
Research Article
Implementation of Secondary Index on Cloud Computing
NoSQL Database in Big Data Environment

Bao Rong Chang,1 Hsiu-Fen Tsai,2 Chia-Yen Chen,1

Chien-Feng Huang,1 and Hung-Ta Hsu1

1Department of Computer Science and Information Engineering, National University of Kaohsiung, Kaohsiung 81148, Taiwan
2Department of Marketing Management, Shu-Te University, Kaohsiung 82445, Taiwan

Correspondence should be addressed to Chien-Feng Huang; cfhuang15@nuk.edu.tw

Received 4 September 2014; Accepted 12 December 2014

Academic Editor: Gianluigi Greco

Copyright © 2015 Bao Rong Chang et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

This paper introduces the combination of NoSQL database HBase and enterprise search platform Solr so as to tackle the problem
of the secondary index function with fast query. In order to verify the effectiveness and efficiency of the proposed approach, the
assessment using Cost-Performance ratio has been done for several competitive benchmark databases and the proposed one. As
a result, our proposed approach outperforms the other databases and fulfills secondary index function with fast query in NoSQL
database. Moreover, according to the cross-sectional analysis, the proposed combination of HBase and Solr database is capable of
performing an excellent query/response in a big data environment.

1. Introduction

Regarding big data storage [1, 2], the way of fast and easy data
query is a concerned issue in NoSQL database. In general,
NoSQL scheme [3, 4] is capable of supporting various data
format to process the storage; yet it sacrifices the index
searching function. HBase is of a NoSQL database as part
of Hadoop ecosystem. It is known as the scheme of key
value and usually stores the results coming out ofMapReduce
execution. HBase features high scalability and high flexibility,
delivering a high IO performance of big data. Solr is of a
blazing fast open source enterprise search engine that can
quickly create index and proceed with powerful full-text
search. In this paper, we are able to combine HBase and Solr
to enhance the secondary index function for HBase. After
the success of this combination, we go for a series of stress
tests using several testing items and then make the perfor-
mance comparison between the proposed one and the other
benchmark databases. Finally, a cost effectiveness evaluation
called Cost-Performance ratio (C-P ratio) [5] has been done
for a variety of databases. As a result, the assessment about
C-P ratio will be analyzed and discussed for all of databases

mentioned in this paper. Based on the cross-sectional data
analysis [6], it will explore the performance of data access in
NoSQL database in a big data environment as well.

For key-value database, it allows the application to store
its data in a schema-less way. The data could be stored in
a data type of a programming language or an object. There
is no need for a fixed data model. Key-value storing divides
many categories, like eventually consistent (always keeps the
newest result if there is no update), hierarchical (can use
the parent’s attributes), cache in RAM (key value stored in
memory, hash stored in cache, and hash used to present key-
value index; time complexity is O(1)), solid state or rotating
disk (like Google Bigtable which is used in solid state disk
to enhance IO access speed), and ordered (with key-value
pairs which can sort keys or values). For tabular database, it
is a database that is structured in a tabular form. It arranges
data elements in vertical columns and horizontal rows. Each
cell is formed by the intersection of a column and row. Each
row and column are uniquely numbered to make it orderly
and efficient. This type of database has a virtually infinite
range for mass data storage. Structuring data in tabular form
may be the oldest method used. It is also simple. Tabular

Hindawi Publishing Corporation
Scientific Programming
Volume 2015, Article ID 560714, 10 pages
http://dx.doi.org/10.1155/2015/560714

2 Scientific Programming

Table 1: NoSQL database benchmark on 5 criteria.

Database Performance Scalability Flexibility Complexity Functionality
Key-value store High High High Low Variable
Column store High High Moderate Low Minimum
Document store High Variable High Low Variable
Graph database Variable Variable High High Graph theory
Relational database Variable Variable Low Moderate Relational algebra

database has several properties. They share the same set of
properties per record.Thismeans that every row has the same
set of column titles. They access records through identifiers.
Each table in a tabular database contains a particular set
of related information that is connected with the database
subject through key fields, which describe each record (row)
so that, in the event of a query, the system can quickly locate
the record. There are several famous databases of this type,
like Google Bigtable, Apache Accumulo, Apache HBase, and
Hypertable. For column store database, it stores data tables
as sections of columns of data rather than rows of data. For
RDBMS, rows are commonly used; the column store database
has the advantage of aggregating computed data over large
numbers of similar data items. Column store is used in data
warehouse and CRM system. Using column store database,
the system can evaluate which columns are being accessed
and retrieved only if values are requested from the specific
columns. For NoSQL database, eachmechanism has different
uses, and a famous database can have many properties, like
Google Bigtable. It owns solid state disk key-value type and
tabular type. For this study,HBase is a column-store database.
It has an easy method to use, and its performance as well as
the scalability is better than the others. Table 1 explains the
performance of each type of database over 5 criteria.

The following paragraphs of this paper are arranged as
follows. In Section 2, combination of NoSQL database and
enterprise search platform will be described. The way to
system assessment is given in Section 3. The experimental
results and discussion will be obtained in Section 4. Finally,
we drew a brief conclusion in Section 5.

2. Combination of NoSQL Database and
Enterprise Search Platform

This paper studies how the combination of HBase and Solr
runs in big data environment based on cloud computing
platform. All of application programs were installed in a
Linux-based operating system. HBase is placed over Hadoop
HDFS system. Thus, HBase can be attached to Hadoop
after the core parts of Hadoop have been installed in a
physical machine such as MapReduce and HDFS. Solr can
operate independently without any support from any other
applications.With the corporationwith Solr,HBase can easily
create index. On the other hand, Solr is able to provide GUI
interface for user’s operation. The procedure to establish the
combination of two applications can be listed as follows.

(1) Install Linux O/S on every host, connect them
together via SSH, and deploy JVM to every host to
achieve a Linux cluster environment.

(2) Establish master and slave nodes and start them up.
Master node shall deploy Hadoop to slave nodes.
This has Hadoop done in every host in a cluster
environment [7–9].

(3) After deploying Hadoop and ZooKeeper to cluster,
we need to confirm the start-up of Hadoop and
ZooKeeper services. We are able to give jps instruc-
tion at terminal to check whether or not the services
are running normally. After that, we establish HBase
service [10–13] within Hadoop.

(4) When procedure #3 has been done, web browser is
used to view the start-up of Hadoop and HBase ser-
vices. Key in http://localhost:50030/, 50040, 50070,
and 60010 is used to check each node if operating
normally.

(5) Before we get Solr started, we need to modify the
execution parameters in solrconfig.xml, which is
a configuration file within ./solr-version/examples/
solr/collection1/conf/. We have to determine the Solr
whether or not setting input word string to act as
an index, content storage, and data format. Apache
Solr needed http web container to get it started, for
example, either Apache Tomcat or Apache Jetty. Here,
we chose Jetty because of the default setting. After
setting up, we key in “java –jar start, jar” to start up
Solr in terminal. Finally, we got Solr’s address, which
is http://localhost:8983/.

(6) Since HBase cannot support automatically generated
row key, several big data files shall be modified in
advance. We need to design a unique and complex
rowkey which corresponds to a large number of rows
(up to ten million rows). In this study, we chose the
American Yellow Page as data source. Our data com-
bination is “rowkey-category-shop name-telephone-
province-address” with a total of 6 columns. These
data files have to translate into CSV format, and “,”
symbols are used to separate each column.

(7) The CSV file is uploaded to Hadoop file system, and
these files are imported to HBase as full-text input
via the special tool, “bulk load tool” [14]. We need to
check the data integrity inHBase after data importing.

Scientific Programming 3

Figure 1: Apache Solr configuring file for indexing.

Client
user

Querying
index

HBase
rowkey

CLI querying
rowkey

HBase table Solr cache

Solr index
querying

Summarize
the column

Data
classification

Data
transmission to

HBase

Is data
with
some
rule?

Data
transmission to

Solr
Yes

No

Data
integrity

Resend data

(Missing data)

Data
integrity
in Solr-
doc no.

Resend data

Yes YesStart-
collect

big data

End-get
information

Feedback

(Missing data)No No

Figure 2: Flowchart of HBase together with Solr to implement secondary index operation.

(8) Then, we use HBase output API and Apache HTTP
API to transfer the document to Solr fromHBase [15–
17]. After the transmission, the indexes are created
and the content is saved in memory in Solr, that is,
the schema as defined and shown in Figure 1. We can
use web browser to check the amount of documents
in Solr. Data in a row represent a document. We can
use query function to search our keyword (Secondary
index or more) and reversely to search the primary
index in Solr. We may be able to apply filter function
to improve the precision of search results.

(9) After finishing the setup of the proposed system, we
chose some other benchmarks to compare with the
proposed one in the experiment. After the experi-
ment, we are able to give a kind of assessment on
those, for instance a cost effectiveness evaluation.

In Figure 2, a flowchart represents HBase together with Solr
to implement secondary index operation.

3. System Assessment

In terms of the performance evaluation, we have initially
tested the time for data read/write to a variety of databases,
such as Apache HBase, Cassandra, Huawei HBase, Solandra,
and Lily Project. Next, the time for data transfer to Solr from
the databases mentioned above has to be recorded. Finally,
the response time for the query function performed in Solr
needed to be measured as well. According to four tests on
data write, data read, document transfer, and query/response
to any of databases as mentioned above, first of all we have
to measure a single datum access time taking a number of
different data size as shown in (1), where 𝑡

𝑠𝑖𝑗𝑘
represents a

single datum access time, for a single run 𝑡
𝑖𝑗𝑘

stands for

4 Scientific Programming

Figure 3: Latency under stress test for Solr (presenting 6 windows).

Scientific Programming 5

measured total time for a specific data size at a certain
database, and 𝑁

𝑖𝑘
means a specific data size. In (2), 𝑡

𝑠𝑖𝑗𝑘

represents average time of a single datum access and 𝑤
𝑖

stands for the respective weight factor for 𝑡
𝑠𝑖𝑗𝑘
. A normalized

performance index for a specific database at a certain test
can be obtained as shown in (3), where PI

𝑗𝑘
represents a

normalized performance index. After that, we have evaluated
the weighted average of normalized performance index and it
turned out to be the performance index [18] for each database
as shown in (4), where PI

𝑗
represents performance index, SF1

stands for scale factor #1,𝑊
𝑘
is the respective weight, and PI

𝑗𝑘

means a normalized performance index. In order to assess the
cost effectiveness evaluation, we need to calculate total cost of
ownership [19] in (5), showing the expenditure of money in
the implementation of secondary index function for NoSQL
database, where HC

𝑎
presents hardware cost, 𝑆

𝑏
stands

for software cost, RCAW
𝑐
means repairing cost after the

warranty, DTC
𝑑
is downtime cost, and EUC

𝑒
explains extra

upgrade cost. The monetary value of total cost of ownership
may vary with location, market, and tax. Thus, a higher cost,
for example, might be obtained in US and a lower cost in
Taiwan. In the system assessment, a typical cost effectiveness
evaluation calledC-P ratio has been introduced here to do the
assessment in (6), whereCP

𝑗𝑔
is C-P ratio, SF2 stands for scale

factor #2, and TCO
𝑗𝑔

means total cost of ownership as well
as subscript 𝑗 that represents various data center and 𝑔 that
stands for a certain period of time. Consider the following:

𝑡
𝑠𝑖𝑗𝑘
=

𝑡
𝑖𝑗𝑘

𝑁
𝑖𝑘

, (1)

where 𝑖 = 1, 2, . . . , 𝑙, 𝑗 = 1, 2, . . . , 𝑚, and 𝑘 = 1, 2, . . . , 𝑛,

𝑡
𝑠𝑗𝑘
=

𝑙

∑

𝑖=1
𝑤
𝑖
⋅ 𝑡
𝑠𝑖𝑗𝑘
, (2)

where 𝑗 = 1, 2, . . . , 𝑚, 𝑘 = 1, 2, . . . , 𝑛, and ∑𝑙
𝑖=1 𝑤𝑖 = 1,

PI
𝑗𝑘
=

1/𝑡
𝑠𝑗𝑘

Max
ℎ=1,2,...,𝑚 (1/𝑡𝑠ℎ𝑘)

, (3)

where 𝑗 = 1, 2, . . . , 𝑚 and 𝑘 = 1, 2, . . . , 𝑛,

PI
𝑗
= SF1 ⋅ (

𝑛

∑

𝑘=1
𝑊
𝑘
⋅ PI
𝑗𝑘
) , (4)

where 𝑗 = 1, 2, . . . , 𝑚, 𝑘 = 1, 2, . . . , 𝑛, SF1 = 102, and
∑
𝑛

𝑘=1𝑊𝑘 = 1,

TCO
𝑗𝑔
= ∑

𝑎

HC
𝑎
+∑

𝑏

𝑆
𝑏
+∑

𝑐

RCAW
𝑐
+∑

𝑑

DTC
𝑑
+∑

𝑒

EUC
𝑒
, (5)

where 𝑗 = 1, 2, . . . , 𝑚 and 𝑔 = 1, 2, . . . , 𝑜,

CP
𝑗𝑔
= SF2 ⋅

PI
𝑗

TCO
𝑗𝑔

, (6)

where 𝑗 = 1, 2, . . . , 𝑚, 𝑔 = 1, 2, . . . , 𝑜, and SF2 = 10
4
.

Raw
data

Hadoop
file

system

Upload
file

Import
data

Build
index

(1) Query data
(other index)

(2) Get
row-key

(3) Query
row-key

HBase
Solr

User

Figure 4: Implementation procedure.

Figure 5: Scanning a table in HBase using CLI.

In order to examine the stability and reliability of NoSQL
database secondary index function, a stress test of data
retrieval in Solr has been taken in a big data environment.
Technically speaking, this test generated up to 20 threads
(20 windows) to respond to 10 to 1000 queries and we had
checked the latency (time interval) simultaneously. The key
index in every query was different as shown in Figure 3.
Clearly, the result would indicate the response time for the
query in Solr and explain what correlation between the
amount of windows and the latency was found.

4. Experimental Results and Discussion

There are a few experiments and a discussion presented in the
following subsections.

4.1. Data Transfer and Data Integrity Checking. In regard
to implementation procedure as shown in Figure 4, which
indicated data transfer from HDFS to HBase and/or from
HBase to Solr, there are risks of losing data during the
transition. We have to verify the data integrity in HBase
inner table and the amount of input documents in Solr.
For examining HBase, we checked inner table using the
command “scan table-name” in CLI as shown in Figure 5.
In Figure 6, the document transfer from HBase to Solr has
been done using the command in CLI. For examining Solr,
we checked our input document amount in Solr using web
interface as shown in Figure 6. Furthermore, in terms of the
performance evaluation, the time for data writing/reading in
every database has been measured as listed in Tables 2 and 3.

6 Scientific Programming

Table 2: Time for writing data to database (unit: sec.).

Data size HBase + Solr Cassandra Huawei HBase Solandra Lily Project
104 23 110.4 23 120 23
105 23.2 1109.2 23 1215 24
106 123.4 11211.3 125 11253 137
107 388.5 113157.7 390 113189 412

Table 3: Time for reading data from database (unit: sec.).

Data size HBase + Solr Cassandra Huawei HBase Solandra Lily Project
104 27.2 27.6 30 29 27
105 266.5 270.7 269 288.5 273
106 2572.2 2614.2 2589.7 2735 2566
107 24312 24701 24479 24988 24385

Figure 6: Importing data to Solr from HBase.

Time for data transfer to Solr from every database has been
recorded as listed in Table 4.

Speaking of data import toHBase, we adopted a bulk-load
tool with MapReduce computing to transfer the original file
into HBase because this tool is capable of handling a large
amount of data in the way of fast and smoothly transferring.
For Solr, a program with specific port at Solr and designated
HBase API has activated to quickly transfer documents to
Solr fromHBase where a java client to access Solr called Solrj
has logged into the http server, that is Solr, to respond swiftly
to the connection and deliver the on-line document to http
server.This also demonstrates an efficient way to realize a fast
document transfer based on a client-server model for a huge
amount of data. Alternatively, the other choice is that HBase
coprocessor may launch a process to do the batch update
frequently. However, HBase coprocessor is not stable because
it is still in the developing phase.

4.2. Querying Function and Performance Index. Once the
document transfer from HBase to Solr has been done com-
pletely, the data are available in Solr and we could check the

Figure 7: Presentation of Imported data in Solr using GUI.

amount of document in Solr as shown in Figure 7. In order
to verify the secondary index function in the combination
of HBase and Solr, we launched the query test in Solr as
shown in Figure 8, where we can check the information about
the related operations on the web. Solr provides normal
search, filtering search, spatial search, and other more search
functions. For example, we did a search using the shop-name
field that included “Food” as its keyword, and 1000 results
appeared filtering the province tag with “NY.” We keyed in
“shopname:Food” in “q” field, inputted “province:NY” in “fq”
field, and gave 1000 in rows field. Figure 8 has shown the
operation of query. In Table 5, the response time for the query
function performed in Solr has also been marked. Besides,
average time-consuming ondata read/write, document trans-
fer, and query function is eventually obtained as listed in
Table 6. After that, according to (4), we are able to evaluate
the performance index for each database over a 5-year period
of time as shown in Table 7.

4.3. Assessment. In the system assessment, we first analyze
total cost of ownership (TCO) according to several items
such as hardware cost, staff cost, software cost, repair cost

Scientific Programming 7

Figure 8: Response to a query in Solr using GUI.

after warranty, downtime cost, and extra upgrade cost. A
summary of TCO has been shown in Table 7. Here we
estimated that hardware cost for two computers is $2666.
Then, we assumed that the maintenance bill is $13000 every
year for Hadoop together with HBase, Solr maintenance cost
is approximately $300 per year, and for Cassandra it would be
$10300 every year. Accordingly, we do the same maintenance
estimation as the above-mentioned applications for Solandra
and Lily Project because they are just the combination of the
above applications. All of software cost is totally free due to
open source. For hardware maintenance after warranty, we
assumed that all the devices had the same risk of breakdown,
and thus the chance of device breakdown in the 4th year

was about 25%, while in the 5th year it will be 50% chance.
For the software upgrade cost, there is no charge because of
open source. Regarding downtime cost, we assumed that one
application will cost $20 per year and the total cost would
depend on the amount of software. Table 8 gives a summary
of the total cost of ownership for this study. As for the system
assessment, C-P ratio evaluation according to (6) for all of
databases will yield a summary of those over a 5-year period
of time as listed in Table 9.

4.4. Stress Test and Discussion. The issue about the stability
and reliability of NoSQL database secondary index function
has been concerned and hence a stress test of data retrieval

8 Scientific Programming

Table 4: Document transfer time from database to Solr (unit: sec.).

Data size HBase + Solr Cassandra Huawei HBase Solandra Lily Project
104 109 120 115 123 115
105 1121 1130 1125 1154 1130
106 11105 11286 11173 11330 11186
107 108055 112806 112347 113105 112395

Table 5: Response time for querying function performed in Solr (unit: sec.).

Data size HBase + Solr Cassandra Huawei HBase Solandra Lily Project
104 0.15 0.91 45 2 1
105 0.5 11.12 288 7 5
106 2 143.1 547 15 10
107 10 2011.13 1867 60 45

Table 6: Average time of a single datum access (unit: sec.).

Operation HBase + Solr Cassandra Huawei HBase Solandra Lily Project
Data write 0.000673563 0.011164768 0.0006735 0.011680475 0.00067955
Data read 0.0025971 0.002637825 0.0026819 0.0027547 0.002608625
Document transfer 0.011005125 0.01146665 0.011289425 0.011620125 0.011306375
Query/response 0.00000575 0.000136603 0.002028425 0.00007275 0.000041125

10000
11000
12000
13000
14000
15000
16000
17000

1st year 2nd year 3rd year 4th year 5th year
Year

A
m

ou
nt

 o
f c

os
t (

U
SD

)

HBase + Solr
Cassandra
Huawei HBase

Solandra
Lily Project

Figure 9: Total cost of ownership among various databases over a
5-year period.

in Solr has been taken in a big data environment. In this
test, there are up to 20 threads (20 windows) used to accept
the number of queries from 10 to 1000 and in the meantime
the latency (time interval) has been counted. The key index
in every query was different as shown in Figure 3. Table 10
has listed the summary of latency and we have examined the
results afterward. In the test from the statistics point of view,
the amount of opening windows obviously did not affect the
length of latency occurring in the query in Solr. The stability
and reliability of NoSQL database secondary index function
have been verified because all of queries had responded in 5
seconds during the stress test.

It noted that performance indexes for five databases have
been listed in Table 7 and they are time-invariant. In Figure 9,

Table 7: Performance index.

Database Performance index
HBase + Solr 99
Cassandra 51
Huawei HBase 73
Solandra 50
Lily Project 77

Table 8: Total cost of ownership over a 5-year period (unit: USD).

Database 1st year 2nd year 3rd year 4th year 5th year
HBase + Solr 16393.3 13726.7 13726.7 13804.1 13877.9
Cassandra 16020 13353.3 13353.3 13430.8 13504.6
Huawei 16040 13373.3 13373.3 13450.8 13629.9
Solandra 13040 10373.3 10373.3 10450.8 10524.6
Lily Project 16393.3 13726.7 13726.7 13804.1 13877.9

Table 9: C-P ratio over a 5-year period.

Database 1st year 2nd year 3rd year 4th year 5th year
HBase + Solr 61.00 72.85 72.85 72.44 72.06
Cassandra 31.94 38.32 38.32 38.10 37.89
Huawei 45.92 55.07 55.07 54.76 54.04
Solandra 38.85 48.84 48.84 48.48 48.14
Lily Project 47.27 56.46 56.46 56.14 55.84

the total cost of ownership for our proposed approach has
varied from year to year where it goes down dramatically
and goes up slowly over a 5-year period. Accordingly, C-P
ratio of the proposed approach goes up abruptly and almost

Scientific Programming 9

Table 10: Latency under stress test (unit: sec) (Win.: window).

Query Win. Win. Win. Win. Win. Win. Win. Win. Win. Win.
#1 #2 #3 #4 #5 #6 #7 #8 #9 #10

10 0.15 0.1 0.2 0.2 0.1 0.15 0.16 0.15 0.2 0.2
100 1 1 0.8 1 1 0.8 1 1 1 1
1000 3 4 3 4 3 4 3 4 5 4

#11 #12 #13 #14 #15 #16 #17 #18 #19 #20
10 0.15 0.15 0.15 0.15 0.2 0.2 0.16 0.15 0.2 0.2
100 1.2 0.8 1.1 1 1.1 1 1.2 1 1.1 1.2
1000 3 4 3 4 5 4 4 4 5 5

0.00
10.00
20.00
30.00
40.00
50.00
60.00
70.00
80.00

1st year 2nd year 3rd year 4th year 5th year
Year

HBase + Solr
Cassandra
Huawei HBase

Solandra
Lily Project

C-
P

ra
tio

Figure 10: C-P ratio among various databases over a 5-year period.

0
0.002
0.004
0.006
0.008

0.01
0.012
0.014

4 5 6 7

Ti
m

e (
s)

Query/response
Document transfer

Data write
Data read

Data size (log 10)

Figure 11: Average time of a single datum access in a certain
database.

maintains the same level afterward as shown in Figure 10.
Consequently, according toC-P ratio, our proposed approach
outperforms the others during this period, as listed in Table 9.
This has verified that our proposed approach has been
realized successfully andperformed significantly for aNoSQL
secondary index function and fast query.

There are four tests about the function of data read, data
write, document transfer, and query/response, as mentioned
above in this paper to measure the average time of a single

datum access in a certain database as listed in Tables 2 to
4. What we are interested in is to figure out whether the
average time of a single datum access may be varied with
data size or not for these functions. As shown in Figure 11,
the cross-sectional data analysis [6] gave that it takes least
time on the function of query/responsewhen comparingwith
the other functions. The average time reduces dramatically
as data size increases because the hit rate of data retrieval
goes up rapidly in memory cache and concurrently the
response time shrinks sharply. This figure illustrates that
NoSQL database with secondary index function can achieve
an excellent performance in query/response of a certain
database, especially in a big data environment.

5. Conclusion

This paper introduces the combination of NoSQL database
HBase and enterprise search platform Solr to realize the
secondary index function with fast query. In the assessment,
a cost effectiveness evaluation called C-P ratio has been
done among several competitive benchmark databases and
the proposed one. As a result, our proposed approach
outperforms the other databases and fulfills secondary index
function with fast query in NoSQL database. Besides, a
stress test has been taken to verify the stability and relia-
bility of the proposed approach. Finally, according to the
cross-sectional analysis, the proposed combination of HBase
and Solr database is capable of performing an excellent
query/response in a big data environment.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgment

This work is supported by the Ministry of Science and
Technology, Taiwan, Republic of China, under Grant no.
MOST 103-2221-E-390-011.

References

[1] D. Howe, M. Costanzo, P. Fey et al., “Big data: the future of
biocuration,” Nature, vol. 455, no. 7209, pp. 47–50, 2008.

10 Scientific Programming

[2] A. Jacobs, “The pathologies of big data,” Communications of the
ACM—A Blind Person’s Interaction with Technology, vol. 52, no.
8, pp. 36–44, 2009.

[3] R. Cattell, “Scalable SQL and NoSQL data stores,” ACM SIG-
MOD Record, vol. 39, no. 4, pp. 12–27, 2010.

[4] J. Pokorny, “NoSQL databases: a step to database scalability
in web environment,” International Journal of Web Information
Systems, vol. 9, no. 1, pp. 69–82, 2013.

[5] B. R. Chang, H.-F. Tsai, C.-M. Chen, and C.-F. Huang, “Analysis
of virtualized cloud server together with shared storage and
estimation of consolidation ratio and TCO/ROI,” Engineering
Computations, vol. 31, no. 8, pp. 1746–1760, 2014.

[6] C.-C. Lee andC.-P. Chang, “Energy consumption and economic
growth in Asian economies: a more comprehensive analysis
using panel data,” Resource and Energy Economics, vol. 30, no.
1, pp. 50–65, 2008.

[7] P. Zhou, J. Lei, and W. Ye, “Large-scale data sets clustering
based on MapReduce and Hadoop,” Journal of Computational
Information Systems, vol. 7, no. 16, pp. 5956–5963, 2011.

[8] J. K. Chiang, “Authentication, authorization and file synchro-
nization for hybrid cloud—the development centric to google
apps, hadoop and linux local hosts,” Journal of Internet Technol-
ogy, vol. 14, no. 7, pp. 1141–1148, 2013.

[9] J. Leverich and C. Kozyrakis, “On the energy (in) efficiency of
Hadoop clusters,” ACM SIGOPS Operating Systems Review, vol.
44, no. 1, pp. 61–65, 2010.

[10] T. White, Hadoop: The Definitive Guide, O’Reilly Media, Sebas-
topol, Calif, USA, 2009.

[11] N. Dimiduk, HBase in Action, Manning Publications, Green-
wich, UK, 2012.

[12] Y. Jiang, HBase Administration Cookbook, Packt Publishing,
Birmingham, UK, 2012.

[13] C. Boja, A. Pocovnicu, and L. Batagan, “Distributed parallel
architecture for big data,” Informatica Economica, vol. 16, no. 2,
pp. 116–127, 2012.

[14] J. Dean and S.Ghemawat, “MapReduce: simplified data process-
ing on large clusters,” Communications of the ACM, vol. 51, no.
1, pp. 107–113, 2008.

[15] M. Hausenblas and J. Nadeau, “Apache drill: interactive ad-hoc
analysis at scale,” Big Data, vol. 1, no. 2, pp. 100–104, 2013.

[16] R.Kuc,Apache Solr 4Cookbook, Packt Publishing, Birmingham,
UK, 2013.

[17] T. Grainger and T. Potter, Solr in Action, Manning Publications,
Greenwich, UK, 2014.

[18] B. R. Chang, H.-F. Tsai, and C.-M. Chen, “High-performed
virtualization services for in-cloud enterprise resource planning
system,” Journal of Information Hiding and Multimedia Signal
Processing, vol. 5, no. 4, pp. 614–624, 2014.

[19] B. R. Chang, H.-F. Tsai, and C.-M. Chen, “Evaluation of virtual
machine performance and virtualized consolidation ratio in
cloud computing system,” Journal of Information Hiding and
Multimedia Signal Processing, vol. 4, no. 3, pp. 192–200, 2013.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

