2972 0.6755 0.5953
2000 1.9574 1.0011 0.8747
5000 3.5452 1.9299 1.6624
10000 5.0627 2.786 2.7159
20000 7.443 4.0041 3.5579
30000 9.3607 5.1498 4.7219
40000 11.1045 6.1751 5.2814
50000 12.4503 6.798 5.6173

approach. Table 3 lists the size of single ST'T and the combined
size of 4 STTs generated with different numbers of patterns.
For 100, 5000, and 50000 patterns, the combined size of 4
STTs is only 0.88%, 0.24%, and 0.25% larger than the size
of the single STT, respectively. Thus, our approach is space-
efficient.

We also measured the time to build the single STT in the
previous approach and the multiple STTs in our approach.
The run time comparisons are shown in Table 4. In fact, the
STT building cost decreases as the number of STTs increases.
For example, when the number of patterns is 50000, the
cost of building 8 STTs is 2.22 times faster than building
single STT. Therefore, our approach is more time efficient in
building the DFAs (or STTs) than the previous approach.

6. Previous Research

The AC pattern matching algorithm has been previously
applied in various application areas. In fact, network and
computer security and bioinformatics are two major areas
where the AC algorithm is intensively applied.

In the area of network intrusion detection, Yang and
Prasanna [18] proposed a head-body finite automata (HBFA)
approach which implements the string pattern matching
based on the AC algorithm. The HBFA implementation
matches the dictionary up to a predefined prefix length using
the Head-DFA. This reduces the run time memory by >20x
and the performance scales up to 27x on a 32-core Intel
many-core chip. Giorgos Vasiliadis et al. [4] presented an
intrusion detection system based on the Snort open-source
NIDS called Gnort. In parallelizing the pattern matching
on the GPU, they relied on partitioning the input data
amongst the thread blocks for the parallel AC string matching
instead of partitioning the set of string patterns as in our
approach. They did not use the shared memory in loading

19

the input data. Instead, they replied on the automatic caching
at the L1 cache of the GPU. Smith et al. [19] implemented
a regular expression matching algorithm on the GPU based
on the (extended) Deterministic Finite Automata. Jacob and
Brodley [20] also proposed a solution to offload the signature
matching computations to the GPU. They used the Knuth-
Morris-Pratt (KMP) single string matching algorithm instead
of the AC algorithm.

In the area of bioinformatics, Tumeo and Villa [8] pre-
sented an efficient implementation of the AC algorithm for
accelerating DNA analysis on heterogeneous GPU clusters.
Zha and Sahni [5] proposed a parallel AC algorithm on a
GPU. Like in [4], they partitioned the input data amongst the
thread blocks for the parallel string matching. They used the
shared memory for loading the input data; however, they did
not consider avoiding the shared memory bank conflicts.

Other previous researches had ported multistring match-
ing applications to the IBM Cell Broadband Engine (BE).
Scarpazza et al. [21, 22] ported the AC-opt version to the
Cell BE. Zha et al. [23] proposed a technique to compress
AC automaton to be used on the Cell BE. The compressed
AC automaton, however, leads to indirect access in deriving
the next state for a given state and a character which affects
the performance. Villa et al. [24] presented a software based
parallel implementation of the AC algorithm on a 128-
processor multithreaded shared memory Cray XMT. They
utilized the particular features of XM T multithreaded archi-
tecture and algorithmic strategies to minimize the number
of memory references and reduce the memory contention
in order to archive high performance and scalability. They
also extended this work by characterizing the performance of
the AC algorithm on various shared memory and distributed
memory architectures in [6].

7. Conclusion

In this paper, we proposed a high performance parallelization
of the AC algorithm which significantly improves the cache
locality for the irregular DFA access on the many-core
accelerator chips including the Nvidia GPU and the Intel
Xeon Phi. Our parallelization approach partitions the given
set of string patterns to generate multiple sets of a small
number of patterns. Then, we constructed multiple small
DFAs instead of constructing single large DFA in a space-
efficient way. Using multiple small DFAs, intensive pattern
matching operations are concurrently conducted with respect
to the whole input text string. This significantly reduces
the size of the cache footprints for the STT data on each
core’s cache and thus leads to significantly improved cache
performance. Experimental results on the Nvidia Tesla K20
GPU show that our approach delivers up to 2.73 times
speedup compared with the previous approach using single
large DFA and up to 692.7 Gbps throughput performance.
Compared with single CPU performance, we obtained a
speedup in the range of 127~311. The speedup over the 6
OpenMP threads parallel version running on 6 CPU cores is
in the range of 86~183. Experimental results on the Intel Xeon
Phi with 61 x-86 cores also show up to 2.00 times speedup
compared with the previous approach.

20

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The authors would like to extend their gratitude to the
anonymous reviewers for their valuable feedback about their
papers. Their comments have greatly helped the authors in
improving the quality and the presentation of their paper.
This research was supported by Basic Science Research
Program through the National Research Foundation of
Korea (NRF) funded by the Ministry of Education, Science,
and Technology (Grant no. 2012R1A1A2042267). This work
was supported by the Institute for Information & Com-
munications Technology Promotion (IITP) Grant funded
by the Korean government (MSIP) (no. B0101-15-0104, The
Development of Supercomputing System for the Genome
Analysis).

References

[1] Clam Antivirus, http://www.clamav.net.

[2] T.-H. Lee, “Generalized aho-corasick algorithm for signature
based anti-virus applications,” in Proceedings of the 16th Interna-
tional Conference on Computer Communications and Networks
(ICCCN07), pp.792-797, Honolulu, Hawaii, USA, August 2007.

[3] A. Tumeo, O. Villa, and D. Sciuto, “Efficient pattern matching
on GPUs for intrusion detection systems,” in Proceedings of the
7th ACM International Conference on Computing Frontiers (CF
’10), pp. 87-88, ACM, Ischia, Italy, May 2010.

[4] G. Vasiliadis, S. Antonatos, M. Polychronakis, E. P. Markatos,
and S. Ioannidis, “Gnort: high performance network intrusion
detection using graphics processors,” in Recent Advances in
Intrusion Detection: 11th International Symposium, RAID 2008,
Cambridge, MA, USA, September 15-17, 2008. Proceedings, vol.
5230 of Lecture Notes in Computer Science, pp. 116-134, Springer,
Berlin, Germany, 2008.

[5] X. Zha and S. Sahni, “GPU-to-GPU and host-to-host mul-
tipattern string matching on a GPU,” IEEE Transactions on
Computers, vol. 62, no. 6, pp. 1156-1169, 2013.

[6] A. Tumeo, O. Villa, and D. G. Chavarria-Miranda, “Aho-
corasick string matching on shared and distributed-memory
parallel architectures,” IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 23, no. 3, pp. 436-443, 2012.

[7] M. C. Schatz and C. Trapnell, Fast Exact String Matching on the
GPU, Center for Bioinformatics and Computational Biology,
2007.

[8] A.Tumeo and O. Villa, “Accelerating DNA analysis applications
on GPU clusters,” in Proceedings of the 8th IEEE Symposium
on Application Specific Processors (SASP ’10), pp. 71-76, IEEE,
Anaheim, Calif, USA, June 2010.

[9] A.V. Aho and M. J. Corasick, “Efficient string matching: an aid
to bibliographic search,” Communications of the Association for
Computing Machinery, vol. 18, pp. 333-340, 1975.

[10] NVIDIA, CUDA Toolkit Documentation, http://docs.nvidia
.com/cuda/index.html.

[11] OpenCL, https://www.khronos.org/opencl/.

Scientific Programming

[12] OpenACC, March 2012, http://www.openacc.org/.

[13] J. Jeffers and J. Reinders, Intel Xeon Phi Coprocessor High Per-
formance Programming, Morgan Kaufmann, Walthman, Mass,
USA, 2013.

[14] M. Norton, “Optimizing Pattern Matching for Intrusion Detec-
tion,” 2004, http://pdfaminer.org/000/309/890/optimizing_pat-
tern_matching.pdf.

[15] N. P. Tran, M. Lee, S. Hong, and J. W. Bae, “Performance
optimization of Aho-Corasick algorithm on a GPU;” in Proceed-
ings of the 11th IEEE International Symposium on Parallel and
Distributed Processing with Applications (ISPA ’13), Melbourne,
Australia, July 2013.

[16] R.H. Saavedra-Barrera, D. E. Culler, and T. von Eicken, “Anal-
ysis of multithreaded architectures for parallel computing,” in
Proceedings of the 2nd Annual ACM Symposium on Parallel
Algorithms and Architectures (SPAA ’90), pp. 169-178, ACM,
Crete, Greece, July 1990.

[17] NVIDIA, “NVIDIA’s Next Generation CUDA Compute Archi-
tecture: Kepler GK110 white paper;” http://www.nvidia.com/con-
tent/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-White-
paper.pdf.

[18] Y.-H. E. Yang and V. K. Prasanna, “Robust and scalable string
pattern matching for deep packet inspection on multicore pro-
cessors,” IEEE Transactions on Parallel and Distributed Systems,
vol. 24, no. 11, pp. 2283-2292, 2013.

R. Smith, N. Goyal, J. Ormont, K. Sankaralingam, and C. Estan,
“Evaluating GPUs for network packet signature matching,” in
Proceedings of the International Symposium on Performance
Analysis of Systems and Software (ISPASS °09), pp. 175-184, usa,
April 2009.

[20] N. Jacob and C. Brodley, “Offloading IDS computation to the
GPU;” in Proceedings of the 22nd Annual Computer Security
Applications Conference (ACSAC ’06), pp. 371-380, Miami
Beach, Fla, USA, December 2006.

[21] D. Scarpazza, O. Villa, and E Petrini, “Peak-performance DFA-
based string matching on the cell processor,” in Proceedings of
the International Workshop on System Management Techniques,
Processes, and Services, pp. 1-8, Long Beach, Calif, USA, March
2007.

[22] O. Villa, D. P. Scarpazza, and E. Petrini, “Accelerating real-time
string searching with multicore processors,” IEEE Computer
Society, vol. 41, no. 4, pp. 42-50, 2008.

[23] X. Zha, D. P. Scarpazza, and S. Sahni, “Highly compressed
multi-pattern string matching on the cell broadband engine;”
in Proceedings of the 16th IEEE Symposium on Computers and
Communications (ISCC ’11), pp. 257-264, Kerkyra, Greece, July
2011.

O. Villa, C.-M. Daniel, and K. Maschhoff, “Input-independent,
scalable and fast string matching on the cray XMT,” in Pro-
ceedings of the 23rd IEEE International Parallel and Distributed
Processing Symposium (IPDPS °09), pp. 1-12, Rome, Italy, May
2009.

=
X

~
-

Advances in k& - - . Journal of

o 0 Industrial Engineerin
. WNultimedia J .

Applied
Computational
Intelligence and Soft
. g nternational Journal of T P - Com tll'lg"
The Scientific Dieenel Qumalof e iR e

World Journal Sensor Networks

Advances in

Fuzzy
Systems

Modelling &
Simulation
in Engineering

e

Hindawi

Submit your manuscripts at
http://www.hindawi.com

Computer Networks
and Communications

Advances in »
Artificial
Intelligence

i ‘ Advances in
Biomedica ‘H'\{'ii Artificial
‘ & NS Neural Systems

International Journal of
Computer Games in
Technology S re Engineering

Intel ional J na
Reconfigurable
Computing

Computational i

Ad S
uman-Computer Intelligence and 2y Electrical and Computer
Interaction Neuroscience Engineering

Journal of

Robotics

