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One of the key requirements for mobile devices is to provide high-performance computing at lower power consumption. The
processors used in these devices provide specific hardware resources to handle computationally intensive video processing and
interactive graphical applications. Moreover, processors designed for low-power applications may introduce limitations on the
availability and usage of resources, which present additional challenges to the system designers. Owing to the specific design of
the JZ47x series of mobile application processors, a hybrid software-hardware implementation scheme for H.264/AVC encoder
is proposed in this work. The proposed scheme distributes the encoding tasks among hardware and software modules. A series
of optimization techniques are developed to speed up the memory access and data transferring among memories. Moreover, an
efficient data reusage design is proposed for the deblock filter video processing unit to reduce the memory accesses. Furthermore,
fine grained macroblock (MB) level parallelism is effectively exploited and a pipelined approach is proposed for efficient utilization
of hardware processing cores. Finally, based on parallelism in the proposed design, encoding tasks are distributed between two
processing cores. Experiments show that the hybrid encoder is 12 times faster than a highly optimized sequential encoder due to
proposed techniques.

1. Introduction

In this era, portable multimedia devices with their corre-
sponding media technologies play an important role in our
daily life. These devices perform multimedia functionalities
like video recording and playing, watching TV (mobile TV),
videotelephony, and video streaming. Highly efficient video
coding at lower power consumption is the fundamental
requirement of these devices.

The H.264/AVC Advanced Video Coding standard
(AVC) provides high-quality coding of video contents at
very low bit rates relative to the former video compression
standards [1–3]. The compression quality is achieved by
adding a number of new compression techniques including
spatial intraprediction, (4 × 4) integer transform, multiple
reference frames, multiple block sizes for interframe coding,
quarter pixel motion estimation (ME), deblock filtering, and

content-adaptive arithmetic coding [4–6]. These additional
features and functionalities improve the coding efficiency at
the cost of a significant increase in computational complexity
[3, 5, 7]. So it would be a challenging task to achieve real-time
H.264 coding even on the recent available high power single
processing units.

JZ47x is a series of low powered mobile application pro-
cessors highly suitable for battery operated portable devices.
These devices, for example, body worn video recorder, wire-
less video sensors, and video streamer, require long operation
time. This series of processors introduces an innovative
architecture to fulfill both high speed mobile computing
and computationally intensive video coding requirements
of portable multimedia devices. Particularly for H.264/AVC
video coding, JZ47x processors (JZ4760, JZ4770, and JZ4780)
are equipped with dedicated hardware processing units of
some encoder blocks. They have two major cores, that is,
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a Central Processing Unit (CPU) and a Video Processing
Unit (VPU), where the VPU core controls the dedicated
hardware processing units. They also have general-purpose
direct memory access units (DMAs) for efficient data transfer
and management during video coding.

Although JZ47x architecture has the ability to meet the
computational requirements of H.264/AVC encoder, it places
certain limitations on the system designer as well. The effi-
cient implementation of H.264/AVC encoder for the JZ47x
processors is a challenging task because some of the encoder
blocks are implemented in hardware and others need to be
implemented in software. AsH.264 encoder has an integrated
framework, where task dependency is large, the encoder
tasks distribution, scheduling, and synchronization among
hardware and software modules are a real test of designer
skills. Moreover, it demands efficient memory management
and simultaneous exploitation of all processing units for
achieving real-time encoding.

This paper proposes an end-to-end software-hardware
hybrid H.264/AVC encoder implementation scheme for
JZ47x series of mobile application processors. The JZ4770
is taken as an example to implement the proposed scheme.
The proposed scheme distributes the encoding tasks among
hardware and software modules. The small size of on-chip
memories and restrictions imposed by hardware processing
units cause large data transferring among memories during
the encoding process. To reduce this data transferring,
several optimization techniques are proposed in this work.
The hardware video processing units and DMAs need to
be configured before each execution and take a prescribed
amount of time to perform the assigned tasks. Because of
inherent task and data dependencies in H.264/AVC encoder,
the processor remains blocked during that time. This time is
named as processing or polling time. It also causes the idling
of hardware processing units. To reduce the polling and idling
time of hardware processing modules, a pipelined design for
encoder is proposed after exploiting fine grain macroblock
(MB) level parallelism in which multiple macroblocks (MBs)
are processed in parallel. Finally, amechanism is developed to
efficiently distribute the computational load among CPU and
VPU cores to increase the encoding rate. The experimental
results show that the incorporation of hardware processing
units increases the encoding rate (from 4.48 fps to 23 fps)
but the major advantage (from 23 fps to 58.70) is due to the
proposed methodologies.

The main contributions of this paper are as follows:

(i) An end-to-end hybrid implementation ofH.264/AVC
encoder for JZ4770 mobile application processor is
proposed that efficiently utilized all parallelization
capabilities of this platform for high-performance
video encoding at low-power consumption.

(ii) Memory efficient design for deblock filter video pro-
cessing unit is proposed to increase the data reuse
ratio and to reduce memory accesses.

(iii) Developed several optimization techniques are to
speed upmemory access and data transferring among
memories during the encoding process.

(iv) A pipelined design for H.264 encoder is developed
after exploiting fine grainMB level parallelism, where
multiple MBs are processed in parallel.

(v) Amechanism is developed to concurrently utilize the
CPU and VPU cores for encoding. This mechanism
provides efficient task synchronization, scheduling,
and load balancing between CPU and VPU cores.

The rest of the paper is organized as follows. Section 2
presents the literature review. Section 3 describes the JZ4770
platform architecture. The proposed scheme is described in
Section 4. Encoder performance is evaluated in Section 5.
Finally, the conclusion is drawn in Section 6.

2. Literature Review

Numerous schemes for implementing H.264/AVC encoders
on different platforms have been proposed. Nguyen et al.
[11] described the implementation of the H.264 baseline pro-
file encoder for multimedia applications on Reconfigurable
Multimedia System 2 (REMUSII).The implemented encoder
achieved the coding speed of 30 fps for CIF (352 × 288)
resolution video sequences. Sankaraiah et al. [10] proposed
a parallelization method based on Group-Of-Pictures (GOP)
for H.264 encoder. In this scheme, each GOP is encoded
independently in a separate thread and the frames being ref-
erenced are included in theGOP.This resulted in reducing the
encoding time by 5.6 to 10 times as compared to the standard
sequential code implementation. However real-time encod-
ing is difficult to implement using this technique. Moreover,
this technique demands a significant amount of memory for
storing all the frames. Asif et al. [12] exploited themacroblock
(MB) level parallelism in H.264/AVC encoder and based
upon this parallelism proposed a scheme to implement the
encoder formulticore platform.The encoder is able to encode
NTSC (720 × 480) and HD 720p (1280 × 720) resolutions at
a frame rate of 72 fps and 32 fps, respectively. Aw et al. [13]
described the optimizations techniques for implementing
the H.264/AVC HD video encoding on TI TMS320DM648
DSP platform. The implemented encoder performed real-
time encoding and streaming at 25 fps for 720p HD video.
Lin and Yang [14] presented optimized implementation of
H.264/AVC encoder on the TM320DM642 DSP platform.
The encoder can encode VGA (640×480) and CIF resolution
at a frame rate of 22.6 fps and more than 40 fps, respectively.

Schneider et al. [15] developed and optimized H.264
baseline profile encoder on TMS320DM642 DSP platform.
In order to accelerate the encoding rate, Enhanced Direct
Memory Access (EDMA) Controller, look-up tables, and
intrinsic are used. The encoder could encode CIF resolution
video sequences at a frame rate of 30 fps. For cell processor,
Alvanos et al. [9] presented a way to implement fine grained
task level parallelism of encoder. The runtime Tagged Proce-
dure Calls (TPC) and a task-based programming model are
used to parallelize the encoder. The implementated encoder
achieved speedup between 4.7x and 8.6x on six synergistic
processing elements (SPEs), compared to the serial version
running on the power processing element (PPE). However,
this implementation required significant programming effort
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and had task management overhead. For real-time HD video
coding, He et al. [16] exploited a decentralized pipelined
parallel coding scheme using eight SPEs. The decentralized
task creation decreased the task management overhead in
this implementation. They used on-chip communication
and multibuffering to transfer data among different encoder
modules for efficient communication. The encoder is able
to perform real-time HD encoding (1920 × 1080@31 fps) by
using 8 SPEs (58 fps on 16 SPEs). Lu and Hang [17] and
Schwalb et al. [18] presented adaptive ME algorithms for
NVIDIA GPUs. These algorithms mainly focused on reduc-
tion of the computational complexity of ME and also tried
to exploit potential parallelism. Moreover, these proposals
mostly exploited data-level parallelism and focused on a sin-
glemodule of the prediction-loop of theH.264/AVC encoder.

Cheung et al. [19] and Azevedo et al. [20] proposed the
application of scheduling techniques at the MB level for
scalable H.264 video coding to assist embedded multicore
devices. In these techniques, a specialized hardware for the
optimized task submission or retrieval unit is used. However,
the MB level implementation of the scheduling control
makes this model rather expensive for the CPU + GPU
platforms. Momcilovic et al. [21] proposed parallel dynamic
model for hybrid GPU + CPU systems. In this model,
entire interprediction loop of the encoder is parallelized on
both the CPU and the GPU. To dynamically distribute the
computational load among CPU and GPU, a computation-
ally efficient model is also proposed. The presented model
included both dependency aware task scheduling and load
balancing algorithms. Momcilovic et al. [8] also presented an
improved dynamic dependency aware scheduling algorithm
for collaborative video encoding on hybrid GPU + CPU
platforms. The scheme speeds up the encoder 2.5 times as
compared to highly optimized GPU-only encoding.

In short, most of these schemes lack in describing the
hybrid implementation of H.264/AVC encoder in which
some blocks of encoder are implemented in hardware and the
rest in software. As such, implementation requires efficient
encoder tasks distribution, scheduling, and synchronization
among hardware and software blocks. So there is a need to
work in this direction to highlight the issues involved in such
kind of implementation.

3. JZ4770 Architecture

The JZ4770 is an asynchronous multiprocessor (AMP) archi-
tecture. CPU and VPU are its major cores. The CPU core
contains main processor (named as J1) which operates at a
clock rate of 1000MHz. On the other hand, VPU core has
Auxiliary Processor (AUX) which operates at a clock rate
of 500MHz. Both J1 and AUX are MIPS (Microprocessor
without Interlocked Pipeline Stages). A master slave model
exists between J1 and AUX.The operating system kernel uses
J1 while the users can program the AUX. J1 loads binary on
AUX and commands it to start execution.

The video processing units for H.264 encoding are
vector matrix arithmetic unit (VMAU), motion compensa-
tion and estimation engine (MCE), and deblock (DBLK).
There are three types of on-chip memories including two

tightly coupled sharedmemories TCSM0 (16KB) andTCSM1
(48KB) along with SRAM (scratch RAM 28KB). Further-
more, DMA0, DMA1, and DMA2 are three general-purpose
DMAs coupled with TCSM0, TCSM1, and SRAM, respec-
tively [22, 23]. These DMAs support three different data
transfer types, that is, byte, short, and integer.

The hardware video processing units and DMAs need
to be configured before each execution and do not support
multiple instances. They take a prescribed amount of time to
perform the assigned tasks.The constraints of these hardware
processing units are that they operate at MB level and take
input/output data from/to on-chipmemory. But the reference
frames used by MCEmodule are allocated on main memory.
The current and reference frames are allocated on main
memory because of limited size of on-chip memories.

4. Proposed Scheme

4.1. H.264/AVC Porting to JZ4770. The sequential software
(C code implementation) based x264 encoder is ported on
JZ4770 platform. In this work, baseline profile of encoder is
used due to its low complexity as compared to the main and
extended profiles. To distribute the encoding tasks among
software and hardware processing units, x264 encoder is
transformed into a highly modular and flexible structure.
In this structured encoder, all the functional modules are
independent software modules. It allows an easy replacement
of the software modules with their corresponding hardware
processing units.

As shown in Figure 1, hardware processing units
replace the demarcated functionalities. MCE module
replaces motion estimation and compensation. The VMAU
module replaces the software functions that perform
intraprediction, residual calculation, DCT/IDCT, Q/IQ, and
MB reconstruction. The DBLK module is used to remove
deblocking artifacts from reconstructed frame. The software
modules include intraprediction mode selection, reordering,
Context-Adaptive Variable-Length Coding (CAVLC), edge
extension, bit rate control, file reading or video capturing,
and file writing. All these software modules execute main
processor. The main processor is also responsible for the
configuration of hardware modules before each execution.

4.2. H.264/AVC Encoder Data Dependencies and Profiling
Analysis. Before optimization, parallel processing, and tasks
mapping to speed up the H.264/AVC video encoder, an
extensive analysis is required. This analysis encompasses
computational requirements of various functional elements
of the encoder and data dependencies among them.

In H.264/AVC encoding, MB is a basic processing unit
of a frame. For encoding the frame, raw data of each MB
is transferred from main memory to on-chip memory. The
encoding mode of MB is selected either intra or inter. For
intramode, the inputs to VMAU unit are raw MB data and
intraprediction mode. For intermode, the inputs are raw
MB data and motion compensated data. In intraencoding,
the suitable intraprediction mode selection is done through
software module. The VMAU is configured for intramode.
The outputs of VMAU unit are quantized coefficients, coded
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Figure 2: MB level processing flow of hybrid encoder.

block pattern (CBP), and reconstructed MB. Entropy coding
encodes quantized coefficients and CBP, while the DBLK
unit removes the blocking artifacts of reconstructed MB.The
output of DBLK unit is transferred from on-chip memory
to reconstructed frame on main memory. In interencoding,
the MCE processing unit performs motion estimation. The
outputs ofMCE aremotion vectors andmotion compensated
data. The VMAU is configured for intermode. The rest of
processing is similar to intramode encoding.

Figure 2 indicates the sequential dependencies between
functional modules of the encoder; that is, the output data
of one module corresponds to the input data of another
subsequent module. Because of these dependencies, one
hardware processing unit is used at a time and all the
remaining units are idle. To assure the compliance of the
whole set of strict dependencies imposed by the encoder, it
can be observed that the exploitation of fine grained level

parallelismmay help tominimize the idling time of hardware
processing units.

Figure 3 represents the breakdown of hybrid H.264/AVC
encoder processing time with respect to the various func-
tional modules. In order to evaluate the computational com-
plexity of the encoder, NTSC resolution test video sequences
including mobile, football, intros, garden, galleon, vtc1nw,
and washdc are encoded. The encoding parameters are set as
follows: MV search range is −32 to +32 pels and block size is
16 × 16, RD optimization is disabled, one reference frame is
for motion estimation and compensation, motion estimation
scheme is diamond search, MV resolution is 1/4 pel, GOP
is chosen as 25 with structure IPPP, and four quantization
parameters (QPs) are 24, 28, 32, and 36.

Figure 3 shows that data copying/transferring among
memories is a dominant task taking about 30% of the total
processing time. This data transferring is necessary because
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of the restrictions imposed by the hardware processing units
and the limited sizes of on-chip memories. On the other
hand, VMAU, MCE, and DBLK take significant portion of
the overall processing time.The time taken by these hardware
modules is their configuration and processing time. The
CAVLC, Zigzag scanning, and others take the rest of the
processing time.

Considering the above analysis, there is a need to exploit
the parallelism in encoder for efficient utilization of hardware
resources by reducing their idling and polling time. More-
over, efficient memory management is required to reduce the
data transferring and copying operations during the encoding
process.

4.3. Optimization Techniques for Memory Management and
Data Transfer. From the profiling analysis presented in
Section 4.2, it is clear that data transferring and accessing
among memories are the most computationally intensive
task. This section presents numerous optimization tech-
niques to reduce the data transferring time and to increase
data reuse ratio.

4.3.1. Memory Efficient Design for DBLK Module. The
deblocking filtering of an MB needs pixel data from neigh-
boring MBs, that is, top MB bottom edge (last four rows (4 ×
16)) and left MB right edge (last four columns (16 × 4)). The
memory constraint of the hardware DBLK unit is that the
current MB and left MB right edge data must be adjacent
in on-chip memory for both input and output as shown in
Figure 4.

The outputs of DBLK unit are reconstructed filtered pixel
data of current MB (16 × 16), top MB bottom edge (4 × 16),
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Figure 4: Input and output data placement of DBLK module.

left MB right edge (16 × 4), and nonfiltered current MB
bottom edge (16 × 4). The pixels data of top MB bottom
edge can be placed anywhere in on-chip memory. The left
MB right edge and top MB bottom edge are usually copied
from reconstructed frame on main memory to on-chip
memory. Similarly, the output generated by DBLK module
is copied from on-chip memory to main memory. This
data transferring is necessary because reconstructed frame is
stored on the main memory due to limited size of on-chip
memory. In order to reduce these data copying operations,
an efficient memory design for DBLK module is proposed as
shown in Figure 5.

According to this design, the output of VMAU module
is taken as the input to the DBLK module. This avoids
data coping of current MB from main memory to on-chip
memory. Moreover, the output of the DBLKmodule is stored
adjacent to its input (current MB reconstructed pixel data
from VMAU module) in such a way that the right edge
of output overlaps with the left edge of its input as shown
in Figure 5. This eliminates the need of copying the right
edge of left MB, required in next iteration. The nonfiltered
current MB bottom edge, output of DBLK, is stored in on-
chip memory in such a way that the bottom edge of complete
MB row of a frame is stored in contiguous memory. In this
way, it can be reused as top MB bottom edge nonfiltered
input of DBLK module for next MB row processing. Finally,
only the filtered output is copied in reconstructed frame.The
boundary cases, that is, top MB row, left MB column, and
bottomMB row, have been handled as per requirement. This
design resulted in increasing the data reusability and avoiding
the excessive data copying operations.

4.3.2. Efficient Data Transfer. As mentioned in Section 3,
hardware video processing units take input from and store
output data to on-chip memories. Because of the limited size
of on-chip memories, input and reconstructed frames are
stored on main memory. For processing a frame, each MB
data is copied to the on-chip memory. Similarly, the recon-
structedMBneeds to be transferred fromon-chipmemory to
mainmemory.This requiresmultiple data transfer operations
in which memory copy routines do involve CPU. This is a
time consuming task as the CPU cannot execute any other
operations during this time.TheDMA is a handy tool to carry
out these transfers without invoking the CPU.

In the proposed scheme, DMAs are used to speed up the
data transferring amongmemories.Moreover, on-chipmem-
ory allocation for current and corresponding reconstructed
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MB is done in such a way that all DMAs (DMA0, DMA1,
andDMA2) can be performed in parallel for transferring data
amongmemories.Thememory for currentMB is allocated on
TCSM0 while its corresponding reconstructed filtered pixel
data and left MB right edge are stored on TCSM1.The SRAM
is used for storing reconstructed filtered pixels data of topMB
bottom edge. Such memory allocation helps in performing
all DMAs in parallel to speedup of the data transferring.
DMA0 is responsible for transferring current MB data from
mainmemory to on-chip memory TCSM0 for encoding.The
reconstructedMB is transferred back fromon-chipmemories
TCSM1 and SRAM to main memory through DMA1 and
DMA2, respectively. The data transfer size of DMA0 for an
MB is 384 bytes.TheDMA1 andDMA2 transfer 288 bytes and
96 bytes of data in each execution, respectively. For an MB

encoding, 384 bytes of data is transferred frommainmemory
to on-chip memory and vice versa. The DMAs incorporation
in the design speeds up the data transferring during the
encoding process.

4.3.3. Algorithmic Optimization Using SIMD Instructions.
Zigzag scanning and edge extension algorithms belong to
the software part of hybrid encoder because their sup-
port is not available in hardware. These algorithms involve
multiple memory access and data copying operations that
significantly contribute in computational cost. This section
describes the optimization of these algorithms using SIMD
instructions to speed up the encoding.TheSIMD instructions
enable multiple arithmetic or logic operations to be executed
simultaneously. Ingenic processor JZ4770 provides 60 SIMD
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Table 1: % gain through optimization techniques.

Encoder modules % Gain
Data transfer 27%
DBLK design 32%
Edge extension and Zigzag 35%

instructions for the multimedia codec optimization [24].
These instructions operate on 32 bits registers.

Zigzag scanning is performed on quantized coefficients
before entropy encoding. The 16 bits quantized coefficients
are accessed from on-chip memory. In this work, 32 bits
load and store operations are used to make quantized coef-
ficients loading and storing faster. The SIMD instructions
are also used to arrange two coefficients simultaneously
instead of one. Algorithm 1(a) shows the Zigzag scanning
algorithm optimization using SIMD instructions (S32LDD,
S32SFL, and S32STD), in which quantized coefficients are
loaded from on-chip memory to dedicated MXU registers
(xr1-xr8) using S32LDD instruction. After that, S32SFL is
performed on these registers in pairs to adjust the positions of
coefficients according to Zigzag order. Then, final reordered
coefficients are stored to mainmemory from dedicatedMXU
registers (xr1, xr10, xr5, xr7, xr6, xr4, xr9, and xr8) using
S32STD instruction. The S32SFL (r1, r2, r3, r4, 3) is packing
instruction. This instruction packs the two most-significant
halfwords (16 bits) from the arguments r2 and r3 into r1. The
halfword from r2 is packed into themost-significant halfword
of r1; the halfword from r3 is packed into the least-significant
halfword of r1. Similarly, it also packs two least-significant
halfwords from the arguments r2 and r3 into r4.

For performingmotion estimation, the reference frame is
padded all around. This edge extension may be several pixels
wide, depending on the motion estimation mode. The upper
and lower edges are generated by copying the first and last
rows of the frame into the border or edges. Similarly, left and
right edges are generated by copying the first and last columns
of the frame into the border. In this work, 32 bits loading
and storing operations are used instead of 8 bits operations.
The use of SIMD instructions helps to extend four pixels in
parallel. Algorithm 1(b) shows the top edge extension using
SIMD instructions (S32LDD and S32STD).

Table 1 lists the achieved speedup gain through each
optimization technique.

4.4. Encoder Pipeline Design. Considering the data depen-
dency analysismade in Section 4.2, it is observed that the het-
erogeneous structure of theH.264/AVC encoder has inherent
sequential modular data dependency; that is, output of one
module becomes input of its subsequent module. Because of
that modular dependency, one hardware processing unit is
used at a time and all of the other units remain idle.Moreover,
the polling of hardware processing units and DMAs take
significant part of encoding time. These factors not only
decrease the throughput of hardware processing unit but also
have adverse effect on encoder performance. For efficient
utilization of all hardware processing units and reducing
polling time, a pipeline design for H.264 encoder has been
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Figure 6: Four-staged pipeline for intra-MBs.

proposed after exploiting fine grained parallelism atMB level.
Exploiting MB level parallelism requires satisfying the data
dependencies betweenMBs. For a givenMB, intraprediction,
interprediction, deblock filtering, and entropy encoding need
data from neighboring (left, top, top left, and top right)
MBs. This data includes pixel data, prediction mode, motion
vectors, and number of nonzero coefficients. The simplest
way to resolve all these dependencies is to process MBs in
scan order.

In proposed design, an MB encoding process is divided
into several stages and each stage is executed on a sepa-
rate processing core. After that these processing cores are
pipelined at MB level through which multiple MBs are
processed simultaneously in scan order. For processing intra-
and inter-MB, a pipeline design is described below.

Intra-MBs. The encoding task for intra-MB is performed in
four major pipeline stages. These stages are DMA0 stage
(it transfers raw MB data from main memory to on-chip
memory), VMAU stage, DBLK + CAVLC stage (this stage
performs deblock filtering and entropy encoding in a same
time slice), and DMA1 stage (it transfers filtered recon-
structed MB data from on-chip memory to main memory).
Each intra-MB goes through the final DMA1 stage after four-
MB cycle time latency.This four-stage pipeline for intramode
is shown in Figure 6.

Inter-MBs. The encoding task for inter-MB is performed in
fivemajor pipeline stages.These stages areDMA0 stage,MCE
stage (it performsmotion estimation), VMAU stage, DBLK +
CAVLC stage, and DMA1 stage. The MB0 goes through the
DMA1 stage after five-MB cycle time latency. This five-stage
pipeline for intermode is shown in Figure 7.

Algorithm 2 presents the pseudocodes of proposed
encoder pipelined design, in which hardware modules for
processing current MB are configured before polling them
for previous MB. The usage of hardware modules in this way
reduces the polling time.

To show the advantage of the proposed pipelined design,
profiling analysis is carried out before and after exploiting
the MB level parallelism. The time taken by each module in
hybrid encoder before pipelined design is shown in Figure 8.
Table 2 shows that the polling and configuration of hardware
video processing units take 51% and 20% of total processing
time, respectively.
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(a)
// Optimized Implementation for Zig-Zag Scanning
{

/∗
For Input
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∗/
/∗ load quantized coefficients to MXU registers ∗/
S32LDD(xr1, dct, 0x0); // xr1 = 2 1
S32LDD(xr2, dct, 0x4); // xr2 = 4 3
S32LDD(xr3, dct, 0x8); // xr3 = 6 5
S32LDD(xr4, dct, 0xc); // xr4 = 8 7
S32LDD(xr5, dct, 0x10); // xr5 = 10 9
S32LDD(xr6, dct, 0x14); // xr6 = 12 11
S32LDD(xr7, dct, 0x18); // xr7 = 14 13
S32LDD(xr8, dct, 0x1c); // xr8 = 16 15
/∗ adjust positions of coefficients according to Zig-Zag order ∗/
S32SFL(xr9, xr6, xr4, xr10, 3); // xr6 = 12 11 xr4 = 8 7 xr9 = 12 8 xr10 = 11 7
S32SFL(xr4, xr10, xr7, xr6, 3); // xr10 = 11 7 xr7 = 14 13 xr4 = 11 14 xr6 = 7 13
S32SFL(xr7, xr6, xr2, xr10, 3); // xr6 = 7 13 xr2 = 4 3 xr7 = 7 4 xr10 = 13 3
S32SFL(xr6, xr10, xr5, xr2, 3); // xr10 = 13 3 xr5 = 10 9 xr6 = 13 10 xr2 = 3 9
S32SFL(xr5, xr2, xr3, xr10, 3); // xr2 = 3 9 xr6 = 6 5 xr5 = 3 6 xr10 = 9 5
/∗ reordered coefficients are stored to main memory fromMXU registers ∗/
S32STD(xr1, level, 0x0); // xr1 = 2 1
S32STD(xr10, level, 0x4); // xr10 = 9 5
S32STD(xr5, level, 0x8); // xr5 = 3 6
S32STD(xr7, level, 0xc); // xr7 = 7 4
S32STD(xr6, level, 0x10); // xr6 = 13 10
S32STD(xr4, level, 0x14); // xr4 = 11 14
S32STD(xr9, level, 0x18); // xr9 = 12 8
S32STD(xr8, level, 0x1c); // xr8 = 16 15
(b)
// Optimized Implementation for top edge extension of luma component
for (j = 0; j < (Lwidth/16); j++)
{

S32LDD(xr1, ExtndDataUP Inp, 0x0); // loading data
S32LDD(xr2, ExtndDataUP Inp, 0x4);
S32LDD(xr3, ExtndDataUP Inp, 0x8);
S32LDD(xr4, ExtndDataUP Inp, 0xc);
for (i = 0; i < 16; i++)
{

S32STD(xr1, ExtndDataUP Out, 0x0); // edge extension
S32STD(xr2, ExtndDataUP Out, 0x4);
S32STD(xr3, ExtndDataUP Out, 0x8);
S32STD(xr4, ExtndDataUP Out, 0xc);
ExtndDataUP Out+ = 4;
}

ExtndDataUP Inp+ = 64;
}

Algorithm 1: (a) SIMD implementation of Zigzag scanning and (b) SIMD implementation of edge extension.
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while(mbno < total mbs+n)
{ // where n = no. of pipeline stages - 1
// DMA0 Stage

If(mbno < total mbs)
Configure DAM0 ( ) // for current MB
If(mbno > 0)

Poll DMA0( ) // for previous MB
End If
exeute DMA0( ) // for current MB
If(last MB)
Poll DMA0( ) // for current MB

End If
End If

// MCE Stage
If(slice is P TYPE)
mbno mce = mbno-1;
If(mbno mce >= 0 && mbno mce < total mbs)
If(mbno mce > 0)

If(current MB is inter type)
Configure MCE( ) // for current MB

End If
If(prvious MB is inter type)
poll MCE( ) // for previous MB

End If
End If
If(current MB is inter type)

exeute MCE( ) // for current MB
If(last MB)
Poll MCE( ) // for current MB

End If
End If

End If
End If

// VMAU Stage
mbno vmau = mbno-2;
If(mbno vmau >= 0 && mbno vmau < total mbs)

Configur VMAU( ) // for current MB
If(mbno vmau > 0)
poll VMAU( ) // for previous MB

End If
exeute VMAU( ) // for current MB
If(last MB)
poll VMAU( ) // for current MB

End If
End If

// DBLK Stage
mbno dblk = mbno-3;
If(mbno dblk >= 0 && mbno dblk < total mbs)

Configur DBLK( ) // for current MB
If(mbno dblk > 0)

Poll DBLK( ) // for previous MB
End If
exeute DBLK( ) // for current MB
Entropy encoding( ) // for current MB
If(last MB)
poll DBLK( ) // for current MB

Endif
End If

Algorithm 2: Continued.
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// DMA12 Stage
mbno dma12 = mbno-4;
If(mbno dma12 >= 0 && mbno dma12 < total mbs)

Configur DMA12( ) // for current MB
If(mbno dma12 > 0)

Poll DMA12( ) // for previous MB
End If
exeute DMA12( ) // for current MB
If(last MB)

poll DMA12( ) // for current MB
End If

End If
mbno++;
}

Algorithm 2: Pseudocode of proposed encoder pipelined design.

Table 2: % of total processing time taken by HW processing units
before pipelined design.

HW processing
units Configuration time Polling time Total time

VMAU 2% 12% 14%
MCE 1% 13% 14%
DBLK 7% 12% 19%
DMA0 3% 7% 10%
DMA1, DMA2 7% 7% 14%
Total 20% 51% 71%
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Figure 7: Five-staged pipeline for inter-MBs.

After pipelined design, the distribution of processing time
among different encoding blocks is shown in Figure 9. Table 3
shows that polling time reduces from 51% to 6%.

4.5. Encoder Partitioning between CPU and VPU Cores.
Even though the pipeline design significantly shortens the
encoding time, the encoder overall performance still heavily
depends on distribution of encoding tasks between CPU

VMAU

MCE
DBLK

DMA0

DMA1, DMA2
CAVLC
ZigZag

Others

14%

14%

19%

10%

14%

13%

7%

9%

Figure 8: Time breakdown before pipeline.

and VPU. The profiling analysis made after pipeline design
demonstrates that hardware modules configuration and
processing take 40%, while CAVLC and Zigzag scanning
consume 47% of the overall processing time. So the potential
advantage is to distribute these computationally demanding
modules among CPU and VPU cores. As in proposed
pipelined design, entropy encoding (CAVLC andZigzag) and
deblock filtering (DBLK) modules both are at the same stage.
There is no data dependency between them and they can be
parallelized. In order to take the advantage of this parallelism,
encoder tasks are distributed between CPU and VPU cores.

Figure 10 shows the distribution of encoder betweenCPU
and VPU cores. This distribution is made by considering
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Table 3: % of total processing time taken by HW processing units
after pipelined design.

HW processing
units Configuration time Polling time Total time

VMAU 9% 1% 10%
MCE 3% 2% 5%
DBLK 12% 1% 13%
DMA0 3% 1% 4%
DMA1, DMA2 7% 1% 8%
Total 34% 6% 40%

10%
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13%

4%

8%

30%

17%

13%
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MCE
DBLK

DMA0

DMA1, DMA2
CAVLC
ZigZag

Others

Figure 9: Time breakdown after pipeline.

the parallel processing, load balancing between the cores,
and scalability. The tasks of encoding performed by CPU
core are the initialization of the encoder and hardware pro-
cessing units, video capturing, frame level parameter setting
and controlling, Zigzag scanning, motion vector prediction,
entropy encoding, bit rate control, edge extension, and file
writing. The VPU core is responsible for configuration and
controlling of hardware modules, MB level scheduling of
hardware processing units, encoding parameters selection,
and data transferring between main and on-chip memories.
The encoder tasks distribution between CPU and VPU
resulted in efficient utilization of all parallelization capabil-
ities of this platform for high-performance video encoding.

4.6. Scheduling Strategy and Encoder Flow. In the proposed
design, CPU and VPU cores are working concurrently and
they are pipelined at MB level. They used on-chip memo-
ries for exchanging data and/or messages. Ten buffers are
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AUX start
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Figure 10: Proposed encoder flowchart.

allocated and used in a ping pong manner for sending
and receiving frame and bitstream data between the cores.
Figure 10 shows the flowchart of the proposedH.264 encoder.
The encoding process is described as follows.

(1) The raw data of the frame is read and preprocessed by
CPU core.

(2) After CPU sets the frame level parameters, it starts the
VPU and waits for a completion signal.

(3) TheVPUcore processesMBsusing hardware process-
ing units as described in Section 4.4.

(4) After completion, the VPU signals CPU and sends
MB parameter structures. This structure contains
motion vectors, residual quantized coefficients, CBP,
and other parameters required to encode.

(5) The CPU performs entropy encoding, writes bit
stream, control the rate, and receive data structure
from VPU.

(6) TheVPU core stops after allMBs in a frame have been
processed.
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Figure 11: Timeline for multicore pipelined encoder.

(7) The above procedure continues until the encoding of
all candidate frames.

The timeline of proposed multicore pipelined encoder is
shown in Figure 11. It clearly demonstrates the exploitation
of fine-grained MB level parallelism and all processing
capabilities of JZ4770 platform. When pipeline is full, five
MBs are processed in parallel.

It is important to note that the flexible design of the
proposed scheme allows the integration of any fast mode
selection and motion estimation algorithms. The motion
estimator can be easily integrated at the place ofMCEmodule
and mode selection algorithm can be incorporated in the
parameter selection module. Moreover, in case of CABAC
entropy encoding, CABAC takes the place of CAVLC.

4.7. Comparison of the Proposed Architecture with Recent
Schemes. Sankaraiah’s [10] method is based on Group-Of-
Pictures (GOP) inwhich eachGOP is encoded independently
in a separate thread and the frames being referenced are
included in the GOP. This method required a lot of memory
for storing all the frames, and therefore this technique maps
well to multicore architectures that fall into general-purpose
processors (GPP) categories. In addition, parallelization at
the GOP-level results in a very high latency that cannot be
tolerated in some applications. Therefore, this scheme is not
well suited for multicore architectures, in which the memory
is shared by all the processors, because of cache pollution.

Alvanos et al. [9] divide theMB encoding process in three
phases including analyzing and encoding, entropy encoding,
and deblocking. After that, each phase is executed as a sepa-
rate task. In order to resolve the dependency, Alvanos made
use of 2D-wavefront parallelism technique [25] in which all
macroblocks are issued in an antidiagonal based manner and
wait before issuing the next antidiagonal. However, most of
the time consuming tasks analysis and encoding are assigned
to the main Synergistic Processing Element (SPE).Therefore,

the scheme cannot be implemented for real-time processing
on low-power CPUs like one used in this study.

Momcilovic [8] approach simultaneously distributes the
motion estimation and interpolation modules on CPU and
GPU. While rest of the encoder modules are processed
sequentially on either CPU or GPU, this scheme requires
very high power CPUs and GPUs so it is not an embedded
solution.

5. Performance Evaluation and Discussion

To evaluate the performance of the proposed scheme, two
different frame resolutions, NTSC (720 × 480) and 720p HD
(1280 × 720), are considered. All test sequences are in 4 : 2 : 0
format and have 300 frames each. The NTSC resolution
test sequences are mobile, football, intros, garden, galleon,
vtc1nw, and washdc. Stockholm, Shields, Parkrun, and Mob-
cal are considered HD 720p resolution test sequences. The
video coding parameters are set as follows: MV search range
is −32 to +32 pels and block size is 16 × 16, RD optimization
is enabled with metric sum of absolute difference (SAD),
rate control method is single pass constant quantizer (QP
Mode), one reference frame is for motion estimation and
compensation,motion estimation scheme is diamond search,
MV resolution is 1/4 pel, and GOP is chosen as 25 with
structure IPPP.The RD optimization technique improves the
RDperformance but decreases the encoding speed.Theuse of
computationally intensive Psychovisual Optimization metric
improves the RD performance and reduces the encoding
speed. On the other hand, simpler metrics like SAD and
sum of absolute transform difference (SATD) increase the
encoding speed at the cost of degradation inRDperformance.

5.1. Encoder Performance at Different Implementation Stages.
To demonstrate the advantages of proposed scheme, results
are computed at three separate stages. The first stage is
based on the x264 sequential software implementation [26]
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Table 4: NTSC results at different stages (Qp = 24).

Sequences Stage 1 (fps) Stage 2 (fps) Stage 3 (fps)
Garden 3.73 18.75 44.50
Football 3.65 19.74 53.86
Intros 4.02 24.90 64.62
Mobile 3.55 18.96 48.78
Galleon 4.89 24.50 65.99
Vtc1nw 6.70 28.27 69.38
Washdc 4.79 26.17 63.80
Average 4.48 23.04 58.70

Table 5: 720p results at different stages (QP = 26).

Sequences Stage 1 (fps) Stage 2 (fps) Stage 3 (fps)
Stockholm 1.53 9.30 28.73
Shields 1.47 8.85 27.68
Parkrun 1.33 7.76 18.99
Mobcal 1.52 8.32 25.91
Average 1.46 8.55 25.32

executing on CPU core. The second stage belongs to
Section 4.1 in which video processing units are incorporated.
Finally, stage three introduces the numerous optimization
methods, pipeline design, and parallel processing. Tables 4
and 5 depict the results at different implementation stages for
NTSC and 720p resolutions, respectively.

The average encoding rate for NTSC resolution at first
stage is 4.48 fps. After the second stage, the encoding rate
increased to 23 fps. Finally, the average encoding rate is
increased up to 58.70 fps after the third stage. The results
demonstrate that the addition of hardware processing units
increases the encoding rate from 4.48 fps to 23 fps and the
proposed optimization techniques increase the encoding rate
from 23 fps to 58.70 fps. Similarly, the encoding rate for 720p
resolution is increased from 1.46 fps to 25.32 fps. In this case,
encoding rate is increased from 1.46 fps to 8.55 fps due to
addition of hardware processing units and from 8.55 fps to
25.32 fps because of the proposed optimization techniques. It
can be concluded that although the use of hardware process-
ing units increased the encoding rate, major advantage is due
to their efficient utilization through proposed optimization
methodologies.

Table 6 shows the impact of each optimizationmethod on
the total encoding speedup. It demonstrates that the encoder
partitioning between CPU and VPU cores contributes most
significantly, that is, 45.71%, to speed up the encoding pro-
cess. The reasons behind such significant encoding gain are
parallel processing and reduction of hardware configuration
time. As in the proposed pipeline design, entropy encoding
and deblock filtering (DBLK) modules both are at the same
pipeline stage.This stage takes most of the encoding time and
becomes a bottleneck for the rest of the pipeline stages. After
encoder partitioning, these two modules are parallelized at
MB level and overall encoding load is distributed between
two processing cores. This resulted in speedup of the encod-
ing process. Moreover, all hardware processing units are

Table 6: Optimization method versus contribution to encoding
speedup.

Optimization method Speedup
Memory management and data transfer 20%
Encoder pipeline design 34.29%
Encoder partitioning between CPU and VPU cores 45.71%

shifted to VPU core that can configure them using physical
address of on-chip memories directly. Such configuration of
the hardware processing units reduced the overall encoding
time.

5.2. Comparison with Sequential (CPUOnly) Implementation.
A group of experiments is carried out on these test sequences
with four quantization parameters, that is, QP = 24, 28, 32,
and 36. The performance comparison of the implemented
encoder with highly optimized sequential x264 encoder [26]
is presented in Table 7 for NTSC test sequences. Table 7
illustrates that the proposed scheme shows a consistent gain
in encoding rate for all sequences ranging from 58.70 fps at
QP = 24 to 72.10 fps at QP = 36.

For HD 720p resolution test sequences, the quantization
parameters set are 26, 30 and 34. Table 8 shows the frame rate
comparison of the proposed encoderwith sequential software
implementation [26]. For most of the 720p test sequences,
real-time encoding is achieved. The average increase in
encoding rate is ranging from 25.32 fps at QP= 26 to 32.04 fps
at QP = 34.

The experimental results demonstrate that, for both
resolutions NTSC and 720p, the proposed scheme achieved
a speedup of more than 12x when compared with highly
optimized sequential implementation on CPU core without
loss in PSNR.

Although the proposed solution is based on x264 baseline
profile, it can also be used directly for main or high profile
with B frames and CABAC entropy coding by replacing
CAVLC module with CABAC implemented in software and
assigned to the CPU. However, the CABAC implementation
may result in increase of encoding time. For HD 720p and
higher resolutions, video sequences real-time encoding may
not be possible.

5.3.Comparisonwith State-of-the-Art Implementation Schemes.
Table 9 compares the proposed scheme with previous works
in terms of speedup gain. The comparison of the proposed
scheme is done with three preceding works, Momcilovic et
al. [8], Alvanos et al. [9], and Sankaraiah et al. [10]. It can be
seen in Table 9 that the proposed scheme outperformed the
other techniques in terms of speedup gain.

5.4. Energy Saved. Energy saving is another importantmetric
to evaluate the performance of any technique for mobile
devices. As the energy consumption is one of the most
critical issues in case of mobile application processors, the
implementation scheme must cater for this important issue.
The energy consumption for sequential (CPU only) and
proposed implementation is computed as follows: applied
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Table 7: Performance comparison for NTSC resolutions.

QP 24 28 32 36

Sequence Sequence
fps

Proposed
fps

Sequence
fps

Proposed
fps

Sequence
fps

Proposed
fps

Sequence
fps

Proposed
fps

Garden 3.73 44.50 4.04 58.48 4.31 61.56 4.59 70.85
Football 3.65 53.86 4.00 54.38 4.41 59.37 4.78 71.75
Intros 4.02 64.62 5.47 67.82 6.34 70.73 6.72 72.23
Mobile 3.55 48.78 3.74 58.36 3.96 63.50 4.33 70.62
Galleon 4.89 65.99 5.51 70.15 6.24 72.29 7.01 74.63
Vtc1nw 6.70 69.38 7.42 71.11 7.75 72.50 7.97 74.22
Washdc 4.79 63.80 5.75 66.57 6.72 68.07 7.38 70.40
Average 4.48 58.70 5.13 63.83 5.68 66.86 6.11 72.10

Table 8: Performance comparison for 720p resolutions.

Qp 26 30 34

Sequence Sequential
fps

Proposed
fps

Sequential
fps

Proposed
fps

Sequential
fps

Proposed
fps

Stockholm 1.53 28.73 1.87 30.42 2.32 32.41
Shields 1.47 27.68 1.80 30.17 2.17 33.77
Parkrun 1.33 18.99 1.44 23.78 1.66 28.34
Mobcal 1.52 25.91 1.79 31.65 2.17 33.67
Average 1.46 25.32 1.72 29.00 2.08 32.04

Table 9: Performance comparison with other techniques.

Techniques Speedup gain
Momcilovic et al. [8] 2.5x
Alvanos et al. [9] 4.7x–8.6x
Sankaraiah et al. [10] 5.6x–10x
Proposed More than 12x

Table 10: Power consumption comparison.

Implementation
Average

Instantaneous
current
mA

Instantaneous
power consumed

W

Sequential 55 0.28
Proposed 62 0.31

voltage is 5 volt, steady state current (standby mode) is
180mA, QP is 24, and the number of iterations is 5. Average
system current in the case of sequential and the proposed
implementation is 235mA and 242mA, respectively.

The power consumption comparison of proposed imple-
mentation with sequential implementation is given in
Table 10. Although instantaneous power consumed by the
proposed scheme is higher, the overall power consumed to
encode 300 frames ismuch lower than the sequential software
implementation. Tables 11 and 12 provide the comparison of
energy consumed to encode 300 frames of NTSC and 720p
resolutions, respectively.The proposed technique saves about

Table 11: Energy consumption comparison (NTSC).

Sequences Sequential
mWh

Proposed
mWh

Energy saved
mWh

Garden 6.14 0.58 5.56
Football 6.28 0.48 5.80
Intros 5.70 0.40 5.30
Mobile 6.45 0.53 5.92
Galleon 4.68 0.39 4.30
Vtc1nw 3.42 0.37 3.05
Washdc 4.78 0.40 4.38
Average 5.35 0.45 4.90

Table 12: Energy consumption comparison (720p).

Sequences Sequential
mWh

Proposed
mWh

Energy saved
mWh

Stockholm 61.56 3.36 58.21
Shields 62.50 3.54 58.96
Parkrun 64.45 5.67 58.78
Mobcal 60.66 4.04 56.62
Average 62.26 3.99 58.28

4.90mWh and 58.28mWh energy to encode 300 frames of
NTSC and 720p resolutions, respectively.

5.5. Scalability of the Proposed Scheme for High Efficiency
Video Coding (HEVC). The proposed scheme is scalable and
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it can be easily modified for High Efficiency Video Coding
(HEVC) standard. HEVC retains the basic hybrid coding
architecture of H.264/AVC. Moreover, the basic tool set of
video encoding in HEVC codec is quiet similar to H.264/
AVC coding standard, for example, intra- and interpredic-
tion, motion estimation and compensation, transformation,
quantization, entropy encoding, and deblocking filtering.
However,HEVCusesmore adaptive quadtree structure based
on a coding tree unit (CTU) instead of a macroblock (MB)
and several improvements have been made in tool set to
improve its compression performance and throughput speed
(particularly for parallel-processing architectures).

ForHEVC, the basic encoding flow and building blocks of
the proposed scheme remain the same as shown in Figure 10.
However, the following modifications are required inside the
building blocks.

(1) In HEVC, the basic processing unit is CTU instead of
MB. So the main encoding loop will be over CTUs.

(2) Both the processing cores (CPU and VPU) and
hardware processing units will be pipelined at CTU
level.

(3) The DBLK stage in proposed design will perform
both deblocking and sample-adaptive offset (SAO)
filtering.

(4) In HEVC, CAVLC will be replaced by CABAC.

(5) Memory requirement will increase because of large
size of metadata structures in HEVC.

6. Conclusion

This paper proposes an end-to-end software-hardware hybrid
implementation scheme of H.264/AVC encoder for JZ47x
series of processors. The proposed scheme not only dis-
tributes the encoding tasks between hardware and software
modules but also performs synchronization betweendifferent
cores and the hardware accelerator blocks. The idling and
polling time of hardware processing units is also reduced by
exploiting fine grained parallelism atMB level.The possibility
of asynchronously processing on the CPU and VPU is also
effectively exploited to efficiently distribute the computa-
tional load among these processing cores. This resulted in
increasing the encoding rate and reducing power consump-
tion. The implemented encoder can encode NTSC and HD
720p video sequences at 72 fps and 32 fps, respectively. This
is approximately more than 12 times the encoding rate of
the highly optimized sequential encoder. The performance
improvements techniques demonstrated in this work can also
be applied to other families of processors. Itmay be noted that
the proposed scheme is scalable and it can be easily modified
for High Efficiency Video Coding (HEVC) standard.
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