
Research Article
Optimized Data Transfers Based on the OpenCL Event
Management Mechanism

Hiroyuki Takizawa,1 Shoichi Hirasawa,1 Makoto Sugawara,2 Isaac Gelado,3

Hiroaki Kobayashi,2 and Wen-mei W. Hwu4

1Tohoku University/JST CREST, Sendai, Miyagi 980-8579, Japan
2Tohoku University, Sendai, Miyagi 980-8578, Japan
3NVIDIA Research, Santa Clara, CA 95050, USA
4The University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

Correspondence should be addressed to Hiroyuki Takizawa; takizawa@cc.tohoku.ac.jp

Received 15 May 2014; Accepted 29 September 2014

Academic Editor: Sunita Chandrasekaran

Copyright © 2015 Hiroyuki Takizawa et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

In standard OpenCL programming, hosts are supposed to control their compute devices. Since compute devices are dedicated
to kernel computation, only hosts can execute several kinds of data transfers such as internode communication and file access.
These data transfers require one host to simultaneously play two or more roles due to the need for collaboration between the host
and devices. The codes for such data transfers are likely to be system-specific, resulting in low portability. This paper proposes
an OpenCL extension that incorporates such data transfers into the OpenCL event management mechanism. Unlike the current
OpenCL standard, the main thread running on the host is not blocked to serialize dependent operations. Hence, an application
can easily use the opportunities to overlap parallel activities of hosts and compute devices. In addition, the implementation details
of data transfers are hidden behind the extension, and application programmers can use the optimized data transfers without
any tricky programming techniques. The evaluation results show that the proposed extension can use the optimized data transfer
implementation and thereby increase the sustained data transfer performance by about 18% for a real application accessing a big
data file.

1. Introduction

Today, many high-performance computing (HPC) systems
are equipped with graphics processing units (GPUs) serving
as data-parallel accelerators in addition to conventional
general-purpose processors (CPUs). For such a heteroge-
neous HPC system, application programmers need to man-
age the system heterogeneity while exploiting the parallelism
involved in their applications. For the rest of the paper, we
will follow the OpenCL terminology and refer to the CPUs as
hosts and data-parallel accelerators as compute devices.

One difficulty in programming such a heterogeneous
system is that a programmer has to take the responsibility
for appointing the right processors to the right tasks. In the
current OpenCL standard, only the host can perform some
of tasks because the compute device is dedicated to kernel

computation. For example, only the host can access files and
communicate with other nodes. To write the computation
results of a kernel into a file, the results have to be first
transferred from the devicememory to the hostmemory after
the kernel execution, and then the host writes the results to
the file.

From the viewpoint of programmers, accelerator pro-
gramming models such as CUDA [1] and OpenCL [2] are
used for data transfers between the device memory and the
host memory, MPI [3] is used for internode data commu-
nication, and file functions of each programming language,
such as fprintf and fscanf in the C programming, are
used for the file I/O. Hence, these three categories of data
transfers are described with different programming models.
Some data transfers done by different programming models
could be dependent; a certain data transfer can be done

Hindawi Publishing Corporation
Scientific Programming
Volume 2015, Article ID 576498, 16 pages
http://dx.doi.org/10.1155/2015/576498

2 Scientific Programming

only after its preceding data transfer. In order to enforce
such dependence, one popular way is to block the host
thread until the preceding data transfer has finished. This
kind of blocking often inhibits overlapping parallel activities
of the host and the device and exposes the data transfer
latencies to the total execution time. One may create a
dedicated host thread for synchronizing the dependent data
transfers. However, such multithreading will further increase
the programming complexity. Consequently, the application
performance strongly depends on the programming skills
and craftsmanship of the developers.

Another difficulty is that there is no standard way to
coding those data transfers even for common data transfer
patterns. Since application programmers are supposed to
appropriately combine those data transfers for fully exploit-
ing the potential of a heterogeneous HPC system, the code
is often specialized for a particular system. For example, one
compute device may be capable of directly accessing a file,
and another may not. In this case, the file access code for
the former device would be totally different from that for the
latter one.Therefore, the code for data transfers is likely to be
system-specific and some abstractions are required to achieve
functional portability as well as performance portability.
Although OpenCL has been designed for programming
various compute devices, it provides interfaces only for data
transfers between the host memory and the device memory,
but not for the other kinds of data transfers.

To overcome the above difficulties, we need a “bridging”
programming model that provides a standard way for coding
data transfers among various memory spaces and storages of
a heterogeneous parallel system in a unified fashion. In this
paper, we focus on OpenCL as the accelerator programming
model for high code portability and propose an OpenCL
extension for abstraction of data transfers, though the idea
could be trivially extrapolated to other GPU programming
models such as CUDA. The proposed OpenCL extension
named clDataTransfer provides an illusion that the compute
devices are transferring data directly to files or other nodes.
This paper focuses especially on internode communication
and file access as typical data transfers that need collaboration
of hosts anddevices.The extension offers someOpenCL com-
mands and functions for the data transfers. The internode
communication and file access commands are executed in the
same manner as the other OpenCL commands, and hence
the OpenCL programming model is naturally extended so
as to seamlessly access file data and also to improve the MPI
interoperability.

The clDataTransfer extension provides a portable, stan-
dardized way to programming of internode communications
and file accesses from/to the device memory. Although MPI
and file functions are used internally to perform those data
transfers with help of the hosts, those internal behaviors are
invisible to application programmers; it can thereby hide the
system-aware optimized implementations behind function
calls. Hence, we can also expect that the clDataTransfer exten-
sion improves the performance portability of OpenCL appli-
cations across different system types, scales, and generations.

The rest of this paper is organized as follows. Section 2
briefly reviews the related work. Section 3 discusses the

difficulties in joint programming of OpenCL, MPI, and the
standard I/O package of the C library, so-called Stdio. Then,
Section 4 proposes clDataTransfer, which is an OpenCL
extension for the collaboration withMPI and Stdio. Section 5
discusses the performance impact of clDataTransfer through
some evaluation results. Finally, Section 6 gives concluding
remarks and our future work.

2. Related Work

In the OpenCL programming model, a CPU works as a host
that manages one or more compute devices such as GPUs.
To manage the interaction between the host and devices,
OpenCL provides various resources that are instantiated as
OpenCL objects such as contexts, command queues,memory
objects, and event objects. A unique handle is given to
every object and is used to access the resource. A context
is a container of various resources and is analogous to a
CPU process. A command queue is used to interact with its
corresponding compute device; a host enqueues a command
to have its compute device execute a task. A memory
object represents a memory chunk accessible from hosts and
devices. An event object is bound with a command in the
command queue to represent the status of the command and
is used to block the execution of other commands. Hence,
it is used to describe the dependency among commands.
Moreover, multiple events can be combined to an event list
to express several previous commands.

For example, clEnqueueReadBuffer is a typical Open-
CL function for enqueuing a command, which transfers data
from the device memory to the host memory. The function
signature is as in Algorithm 1.

OpenCL command enqueuing functions take three argu-
ments for event management: the number of events in the
waiting list (numevts), the initial address of the waiting
list (wlist), and the address to which the event object of
the enqueued command is passed (evtret). The enqueued
command is able to be executed when all the preceding
commands associated with the event objects in the waiting
list have been completed.

In joint programming of MPI and OpenCL, a pro-
grammer needs to consider not only host-device commu-
nication using OpenCL but also internode communication
using MPI. So far, some researchers have presented sev-
eral MPI extensions to GPUs to ease the joint program-
ming of MPI and CUDA/OpenCL. We will refer to these
approaches as GPU-aware MPI implementations. Lawlor has
proposed cudaMPI [4] that provides anMPI-like interface for
communication between remote GPUs. MPI-ACC [5] uses
the MPI Datatype argument to indicate that the memory
buffer passed to an MPI function is located in the device
memory. MVAPICH2-GPU [6] assumes Unified Virtual
Addressing (UVA), which provides a singlememory space for
host and device memories, and checks if the memory buffer
passed to an MPI function is in the device memory. Then,
MVAPICH2-GPU internally uses different implementations
depending on whether the memory buffer is in the device
memory or the host memory. Stuart et al. have discussed

Scientific Programming 3

cl int

clEnqueueReadBuffer(cl command queue cmd, /* command queue */

cl mem buf, /* memory buffer */

cl bool blocking, / blocking */

size t offset, /* offset */

size t size, /* buffer size */

void* hbuf, /* buffer pointer */

cl uint numevts, /* the number of events in the list */

cl event* wlist, /* event list */

cl evett* evtret) /* event object of event object */

Algorithm 1

various design options of MPI extension to support accelera-
tors [7]. Gelado et al. proposed GMAC that provides a single
memory space shared by a CPU and a GPU and hence allows
MPI functions to access device memory data [8]. Those
extensions allow an application to use a GPUmemory buffer
as the end point of MPI communication; the extended MPI
implementations enable using MPI functions for internode
communication from/to GPU memory buffers by internally
using data transfer functions of CUDA/OpenCL.

By using GPU-aware MPI extensions, application
developers do not need to explicitly describe the host-
device data transfers such as clEnqueueWriteBuffer
and clEnqueueReadBuffer. As with clDataTransfer, these
extensions do not require tricky programming techniques
to achieve efficient data transfers, because they hide the
optimized implementations behind the MPI function calls.

In GPU-aware MPI extensions, all internode communi-
cations are still managed by the host thread visible to applica-
tion developers. For example, if the data obtained by execut-
ing a kernel are needed by other nodes, the host thread needs
to wait for the kernel execution completion in order to seri-
alize the kernel execution and the MPI communication; the
host thread is blocked until the kernel execution is completed.

Furthermore, MPI extension to OpenCL is not straight-
forward, as Aji et al. discussed in [5]. To keep OpenCL
data transfers transparent to MPI application programs, the
MPI implementationmust acquire valid command queues in
some way. Aji et al. assume that an MPI process mostly uses
only one command queue and its handle is thus cached by the
MPI implementation to be used in subsequent communica-
tions, even though this assumption could be incorrect. Even
if the cached command queue is available for subsequent
communications, there may exist a more appropriate com-
mand queue for the communications. clDataTransfer allows
application programmers to specify the best command queue
for communication. It should be emphasized thatGPU-aware
MPI extensions and clDataTransfer are mutually beneficial
rather than conflicting. For example, although this work
has implemented pipelined data transfers using standard
MPI functions, it is possible for clDataTransfer to use MPI
extensions for its implementation.

Stuart and Owens have proposed DCGN [9]. As with
clDataTransfer, DCGN provides an illusion that GPUs com-
municate without any help of their hosts. Unlike clData-
Transfer, DCGN provides internode communication API

functions that are called from GPU kernels. When the API is
called by a kernel running on a GPU, the kernel sets regions
of device memory that are monitored by a CPU thread.Then,
theCPU thread reads necessary data from the devicememory
and thus handles the communication requests from the
GPU. Accordingly, DCGN allows a kernel to initiate intern-
ode communication. However, the requirement for host to
monitor the device memory incurs a nonnegligible runtime
overhead. On the other hand, in clDataTransfer, internode
communication requests are represented as OpenCL com-
mands. Hence, the host initiates the commands and the
clDataTransfer implementation can rely on theOpenCL event
managementmechanism to synchronizewith the commands.

AnOpenCLmemory object in the same context is shared
bymultiple devices.TheOpenCLmemory consistencymodel
implicitly ensures that the contents of amemory object visible
to the devices are the same only at their synchronization
points. Once a device updates a memory object shared
by multiple devices, the new memory content is implicitly
copied to the memory of every device in the same context.
Some OpenCL implementations [10] support creating a
context shared by multiple devices across different nodes
and thereby attain data sharing among remote devices while
conforming the OpenCL specifications. However, in this
approach, multiple devices sharing one context can have only
a single memory space; they cannot have different memory
contents even if some of the contents are not needed by
all nodes. As a result, the contents could unnecessarily be
duplicated to the device memory of every node, increasing
the aggregated memory usage and also internode communi-
cations for the duplication.

GPU computing is employed not only for conventional
HPC applications but also for data-intensive applications,
for example, [11, 12], in which the data sizes are large and
hence are stored in files. As only hosts can access the data
stored in files, GPU computing requires additional data
transfers between hosts and GPUs. Nonetheless, GPUs are
effective to accelerate the kernel execution and reduce the
total execution time in practical data-intensive applications.
Overlapping the kernel execution with various data transfers
such as file accesses and host-device data transfers is a key
technique to reduce the data transfer latencies and obviously
has common code patterns. However, as far as we know,
there is no standard way to develop this pattern in a manner
that is reusable in other applications. As recent and future

4 Scientific Programming

(1) cl command queue cmd;

(2) cl kernel kern;

(3) cl event evt;

(4)
(5) for(int i(0);i<N;++i){

(6) // (1) computation on a device
(7) clEnqueueNDRangeKernel(cmd,kern,. . .,0,NULL,&evt);

(8)
(9) // (2) read the result from device to host
(10) clEnqueueReadBuffer(cmd,. . .,1,&evt,NULL);

(11) clFinish(cmd); // the host thread is blocked
(12)
(13) // (3) exchange data with other nodes
(14) MPI Sendrecv(. . .); // blocking function call
(15)
(16) // (4) write the received data to device memory
(17) clEnqueueWriteBuffer(cmd,. . .);

(18) }

Listing 1: A simple pseudocode combining OpenCL and MPI.

HPC systems have hierarchical storage subsystems, high-
speed local storages using nonvolatile memories will be
available. In those cases, the overlapping would become
more significant because host-device data transfer overheads
increase relatively to the file access overhead.

3. Difficulties in Joint Programming

This section discusses some difficulties in joint programming
of OpenCL and other libraries, such as MPI, which
are called by host threads. Listing 1 shows a simple
code of the joint programming of MPI and OpenCL. In
this code, a command to execute a kernel is first enque-
ued by invoking clEnqueueNDRangeKernel. Another com-
mand to read the kernel execution result is then enqueued
by clEnqueueReadBuffer. Using the event object of the
first command, evt, the execution of the second command
is blocked until the first command is completed. The second
command enqueued by clEnqueueReadBuffer can be
either blocking or nonblocking. The function call is non-
blocking if the third argument is CL FALSE; otherwise
it is blocking. If it is nonblocking, we have to use a
synchronization function such as clFinish to make sure
that the data have already been transferred from device
memory to host memory in advance of calling MPI Sen-
drecv. In this naive implementation, the data exchange
with other nodes must be performed after the data
transfer from device memory to host memory; those
data transfers must be serialized. Similarly, MPI Sendrecv
and clEnqueueWriteBuffer must be serialized.Therefore,
kernel execution and all data transfers are serialized, which
results in a long communication time exposed to the total
execution time. In addition, the host thread is blocked
whenever MPI and OpenCL operations are serialized.
Although Listing 1 shows an example of joint programming
of MPI and OpenCL, the same difficulties arise when

combining OpenCL and Stdio (or any other file access
programming interfaces).

To make matters worse, there is no standard way for
the joint programming. Even for simple point-to-point
communication between two remote devices, we can con-
sider at least the following three implementations. One is
the naive implementation as shown in Listing 1. In the
implementation, host memory buffers should be page-locked
(pinned) for efficient data transfers (although the OpenCL
standard does not provide any specific means to allocate
pinned host memory buffers, most vendors rely on the
usage of clEnqueueMapBuffer to provide programmers
with pinned host memory buffers). This can be also a point
to make different vendors require different implementations
to exploit pinned memory. Another implementation is to
map device memory objects to host memory addresses
by using clEnqueueMapBuffer and then to invoke MPI
functions to transfer data from/to the addresses. After
the MPI communication, clEnqueueUnmapMemObject is
invoked to unmap the device memory objects. The other
implementation is to overlap host-device data transfers with
internode data transfers. In this implementation, data of a
device memory object are divided into data blocks of a fixed
size, called a pipeline block size, and host-device data transfers
of each block are overlapped with internode data transfers
of other blocks in a pipelining fashion [6]. In this paper,
the three aforementioned implementations are referred to
as pinned, mapped, and pipelined data transfers. Among
those implementations, the best one changes depending
on several factors such as the message size, device types,
device vendors, and device generations. Also in the cases
of overlapping host-device data transfers with file accesses
there are many implementation options and parameters due
to the variety of file access speeds in a hierarchical storage
subsystem. Accordingly, an application developermight need
to implement multiple versions to optimize data transfers

Scientific Programming 5

A

A

A

B

B

B

...

...

Rank 2n − 1

Rank 2n

Rank 2n + 1

Figure 1: One-dimensional domain decomposition.

for performance portability of an application program across
various systems.

Another common approach to hide the communication
overhead is to overlap the data transfers and computation
through double buffering [11, 13]. To this end, the compu-
tation is usually divided into two stages. While executing
the first stage computation, the first stage data transfer is
performed to prepare for the second stage computation. If the
computation and data transfer are inside a loop, the second
stage data transfer for the first stage computation of the next
iteration is performed during the second stage computation
of the current iteration.

In OpenCL programming, this overlapping optimiza-
tion can be achieved using two in-order execution com-
mand queues. Listing 2 shows a simplified version of
the Himeno benchmark code described in [13], which
is originally written in CUDA and MPI. In the code,
jacobi kernel * functions in Lines (9), (18), (28), and (35)
invoke kernels using the command queue cmd1 to update
the memory object specified by the second argument. The
code assumes one-dimensional domain decomposition, in
which each decomposed domain is further halved into upper
and lower portions, A and B. Figure 1 illustrates the domain
decomposition assumed by the code. The top plane of A
and the bottom plane of B are halo regions that have to be
updated every iteration by exchanging data with neighboring
nodes. Hence, if theMPI rank of a process is an even number,
during calculating A, the process updates the halo region
included in B.Then, it calculates B during exchanging data for
updating the halo of A. On the other hand, if the MPI rank
of a process is an odd number, the process first calculates B
during updating the halo of A. Then, it calculates A during
exchanging data for updating the halo of B. As a result, the
communication time is not exposed to the total execution

time as shown in Figure 2(a) unless the communication time
exceeds the computation time.

As the number of MPI processes increases, the computa-
tion time becomes shorter because the domain processed by
each GPU becomes smaller. However, the second stage com-
munication cannot start even if the first stage computation is
completed earlier and hence the data are ready for the second
stage communication as shown in Figure 2(b).This is because
the host thread is often blocked and tied up in the first stage
communication in order to serialize the MPI and OpenCL
operations.

Since the code in Listing 2 is simple, there are some
workaround techniques to solve this problem. However, in
the case where more advanced optimization techniques such
as pipelining are applied to the data transfers, the host thread
is stalled more frequently to timely synchronize MPI and
OpenCL operations in multiple parallel activities of an appli-
cation. In general, there are at least three parallel activities in
an application: host computation, device computation, and
nonblocking MPI communication. If there are dependent
operations of MPI and OpenCL, the host thread is usually
blocked to serialize the operations, which inhibits overlap-
ping of the parallel activities. Also, host thread blocking is
often used even in a serial application if the host thread needs
to load data from a file, send them to the device memory,
and retrieve the computation results from the devicememory.
Multithread programming or complex asynchronous I/O
APIs would be required to properly manage those parallel
activities. In this way, an application code becomes more
complicated and system-specific, resulting in low code read-
ability, maintainability, and portability. This motivates us to
design a bridging programming model that can explicitly
describe the dependencies among MPI, OpenCL, and file
access operations in order to initiate data transfers without
any help of the host thread.

4. An OpenCL Extension for Collaboration
with MPI and Stdio

This paper proposes clDataTransfer, an OpenCL extension
to facilitate and standardize the joint programming of MPI,
Stdio, and OpenCL. The key idea of this extension is to use
OpenCL commands for internode data transfers, file accesses,
and data transfers between hosts and local devices.

The major advantages of clDataTransfer are summarized
as follows.

(1) Performance portability: the implementation details
of internode data transfers andfile accesses are hidden
behind extended commands and can be used via a
simple programming interface similar to the standard
OpenCL interface.

(2) Event management: a host thread is not responsible
for serializing internode communications, file oper-
ations, and host-device communications. Instead, an
event object is used to block the subsequent com-
mands until the preceding command is completed.

6 Scientific Programming

(1) cl command queue cmd1, cmd2;

(2) cl mem p new, p old, p tmp;

(3)
(4) for(int i(0);i<N;++i){

(5) //swap pointers
(6) p tmp = p new; p new = p old; p old = p tmp;

(7) if(rank%2 == 0) {

(8) // the upper portion is calculated
(9) jacobi kernel even A(cmd1,p new,. . .);

(10) // the bottom plane is updated
(11) MPI Irecv(. . .);

(12) clEnqueueReadBuffer(cmd2,p old,CL FALSE,. . .);

(13) clFinish(cmd2); // blocking
(14) MPI Send(. . .); // blocking
(15) MPI Wait(. . .); // blocking
(16) clEnqueueWriteBuffer(cmd2,p old,CL FALSE,. . .);

(17) // the lower portion is calculated
(18) jacobi kernel even B(cmd2,p new,. . .);

(19) // the top plane is updated
(20) MPI Irecv(. . .);

(21) clEnqueueReadBuffer(cmd1,p new,CL FALSE,. . .);

(22) clFinish(cmd1); // blocking
(23) MPI Send(. . .); // blocking
(24) MPI Wait(. . .); // blocking
(25) clEnqueueWriteBuffer(cmd1,p new,CL FALSE,. . .);

(26) }
(27) else {

(28) jacobi kernel odd B(cmd1,p new,. . .);

(29) MPI Irecv(. . .);

(30) clEnqueueReadBuffer(cmd2,p old,CL FALSE,. . .);

(31) clFinish(cmd2); // blocking
(32) MPI Send(. . .); // blocking
(33) MPI Wait(. . .); // blocking
(34) clEnqueueWriteBuffer(cmd2,p old,CL FALSE,. . .);

(35) jacobi kernel odd A(cmd2,p new,. . .);

(36) MPI Irecv(. . .);

(37) clEnqueueReadBuffer(cmd1,p new,CL FALSE,. . .);

(38) clFinish(cmd1); // blocking
(39) MPI Send(. . .); // blocking MPI Wait (. . .); // blocking
(40) clEnqueueWriteBuffer(cmd1,p new,CL FALSE,. . .);

(41) } clFinish(cmd1);clFinish(cmd2); /* error calculation */
(42) }

Listing 2: A Himeno benchmark code with overlapping communication and computation.

(3) Collaboration for latency hiding: clDataTransfer can
collaborate with MPI and Stdio in order to hide data
transfer latencies in a pipelining fashion.

By encapsulating file accesses into OpenCL commands,
the clDataTransfer extension offers two file access com-
mands: clEnqueueReadBufferToStdioFile and clEnq-
ueueWriteBufferFromStdioFile. clEnqueueReadBuf-
ferToStdioFile reads data from a device memory buf-
fer and writes the data to a file, and clEnqueueWrite-
BufferFromStdioFile reads data from a file and writes
the data to a device memory buffer. The function signatures
are as in Algorithm 2.

Similarly, the clDataTransfer extension offers clEnqueue-
SendBuffer and clEnqueueRecvBuffer, which enqueue
commands of transferring data from and to a device memory
buffer, respectively. These clDataTransfer functions are direct
counterparts of MPI Send and MPI Recv [3] and hence take
the same arguments of rank, tag, and communicator as those
two MPI functions. For example, the function signature
of clEnqueueRecvBuffer is as in Algorithm 3.

When one MPI process invokes those functions for
sending a command to a device, the device becomes a
communicator device for oneMPI communication and works
as if it communicates instead of the host thread.The data sent
to the MPI rank are received by the communicator device,

Scientific Programming 7

Comp.

Comp.Comm.

Comm.cmd1

cmd2

Time

(a)

Comp.

Comp. Comm.

Comm.

cmd1

cmd2

Time

(b)

Comp.

Comp.

Comm.

Comm.

cmd1

cmd2

Time

(c)

Figure 2: Overlapping communications and computations. (a) The communication time is overlapped with the computation time. (b) The
computation time is too short to hide the communication time. Since joint programming of OpenCL andMPI cannot express the dependency
between the first communication and the second computation, the host thread is blocked to execute them in a correct order. (c) The second
communication can potentially start earlier because the host thread is not blocked.

cl int clEnqueueReadBufferToStdioFile(

cl command queue cmd, /* command queue */

cl mem mem, /* memory buffer to be read */

cl bool blk, /* blocking function call */

size t off, /* offset */

size t bsz, /* buffer size */

FILE* fp, /* file pointer */

cl uint nev, /* the number of events in the list */

const cl event* evl, /* event list */

cl event* evt) /* event object of the function call */

cl int clEnqueueWriteBufferFromStdioFile(

cl command queue cmd, /* command queue */

cl mem mem, /* memory buffer to be written */

cl bool blk, /* blocking function call */

size t off, /* offset */

size t bsz, /* buffer size */

FILE* fp, /* file pointer */

cl uint nev, /* the number of events in the list */

const cl event* evl, /* event list */

cl event* evt) /* event object of the function call */

Algorithm 2

cl int

clEnqueueRecvBuffer(cl command queue cmd, /* command queue */

cl mem buf, /* memory buffer to receive data */

cl bool blocking, /* blocking function call */

size t offset, /* offset */

size t size, /* buffer size */

int src, /* sender’s rank */

int tag, /* tag */

MPI Comm comm, /* communicator */

cl uint numevts, /* the number of events in the list */

const cl event* wlist, /* event list */

cl event* evtret) /* event object of the function call */

Algorithm 3

8 Scientific Programming

(1) if(rank == 0){

(2) clEnqueueSendBuffer(cmd, buf, CL TRUE, off, sz, 1,. . .);

(3) }
(4) else if(rank == 1){

(5) clEnqueueRecvBuffer(cmd, buf, CL TRUE, off, sz, 0,. . .);

(6) }

Listing 3: A code with the OpenCL extension for device-to-device communication.

and the received data are stored in the memory space of
the communicator device, that is, buf. The MPI rank of the
sender is given to the function, and the sender could be either
the host thread or the communicator device associated with
the MPI rank.

In the case where both the sender and the receiver submit
internode communication commands to their devices, those
devices communicate with each other. Listing 3 shows a sim-
ple example of communication between remote devices. In
this code, the communicator device of rank 0 sends the data of
a memory buffer object to the communicator device of rank
1 without explicitly calling any MPI functions. Accordingly,
devices appear to communicate with remote devices without
help of their host threads. The implementation details of
internode communication by combining MPI and OpenCL
are hidden behind the OpenCL command execution. Hence,
the application can use optimized implementations of effi-
cient data transfers without using tricky programming tech-
niques. If oneMPI process needs to usemultiple communica-
tor devices, a unique tag is given to eachMPI communication
to specify which communicator device handles it.

4.1. Event Management. The clDataTransfer extension allows
a programmer to use event objects in order to express the
dependency among internode communication commands,
storage file access commands, and otherOpenCL commands.
If a data transfer command provided by clDataTransfer needs
the result of its preceding command, the programmer can get
the event object of the preceding command and use it to block
the execution of the data transfer command.This ensures that
the data transfer is performed after the preceding command
is completed. In this way, data transfer commands of clData-
Transfer are incorporated into the OpenCL execution model
in a natural manner. Accordingly, function calls of MPI
and Stdio are encapsulated in OpenCL commands whose
dependencies with other OpenCL commands are accurately
enforced by the command queues. Unlike the conventional
joint programming of MPI, Stdio, and OpenCL, the host
thread does not need to wait for the preceding command
completion. After enqueuing the commands by nonblocking
function calls, the host thread immediately becomes available
for other computations and data transfers; an application
programmer can consider as if a device is able to work
independently from the host thread. In due time, theOpenCL
runtime will release the clDataTransfer command for timely
execution of the MPI functions as shown in Figure 2(c),

even though the two communications may or may not be
performed concurrently.

Using the clDataTransfer extension, the code in Listing
2 can be simply rewritten as the code in Listing 4. This
is an example that demonstrates simplification of common
patterns in joint programming of OpenCL and other pro-
gramming models. In this particular case, the clDataTransfer
extension can halve the number of code lines for describ-
ing the same computation as the joint programming of
OpenCL and MPI. Since there are dependencies among the
enqueued commands, they are expressed by using event
objects bound with the commands. In Listing 2, the second
stage computations, jacobi even A and jacobi odd B, are
blocked using event objects of the first communication, e[1].
The second stage communications are blocked using the
event object of the first stage computation, e[0]. On the
other hand, in Listing 4, the dependencies among the
function calls are managed by the OpenCL event manage-
ment mechanism, and the host thread is thus freed from
controlling the computation and communication. In the
code, clEnqueueSendrecvBuffer enqueues an OpenCL
command for exchanging data between two MPI processes
by internally invoking MPI Sendrecv under control of the
OpenCL eventmanagement.Therefore, the host thread is just
waiting at the end of the iteration by calling clFinish.

4.2. Interoperability with Existing MPI Functions. In clData-
Transfer, an MPI process uses clDataTransfer commands for
transferring data from/to a device memory buffer. If an MPI
process needs to transfer data from/to a host memory buffer,
clDataTransfer allows the MPI process to use standard MPI
functions such as MPI Isend and MPI Irecv to communi-
cate with remote devices as well as remote hosts. Listing 5
shows that the MPI process of rank 0 receives data from
a remote device managed by the MPI process of rank 1.
A special MPI Datatype value, MPI CL MEM, is given to the
third argument of MPI Irecv in order to express that the
sender is supposed to be a communicator device and the
data are in the device memory. If MPI CL MEM is given, the
sender and receiver collaborate for efficient data transfers
between host and device memories. A similar approach of
using MPI Datatype can be seen in [5], even though they
extend only MPI but not OpenCL.

As shown in Listing 5, nonblocking MPI functions
can be used for internode communication from/to a host
memory buffer. Hence, the data need to be received

Scientific Programming 9

(1) cl command queue cmd1, cmd2;

(2) cl mem p new, p old, p tmp;

(3) cl event e[2];

(4)
(5) for(int i(0);i<N;++i){

(6) p tmp = p new; p new = p old; p old = p tmp;

(7) if(rank%2 == 0) {

(8) jacobi kernel even A(cmd1,p new. . .0,NULL,&e[0]);

(9) clEnqueueSendrecvBuffer(cmd2,p old,. . .0,NULL,&e[1]);

(10) jacobi kernel even B(cmd2,p new. . .1,&e[1],NULL);

(11) clEnqueueSendrecvBuffer(cmd1,p new,. . .1,&e[0],NULL);

(12) }
(13) else {

(14) jacobi kernel odd B(cmd2,p new. . .0,NULL,&e[0]);

(15) clEnqueueSendrecvBuffer(cmd1,p old,. . .0,NULL,&e[1]);

(16) jacobi kernel odd A(cmd1,p new. . .1,&e[1],NULL);

(17) clEnqueueSendrecvBuffer(cmd2,p new,. . .1,&e[0],NULL);

(18) }
(19) clFinish(cmd1);clFinish(cmd2);

(20) /* error calculation */
(21) }

Listing 4: A Himeno benchmark code with the proposed OpenCL extension.

(1) cl context ctx;

(2) MPI Request req;

(3) cl event evt[2];

(4)
(5) if(rank == 0){

(6) /* receiving data from a remote device */
(7) MPI Irecv(recvbuf, bufsz, MPI CL MEM, 1, 0, MPI COMM WORLD,&req);

(8) /* creating an event object of MPI Irecv */
(9) evt[0] = clCreateEventFromMPIRequest(ctx,&req,NULL);

(10) /* executing a kernel during the data transfer */
(11) clEnqueueNDRangeKernel(. . ., &evt[1]);

(12)
(13) /* executing this after the computation and communication */
(14) clEnqueueWriteBuffer(cmd, buf, . . ., 2, evt, NULL);

(15) }
(16) else if(rank == 1){

(17) /* send data to a remote host */
(18) clEnqueueSendBuffer(cmd, buf, CL TRUE, 0, bufsz, 0,. . .);

(19) }

Listing 5: A code with the OpenCL extension for host-to-device communication.

before clEnqueueWriteBuffer in lines (14) is executed to
write the data to the device memory of rank 0. In addition, a
kernel in line (11) is executed during the internode communi-
cation. To express the dependency among nonblocking MPI
function calls and OpenCL commands, the clDataTransfer
extension offers a function to create an OpenCL event object
that corresponds to MPI Request of a nonblocking MPI
function call. Using the event object, another OpenCL com-
mand can be executed after the nonblocking MPI function
is completed; the dependence between an MPI operation

and an OpenCL operation is properly enforced without host
intervention. In Listing 5, the event object is used to ensure
that MPI Irecv is completed before writing data to a device
memory buffer.

TheMPI interoperability is very important because many
applications have already been developed in such a way that
CPUs manage all internode communications via MPI func-
tion calls. Considering the importance, the clDataTransfer
extension is not designed as a standalone communication
library but an OpenCL extension for interoperation with

10 Scientific Programming

Table 1: System specifications.

System Masamune Cichlid RICC
CPU Intel Xeon E5-2670 Intel Core i7 930 Intel Xeon 5570
GPU GeForce GTX TITAN Tesla C2070 Tesla C1060
NIC GbE 1000BASE-T GbE 1000BASE-T InfiniBand DDR
OS CentOS 6.4 CentOS 6.0 RHEL 5.3
Compiler GCC-4.4.7 GCC-4.4.4 Intel Compiler 11.1
GPU Driver 319.37 290.10 295.41
OpenCL OpenCL1.1 (CUDA5.5) OpenCL1.1 (CUDA4.1.1) OpenCL1.1 (CUDA 4.2.9)
MPI Open MPI 1.5.4 Open MPI 1.6.0 Open MPI 1.6.1
Storage SSD (Intel 910 400GB) NFS NFS

MPI. With the interoperability, legacy applications can be
ported incrementally to heterogeneous computing systems by
gradually replacing the MPI function calls with the clData-
Transfer extension. This does not mean that all internode
communications should be replaced with the clDataTransfer
extension. We argue that both MPI and OpenCL need to be
extended for their efficient interoperation.

Although the clDataTransfer extension offers intern-
ode peer-to-peer communications among remote hosts and
devices, it does not currently offer any collective communi-
cations. This is because the function calls of MPI collective
communications are blocking and no OpenCL extension is
required to describe the dependability among the collec-
tive communications and OpenCL commands. If optimized
collective communications for device memory objects are
required, we can hide the implementation details in MPI
collective communication functions, rather than developing
a set of special collective communication functions for device
memory objects. As the MPI-3.0 standard will support non-
blocking collective communications, some synchronization
mechanisms between the nonblocking collective communi-
cations and OpenCL commands might be required in the
future. In this case, it will be effective to further extend
OpenCL to use its event management mechanism for the
synchronization.

5. Evaluation and Discussions

In this section, the performance impact of the proposed
extension is discussed by showing the effects of hiding
the host-device data transfer latency and the performance
improvement. In this work, a GPU program of the Smith
Waterman algorithm [11] is first used to evaluate the perfor-
mance gain by overlapping host-device data transfers with
file accesses. Then, the Himeno benchmark [13] and the
nanopowder growth simulation [14] are adopted for the
evaluation of MPI interoperability, which is improved by the
proposed extension.

Three systems called Masamune, Cichlid, and RICC are
used for the following evaluation. Masamune is a single node
PC with Intel Xeon E5-2670 CPU running at 2.60GHz and
one NVIDIA GeForce GTX TITAN GPU. Cichlid is a small
PC cluster system of four nodes, each of which contains one
Intel Core i7 930 CPU running at 2.8 GHz and one NVIDIA
Tesla C2070 GPU. The nodes are connected via the Gigabit

Ethernet network. On the other hand, in the multipurpose
PC cluster of RIKEN Integrated Cluster of Clusters (RICC),
100 compute nodes are connected via an InfiniBand DDR
network. Each of the compute nodes has two Intel Xeon
5570 CPUs and one NVIDIA Tesla C1060 GPU. The system
specifications are summarized in Table 1.

5.1. Implementation. In this work, we have implemented the
clDataTransfer extension on top of NVIDIA’s OpenCL and
OpenMPI [15] as shown inTable 1. Asmost of currently avail-
able OpenCL implementations are proprietary, the clData-
Transfer extension is designed so that it can be implemented
on top of a proprietary OpenCL implementation. In the
implementation, we have to consider at least three points.
One point is how to implement clDataTransfer commands
that mimic standard OpenCL commands. Another is how to
implement nonblocking function calls. The other is how to
implement pipelined data transfers.

To implement clDataTransfer commands whose execu-
tion is managed by the OpenCL event management sys-
tem, user event objects are internally used to create event
objects of those additional commands provided by the
clDataTransfer extension. Since there are several different
behaviors between standard event objects and user event
objects, the runtime of the clDataTransfer extension has been
developed so that user event objects of additional commands
can mimic event objects of standard OpenCL commands.
A simplified pseudocode of a clDataTransfer function is
shown in Listing 6. When the function is executed, from the
viewpoint of application programmers, the clDataTransfer
runtime appears to work as follows. A user event object
whose execution status is CL SUBMITTED is first created
when a clDataTransfer command is enqueued. Then, the
clDataTransfer runtime automatically changes the execution
status to CL COMPLETE when the command is completed.
This allows other commands to wait for the completion of
a clDataTransfer command by using its user event object.
Therefore, application programmers can use the event object
of a clDataTransfer command in the same way as that of a
standard OpenCL command.

The clDataTransfer function in Listing 6 can be invoked
in either blocking or nonblocking mode. To invoke a clData-
Transfer function without blocking the host thread, the
clDataTransfer runtime internally spawns another thread
dedicated to data transfers. Since most existing OpenCL

Scientific Programming 11

(1) cl int clDataTransferFunc(. . .,

(2) cl uint numevts, /* the number of events in the list */
(3) cl event* wlist, /* event list */
(4) cl evett* evtret) /* event object of event object */
(5) {
(6) /* create a new user event object whose status is CL SUBMITTED */
(7) *evtret = clCreateUserEvent(. . .);

(8)
(9) if(non blocking = CL TRUE)

(10) pthread create(. . .,cldtThreadFunc,. . .);

(11) else

(12) cldtThreadFunc(. . .);

(13)
(14) return CL SUCCESS;

(15) }
(16)
(17) /* numevt, wlist, and evtret are passed from the caller */
(18) void* cldtThreadFunc(void* p)

(19) {
(20) clWaitForEvent(numevt, wlist);

(21)
(22) /* pipelined data transfer */
(23)
(24) clSetUserEventStatus(*evtret, CL COMPLETE);

(25) return NULL;

(26) }

Listing 6: A simple pseudocode of a clDataTransfer function.

implementations are already spawning a CPU thread to
support callbacks, the same thread can technically be used to
handle the clDataTransfer function calls. Thus, no additional
thread would be needed if clDataTransfer is implemented by
OpenCL vendors.

As the clDataTransfer implementation needs to call MPI
and file access functions from the host thread and the dedi-
cated thread, their underlying implementations are assumed
to be thread-safe. File access functions are generally thread-
safe. On the other hand, in MPI, MPI Init thread should
workwith MPI THREAD MULTIPLE. TomakeOpenMPIwork
correctly for InfiniBand in a multithreaded environment, IP
over InfiniBand (IPoIB) is used for performance evaluation
on RICC.

In our current implementation, pipelined data transfers
are implemented by ourselves by reference to some papers
on GPU-awareMPI implementations [5, 6] and encapsulated
in clDataTransfer commands as shown in Listing 6. So far,
wrapper functions of file I/O functions and some major
MPI functions such as MPI Send and MPI Recv have been
developed so that those functions can perform pipelined
data transfers of overlapping host-device communication
with internode communicationwhen MPI CL MEM is given as
the MPI Datatype parameter.

5.2. Evaluation of File Access Performance

5.2.1. Evaluation of Sustained Data Transfer Bandwidths.
The sustained bandwidths of data transfers from files

to device memory buffers are evaluated to show that
clEnqueueWriteBufferFromStdioFile can reduce the
data transfer time compared to conventional serialized data
transfers. To evaluate the sustained bandwidths with different
storage’s bandwidths, the solid state drive (SSD) and the hard
disk drive (HDD) ofMasamune are used as the local storages,
and a shared file system of NFS is used as the global storage
and accessed from Cichlid.

First, we evaluate how much the clDataTransfer exten-
sion can improve the sustained bandwidth. In the case
of using clEnqueueWriteBufferFromStdioFile, data are
read from a file and then sent to a device memory buffer.
The bandwidth of a storage is lower than that of the data
transfer between the host and the device via the PCI-express
bus. Hence, the sustained bandwidth of the data transfer is
limited by the storage bandwidth. Since clEnqueueWrite-
BufferFromSdtioFile enables the host-device data trans-
fer to be overlapped with the file read, it can reduce the data
transfer time andhence achieve a higher sustained bandwidth
than the sequential execution of those two data transfers.

Figure 3 shows the sustained bandwidths obtained with
changing the data size and the pipeline buffer size. The verti-
cal axis shows the sustained bandwidth, and the horizontal
axis is the data size. In the figure, Serial means the data
transfer time in the case of not hiding the host-device data
transfer latency and 𝑁-pipe means the data transfer time of
the pipelined implementation with an𝑁-byte pipeline buffer.
By hiding the latencymore, the data transfer time approaches
to the file read time, which is FileRead in the figure. These

12 Scientific Programming

115

110

105

100

95

90

Su
sta

in
ed

 b
an

dw
id

th
 (M

B/
s)

1
M

B

2
M

Bs

4
M

Bs

8
M

Bs

1
6

M
Bs

3
2

M
Bs

6
4

M
Bs

1
2
8

M
Bs

2
5
6

M
Bs

5
1
2

M
Bs

1
G

B

(a) Cichlid

Su
sta

in
ed

 b
an

dw
id

th
 (M

B/
s)

160

140

120

100

80

60

40

1
M

B

2
M

Bs

4
M

Bs

8
M

Bs

1
6

M
Bs

3
2

M
Bs

6
4

M
Bs

1
2
8

M
Bs

2
5
6

M
Bs

5
1
2

M
Bs

1
G

B

(b) Masamune, HDD

Su
sta

in
ed

 b
an

dw
id

th
 (M

B/
s)

1080

980

880

780

680

580

480

380

280

180

80

FileRead
Serial

1
M

B

2
M

Bs

4
M

Bs

8
M

Bs

1
6

M
Bs

3
2

M
Bs

6
4

M
Bs

1
2
8

M
Bs

2
5
6

M
Bs

5
1
2

M
Bs

1
G

B
2-KB pipe

1-MB pipe
8-MB pipe

16-KB pipe

128-KB pipe

(c) Masamune, SSD

Figure 3: Sustained bandwidth (MB/s) of clEnqueueReadBufferToStdioFile.

results indicate that the clDataTransfer extension can hide the
host-device data transfer latency and hence the sustained per-
formance of the data transfer from a file to a device memory
buffer is almost comparable to the sustained bandwidth of
just reading a file, that is, FileRead. A programmer can use the
optimized data transfer implementation by just enqueuing a
clDataTransfer command.

In the case of reading from the HDD of Masamune, the
file read time varies widely as shown in Figure 3. This is
likely due to the bandwidth of the disk and the behaviors
of the read-ahead thread in the OS kernel. As a result,
the performance gain is unseen. The FileRead performance
is sometimes even lower than that of clEnqueueWrite-
BufferFromStdioFile because of the intrinsic measure-
ment accuracy.

5.2.2. Evaluation with the SmithWaterman Algorithm. In this
work, a CUDA program of the Smith Waterman algorithm
[11] is ported to OpenCL. Then, the performance of the
OpenCL version is evaluated to show that clDataTransfer can
hide the host-device data transfer latency of a real application
by overlapping it with the file access latency. In the Smith
Waterman program, the data transfer time can be overlapped
with the computation time. However, the data transfer time

is still partially exposed to the total execution time if the
computation time is shorter than the data transfer time. The
exposed data transfer time depends on the problem size.
Therefore, in this evaluation, the overlap of computation and
data transfer is disabled, and the fully exposed data transfer
time is evaluated to clearly show the effect of overlapping the
host-device data transfer latency with the file access latency.

The OpenCL program repeatedly reads the data in files
to host memory buffers and sends them to device memory
buffers. Suppose that d db and h db are handles of a device
memory buffer and a host memory buffer, respectively. Their
buffer size is readsz, and the file pointer is fp. Then, the
original code has the following code pattern:

fread(h db, readsz, 1, fp);
clEnqueueWriteBuffer(cmd,
d db, CL TRUE, 0, readsz, h db, 0, NULL, NULL);

The above pattern is replaced with an additional OpenCL
command enqueued by

clEnqueueWriteBufferFromStdioFile

(cmd, d db, CL TRUE, 0, readsz, fp, 0,
NULL, NULL);

Scientific Programming 13

Masamune, HDD

Masamune, PCIeSSD
Cichlid

Re
ad

 fi
le

 to
 G

PU
 p

er
fo

rm
an

ce
im

pr
ov

em
en

t r
at

io
1.25

1.2

1.15

1.1

1.05

1

0.95

32
-K

B
pi

pe

64
-K

B
pi

pe

12
8-

KB
 p

ip
e

25
6-

KB
 p

ip
e

51
2-

KB
 p

ip
e

1-
M

B
pi

pe

2-
M

B
pi

pe
Figure 4: The improvement ratio of data transfer performance for
the Smith Waterman algorithm.

The results of evaluating the data transfer time with
changing the pipeline buffer size are shown in Figure 4. Here,
the data transfer time is the total time of data transfers from a
database file to a devicememory buffer.These results indicate
that the clDataTransfer extension can reduce the data transfer
time if the pipeline buffer size is appropriately configured.The
performance improvement of the clDataTransfer extension
decreases if the pipeline buffer size is too small due to the
runtime overhead of the pipeline implementation. It also
decreases if the pipeline buffer size is too large compared to
the data size, because pipelining with a too large buffer does
not benefit from overlapping of data transfers. Accordingly,
the optimal pipeline buffer size depends not only on the
storage performance but also on the data size to be transferred
from a file to a device memory buffer. The pipeline buffer
size has to be dynamically adjusted because the data size is
usually determined at runtime. Figure 4 discusses the effect
of changing the pipeline buffer size on performance. Since the
clDataTransfer extension hides the implementation details of
data transfers, it is technically possible to employ empirical
parameter tuning or autotuning for automatically finding the
optimal pipeline buffer size, as in MVAPICH2-GPU’s CUDA
support.

In the Smith Waterman program, the data size to be read
from a file ranges from 511 bytes to 4 Mbytes and hence is
relatively small. The sustained bandwidths of both the file
read and the host-device data transfer become lower for the
transfer of a small data chunk. If the program is used for large
input data, we believe that the performance improvement by
clDataTransfer would become more remarkable as indicated
in Figure 3.

5.3. Evaluation of Internode Communication Performance

5.3.1. Point-to-Point Communication Performance. One ad-
vantage of the clDataTransfer extension over conventional
joint programming of MPI and OpenCL is that the clData-
Transfer extension can hide the implementation details of
system-aware optimization for efficient data transfers.

Figure 5 shows the difference in sustained bandwidth
among pinned, mapped, and pipelined implementations
described in Section 3. In the figure, “pipelined(𝑁)” indicates
the results of pipelined data transfers with the pipeline buffer
size of𝑁 Mbytes. The evaluation results in Figure 5(a) show
that the performance difference among the three imple-
mentations is small in the Cichlid system. This is because
their sustained bandwidths are limited by the bandwidth
of the GbE interconnect network. The time for host-device
communication is much shorter than that of internode
communication, and hence the pipelined implementation
hardly improves the sustained bandwidth. On the other hand,
in Figure 5(b), there is a big difference in sustained bandwidth
among the three implementations. Moreover, the sustained
bandwidth of the pipelined implementation changes with the
pipeline buffer size. Pipelining with a relatively small pipeline
buffer is the most efficient when the message size is small
because the pipeline buffer size needs to be smaller than the
message size. On the other hand, a large pipeline buffer leads
to a higher sustained bandwidth for large messages because
the sustained bandwidth of sending each pipeline buffer
usually increases with the pipeline buffer size. Accordingly,
the optimal pipeline buffer size changes depending at least on
the message size.

From the above results, it is obvious that system-aware
optimizations are often required by multinode GPU appli-
cations to achieve a high performance, and hence some
abstractions of internode data transfers are necessary for
high performance-portability. For example, on RICC, the
pinned data transfer is always faster than the mapped one,
while the mapped data transfer is faster for small messages
on Cichlid due to the short latency of the implementation.
The clDataTransfer extension provides interfaces that abstract
internode data transfers and thereby allows an application
programmer to use optimized data transfers without tricky
programming techniques. An automatic selection mecha-
nism of the data transfer implementations can be adopted
behind the interfaces. The current implementation of the
clDataTransfer runtime can use either the pinned or the
mapped data transfer for small messages, and the pipelined
data transfer can be performed for large messages. The
pipelined data transfer can also be implemented using either
the pinned or the mapped data transfer. In the following
evaluation, themapped and pinned data transfers are used for
Cichlid and RICC, respectively. Of course, other optimized
data transfers can be incorporated into the runtime and
available to application programs without changing their
codes, which results in high performance-portability across
system types, scales, and probably generations.

5.3.2. Evaluation with the Himeno Benchmark. The per-
formance impact of using the clDataTransfer extension is
first evaluated by comparing the sustained performances
of three implementations for the Himeno benchmark. One
implementation is called the hand-optimized implementa-
tion presented in [13]. The hand-optimized implementation
uses pinned data transfers for exchanging halo data of about
750 Kbytes. Another is called the serial implementation that
is almost the same as the hand-optimized implementation

14 Scientific Programming

Ba
nd

w
id

th
 (M

B/
s)

Data size (MB)

Pinned
Mapped
Pipelined (1)

Pipelined (2)
Pipelined (4)
Pipelined (8)

120

110

100

90

80

70

60

1 2 4 8 16 32 64 128 256 512 1024

(a) Cichlid

Pinned
Mapped
Pipelined (1)

Pipelined (2)
Pipelined (4)
Pipelined (8)

Ba
nd

w
id

th
 (M

B/
s)

Data size (MB)
8 16 32 64 128 256 512 1024

1600

1400

1200

1000

800

600

400

200

0

(b) RICC

Figure 5: Sustained bandwidth of peer-to-peer communication.

but all the computations and communications are serialized.
The performance of the serial implementation is supposed
to be the lowest. The other is the implementation using the
clDataTransfer extension, called the clDataTransfer imple-
mentation.

Figure 6 shows the sustained performances of the three
implementations for the Himeno benchmark with 𝑀-size
data. Since the hand-optimized implementation is well
designed for overlapping the computations and communi-
cations, it can always achieve a higher performance than
the serial implementation; the average speedup ratios are
51.2% and 15.2% for Cichlid and RICC, respectively. The
performance of the clDataTransfer implementation is almost
always comparable to that of the hand-optimized imple-
mentation because the communication times of both the
hand-optimized and the clDataTransfer implementations are
not exposed to their total execution times. Accordingly, the
clDataTransfer extension allows an application programmer
to easily overlap the communication and computation by
simply sending internode communication commands to
devices and utilizing OpenCL event objects to enforce the
dependencies among OpenCL commands.

The results in Figure 6(a) are obtained using Cichlid
whose network performance is low compared to the com-
putation performance. The ratio of the computation time to
the communication time in the serial implementation is also
shown in the figure. Only in the case of Cichlid with four
nodes, the ratio of the computation to the communication
is less than one, and hence the communication time cannot
completely be overlapped with the computation time when
pinned data transfers are used for communication. In this
case, the performance of the hand-optimized implementation
is clearly lower than the clDataTransfer implementation. The
main reason of the performance difference is that themapped
data transfer behind the clDataTransfer implementation is
faster than the pinned data transfers. These results clearly
show the importance of system-dependent optimizations for

highly efficient data transfers. As the programming model of
the clDataTransfer extension encapsulates the data transfers,
an application programmer does not need to know the imple-
mentation details and can automatically use the optimized
implementation from a simply written code such as shown
in Listing 4.

5.3.3. Evaluation with a Practical Application. The perfor-
mance impact of the clDataTransfer extension is further
discussed by taking the nanopowder growth simulation [14]
as an example of real applications. The simulation code has
been developed for numerical analysis of the entire growth
process of binary alloy nanopowders in thermal plasma
synthesis. Although various phenomena are considered to
simulate the nanopowder growth process, about 90% of
the total execution time of the original code is spent for
simulating the process of coagulation among nanoparticles.

In the following evaluation, the clDataTransfer extension
is applied to a parallel version of the simulation code, in
which only the coagulation routine is parallelized usingMPI,
and its kernel loop is further accelerated using OpenCL.
The other phenomena such as nucleation and condensation
are computed by one host thread, and the coefficient data
of about 42 Mbytes required by the coagulation routine
are distributed from the host thread to each node at every
simulation step. For the simulation code, two versions
have been implemented to clarify the effect of using the
optimized data transfers provided by the clDataTransfer
extension. One is the baseline implementation that just
uses MPI Isend and MPI Recv for coefficient data distribu-
tion. The other is the clDataTransfer implementation, which
uses MPI Isend with MPI CL MEM to send the coefficients in
hostmemory buffers and clEnqueueRecvBuffer to receive
them.

Figure 7 shows the results to compare the performances
of the two implementations on RICC. Unlike the Himeno
benchmark, the communication overheads are obviously

Scientific Programming 15

Serial
Hand-optimized
clDataTransfer

Comp./comm. ratio

Pe
rfo

rm
an

ce
 (G

flo
ps

)

The number of nodes
2 4

180

160

140

120

100

80

60

40

20

0

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0 C
om

pu
ta

tio
n/

co
m

m
un

ic
at

io
n

ra
tio

(a) Cichlid

Hand-optimized
clDataTransfer

The number of nodes
2 4 8 16 32

1200

1000

800

600

400

200

0

Pe
rfo

rm
an

ce
 (G

flo
ps

)

Serial

(b) RICC

Figure 6: The performance for the Himeno benchmark.

The number of nodes

MPI + OpenCL
clDataTransfer

To
ta

l e
xe

cu
tio

n
tim

e (
s)

2 4 5 8 10 20

1000

900

800

700

600

500

400

300

200

100

0

Figure 7:The execution time of the nanopowder growth simulation
(700 simulation steps).

exposed to the total execution time of this simulation
program. Due to the decomposition method for MPI par-
allelization, the number of nodes must be a divisor of 40.
Because of the poor parallelism, the performance degrades
when the number of nodes increases beyond 8.

As shown in Figure 7, the clDataTransfer outperforms the
baseline implementation because it can exploit an optimized
implementation that overlaps the host-device communi-
cation with the internode communication in a pipelined
fashion for sufficiently large messages. Accordingly, these
results indicate that a higher performance can be achieved
by appropriately interoperating MPI and OpenCL, and the
clDataTransfer enables us to express the interoperation in a
simple and effective way.

In the above evaluation, by just replacing the combination
of MPI Recv and clEnqueueWriteBuffer with clEnque-
ueRecvBuffer, the pipeline data transfer is used for the
communication and leads to a higher sustained bandwidth.

Hence, the results also suggest that application programmers
can incrementally improve their MPI programs so as to use
the clDataTransfer extension. This is very important because
most of existing applications have been developed using
MPI.

6. Conclusions

This paper has proposed an OpenCL extension, clDataTrans-
fer, to allow OpenCL to perform data transfers that need
collaboration between hosts and compute devices. In the
clDataTransfer extension, additional OpenCL commands are
defined for encapsulating common programming patterns in
data transfers from/to the device memory, such as internode
communications and file accesses.The additional commands
are executed in the same way as the other OpenCL com-
mands. Using OpenCL event objects, we can express the
dependency among both conventional and additional com-
mands. Therefore, data transfers indicated by the additional
commands are incorporated into the OpenCL execution
model in a natural manner.

As data transfers are abstracted as OpenCL commands,
the implementation details of the data transfers are hidden
from application codes. Hence, clDataTransfer will be able
to exploit new features of the latest devices without any user
code change. As a result, clDataTransfer would allow today’s
applications to benefit from hardware improvements without
making any code change or even without recompiling the
application. That is, clDataTransfer can improve not only the
performance but also the performance portabilities across
system types, scales, and generations.

The performance evaluation results clearly show that
clDataTransfer can achieve efficient data transfers while
hiding the complicated implementation details, resulting
in higher performance and scalability. Moreover, using the
clDataTransfer extension, the host thread of an application
is not blocked to serialize dependent operations of data

16 Scientific Programming

transfers. As a result, the clDataTransfer extension allows an
application programmer to easily use the opportunities to
overlap communications and storage accesses with compu-
tations.

Although this work focuses on OpenCL, we believe that
the idea itself could be applicable to other programming
models such as CUDA. In the future, we will further improve
the extension so that it can support other kinds of tasks that
need help of host threads, such as system calls.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The authors would like to thank Professor Mayasa Shigeta
and Professor Fumihiko Ino of Osaka University for allowing
them to use their simulation codes in the performance
evaluation. The authors would also like to thank the RIKEN
Integrated Cluster of Clusters (RICC) at RIKEN for the
user supports and the computer resources used for the
performance evaluation. This research is partially supported
by JST CREST “An Evolutionary Approach to Construction
of a Software Development Environment for Massively-
Parallel Heterogeneous Systems” and Grants-in-Aid for Sci-
entific Research (B) nos. 25280041 and 25280012. The work
is also partly supported by DoE Vancouver Project (DE-
SC0005515).

References

[1] D. B. Kirk andW.W. Hwu, ProgrammingMassively Parallel Pro-
cessors: A Hands-on Approach, Morgan Kaufmann Publishers,
2007.

[2] B. Gaster, L. Howes, D. R. Kaeli, P. Mistry, and D. Schaa,
Heterogeneous Computing with OpenCL, Morgan Kaufmann,
Boston, Mass, USA, 2011.

[3] W.Gropp, E. Lusk, andA. Skjellum,UsingMPI: Portable Parallel
Programmingwith theMessage Passing Interface,TheMITPress,
1999.

[4] O. S. Lawlor, “Message passing for GPGPU clusters: cudaMPI,”
in Proceedings of the IEEE International Conference on Cluster
Comptuing and Workshops (CLUSTER ’09), pp. 1–8, 2009.

[5] A.M. Aji, J. Dinan, D. Buntinas et al., “MPI-ACC: An integrated
and extensible approach to datamovement in accelerator-based
systems,” in Proceedings of the 14th IEEE International Con-
ference on High Performance Computing and Communications
(HPCC '12), pp. 647–654, Liverpool, UK, June 2012.

[6] H.Wang, S. Potluri,M. Luo, A. K. Singh, S. Sur, andD.K. Panda,
“MVAPICH2-GPU: optimized GPU to GPU communication
for InfiniBand clusters,” Computer Science: Research and Devel-
opment, vol. 26, no. 3-4, pp. 257–266, 2011.

[7] J. A. Stuart, P. Balaji, and J. D. Owens, “Extending MPI to
accelerators,” in Proceedings of the 1stWorkshop on Architectures
and Systems for Big Data (ASBD ’11), pp. 19–23, 2011.

[8] I. Gelado, J. Cabezas, N. Navarro, J. E. Stone, S. Patel, and
W.-M. W. Hwu, “An asymmetric distributed shared memory

model for heterogeneous parallel systems,” in Proceedings of
the 15th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS ’10),
pp. 347–358, March 2010.

[9] J. A. Stuart and J. D. Owens, “Message passing on data-parallel
architectures,” in Proceedings of the 23rd IEEE International
Parallel and Distributed Processing Symposium (IPDPS ’09), pp.
1–12, May 2009.

[10] A. Barak, T. Ben-Nun, E. Levy, and A. Shiloh, “A package
for OpenCL based heterogeneous computing on clusters with
many GPU devices,” in Proceedings of the IEEE International
Conference on Cluster Computing Workshops and Posters, pp. 1–
7, September 2010.

[11] Y. Munekawa, F. Ino, and K. Hagihara, “Design and imple-
mentation of the Smith-Waterman algorithm on the CUDA-
compatible GPU,” in Proceedings of the 8th IEEE International
Conference onBioInformatics andBioEngineering (BIBE ’08), pp.
1–6, October 2008.

[12] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet
classification with deep convolutional neural networks,” in
Advances in Neural Information Processing Systems, vol. 25, pp.
1097–1105, 2012.

[13] E. H. Phillips and M. Fatica, “Implementing the Himeno
benchmark with CUDA on GPU clusters,” in Proceedings of
the 24th IEEE International Parallel and Distributed Processing
Symposium (IPDPS ’10), pp. 1–10, April 2010.

[14] M. Shigeta and T. Watanabe, “Growth model of binary alloy
nanopowders for thermal plasma synthesis,” Journal of Applied
Physics, vol. 108, no. 4, Article ID 043306, 2010.

[15] The Open MPI Project, “Open MPI: open source high perfor-
mance computing,” http://www.open-mpi.org/.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

