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Abstract. Co-location, where multiple jobs share compute nodes in large-scale HPC systems, has been shown to increase aggre-
gate throughput and energy efficiency by 10-20%. However, system operators disallow co-location due to fair-pricing concerns,
i.e., a pricing mechanism that considers performance interference from co-running jobs. In the current pricing model, applica-
tion execution time determines the price, which results in unfair prices paid by the minority of users whose jobs suffer from
co-location.

This paper presents POPPA, a runtime system that enables fair pricing by delivering precise online interference detection and
facilitates the adoption of supercomputers with co-locations. POPPA leverages a novel shutter mechanism — a cyclic, fine-grained
interference sampling mechanism to accurately deduce the interference between co-runners — to provide unbiased pricing of
jobs that share nodes. POPPA is able to quantify inter-application interference within 4% mean absolute error on a variety of
co-located benchmark and real scientific workloads.
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1. Introduction

Supercomputers typically have hundreds to thou-
sands of users and consist of tens to thousands of indi-
vidual servers connected over a high-speed optical in-
terconnect. At any one time, many users concurrently
utilize the system. The current approach has been to
give each user a non-overlapping set of compute nodes
on which to run his or her application. While this ap-
proach prevents jobs from different users from clob-
bering one another, it leads to a missed performance
opportunity. In fact, recent work has shown that co-
location, where a set of jobs from different users runs
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on a shared set of compute nodes, can increase mean
application performance and system energy efficiency
by 20% by reducing contention for shared resources
in the memory subsystem and inter-node network [11,
27,33]. In addition, current architectural trends and ex-
ascale computing studies suggest that the benefit of
co-location is likely to increase. The studies project
that compute nodes will have hundreds to thousands of
cores [7]. For some applications, it may not be possi-
ble to use all of these cores efficiently. In particular,
80% of all XSEDE jobs use less than 512 cores [20,
43], which means co-location will likely be necessary
to utilize all of a node’s cores.

Co-location seems inevitable for larger jobs as well.
Projected scaling trends suggest an increase in the
number of cores per node that outpaces increases in
memory bandwidth and cache capacity, which will re-
duce the resources available per core [7]. To miti-
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gate contention, resource-hungry jobs will have to be
spread out over more compute nodes and paired with
resource-light jobs to maintain high system utiliza-
tion [11].

Although co-location is beneficial to performance
and energy efficiency, it also creates a new set of chal-
lenges, one of which is fair pricing. Fair pricing is a
concern because although there is a net benefit from
co-location, some pairings can cause one of the appli-
cations to slow down. When this happens, we argue
that the user should be discounted. However, if we ap-
ply the current state-of-practice (SOP) in HPC infras-
tructures, where users are billed proportionally to the
time to execute their job, we find there is gross in-
equity — users whose jobs benefit from co-location pay
comparatively less while users whose jobs do not ben-
efit pay more.

Figure 1 illustrates the challenge. Under the current
state-of-practice, a user running GTC [37], a plasma
physics code, pays 60% more when co-located with
LAMMPS [34], a molecular dynamics code, versus
AMG [4,6], a parallel algebraic multigrid solver. To
remedy this problem, we suggest discounting a user
based on the interference caused by the other co-
running applications. The greater the interference,
the greater the discount. The green bars show one
such scheme. Because co-location increases machine
throughput per unit time, these discounts can be
viewed as passing the efficiency savings from co-
location back to the end user when their expectation of
service is violated.
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Fig. 1. Performance of GTC, a plasma physics code, when co-lo-
cated with the applications on the x-axis. The current pricing mech-
anism penalizes the user for co-locating their job by charging them
more when their job degrades more. (Colors are visible in the online
version of the article; http://dx.doi.org/10.3233/SPR-140387.)

Although the concept of progressive discounts is
simple, the realization of such a policy on real systems
poses a number of practical challenges. In particular,
a fair pricing model of this nature requires precisely
quantifying the interference due to shared resource
contention. While there has been significant research
into predicting cross-core interference, many of the
techniques make heavy use of static profiling or have
been tailored to specific machines or applications [17,
18,39]. Even though this work has yielded consider-
able insight into the problem of shared resource con-
tention, we argue that in practice, it is not practi-
cal for precise pricing on a real HPC cluster. In this
domain, static profiling and machine- or application-
specific approaches are not suitable as jobs may run
very shortly after submission and their characteriza-
tions may not be known a priori. Although application
profiling may enrich the solution space, we note that
altering even a single input parameter for an applica-
tion can vastly change its characteristics. For example,
doubling a single array dimension can often radically
transform an application’s sensitivity to and aggres-
siveness on the memory subsystem. Thus, an instanta-
neous and dynamic mechanism is needed to continu-
ously monitor and quantify the interference jobs suffer
to drive precise pricing.

In addition to being dynamic and precise, the fun-
damental pricing mechanism must also be lightweight.
The underlying pricing agent has to be mostly invisible
to the application and therefore must have a negligible
overhead, below the system noise threshold. These ob-
jectives lead us to the two key insights of the work —
only a software system that uses empirical, online tests
is suitable for this problem domain, and such an ap-
proach must be agnostic to the underlying software and
hardware.

In this paper, we present such a solution: the Per-
sistent Online Precise Pricing Agent (POPPA). POPPA
is a lightweight runtime system that utilizes a cyclic,
fine-grain, interference sampling mechanism to accu-
rately deduce the interference between co-runners. The
key design feature of POPPA is a dynamic contention
detection technique we call shuttering. For brief peri-
ods of execution, POPPA pauses all applications but
one and measures how the selected application’s per-
formance changes versus running co-located. From
the disparity between the application’s rate of forward
progress made while running co-located versus shut-
tered, POPPA is able to precisely determine the impact
of interference resulting from co-location and use these
measurements to drive fair pricing for all users’ jobs.

The contributions of this work are as follows:
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e We introduce POPPA, a lightweight, workload
and machine agnostic runtime system that enables
fair pricing for HPC clusters. POPPA functions
entirely in software, requires no changes to the
system stack in current HPC clusters, and is read-
ily deployable.

e We present the design of precise shuttering,
a mechanism for the precise online measurement
of the performance impact of cross-core interfer-
ence. Our precise shuttering approach functions
dynamically and requires no a priori knowledge
or profiling of the applications.

e We present a new pricing model for HPC clusters
based on POPPA to provide fair pricing to users.

e We provide a thorough evaluation of POPPA’s ef-
ficacy and robustness as the central accounting
mechanism on HPC clusters with a mix of MPI
benchmarks and real workloads.

POPPA predicts co-located application run time
with 4% mean absolute error and incurs less than 1%
overhead. Using POPPA, we are able to discount the
average user by 7.4% and deliver a pricing distribution
that closely resembles that of an omniscient oracle.

2. Background and motivation

In order to better understand why fair pricing is
of such importance, we must first explore the current
state-of-practice in accounting on supercomputers. We
start by examining the accounting and allocation model
found in the United States Department of Energy Of-
fice of Science INCITE program [28] and the National
Science Foundation XSEDE program [20], two of the
largest U.S. programs that provide resources to the
general HPC research community. Each of these pro-
grams facilitates access to a number of large scale com-
puting infrastructures. To successfully obtain an allo-
cation, researchers submit grant proposals and, after
reviews, are awarded time on those systems as a finite
number of service units (SUs). When a user runs a job
on a system, they deplete their bank of SUs at a rate
proportional to the length of their programs’ execution
and the number of compute nodes that they request.

In this model, users need strong guarantees that the
value of an SU will not be negatively affected by
other users’ jobs running on the same computing re-
sources. Similarly, supercomputer administrators care
about user satisfaction and are incentivized to pro-
vide users with the best possible experience because

individual supercomputing centers are awarded funds
largely based on the success and popularity of their fa-
cilities. Consequently, we observe that throughout all
levels of the funding ladder, fair pricing and account-
ing are crucial concerns. Regardless of what mecha-
nisms are implemented to improve supercomputer per-
formance, energy efficiency or fault tolerance, they
must not pervert the fairness of the pricing scheme.

2.1. MPI programming model

Most large scale scientific applications utilize the
Message Passing Interface (MPI) as the core abstrac-
tion to facilitate workload distribution across a cluster.
Two main characteristics of MPI programs are as fol-
lows:

(1) Single Program Multiple Data (SPMD). MPI
processes execute the same static program bi-
nary and use unique identifiers called ranks to
dictate communication patterns as well as which
blocks of code get executed by different pro-
cesses. While this allows for a large amount of
potential diversity between processes, in practice
most MPI programs are Single Program Multi-
ple Data (SPMD): all processes execute the same
core algorithm on different data. Thus within an
MPI program, all the processes have high sim-
ilarity, e.g., they all compete for the same re-
sources.

(2) Tightly coupled communication synchronization.
The vast majority of MPI programs exhibit
tightly coupled communication synchronization.
Because of this tight synchronization, processes
must execute in relative lock-step. If a process
reaches an explicit or implicit barrier before the
other necessary parties, it must wait until all oth-
ers make similar progress before proceeding.

2.2. Co-location of MPI programs

When we reason about the nature of MPI programs,
it quickly becomes evident that executing a single MPI
program across a private set of compute nodes is an
inefficient use of system resources. The homogene-
ity between MPI processes and the fact that they are
tightly coupled mean that many processes will exe-
cute the same program regions with high concurrency.
When this happens, there is high risk for resource con-
tention and performance degradation — homogeneous
processes have high propensity to evict one another’s
data in the shared last level cache (LLC), contend for
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the memory controller, saturate off-chip bandwidth to
main memory, and cause a backlog of messages for in-
ternode communication.

Previous research shows that homogeneous MPI
processes can degrade one another’s performance by
more than 2x [11,33]. In addition, these works show
that introducing heterogeneity in workloads by co-
locating multiple MPI programs on disjoint cores can
drastically improve performance and energy efficiency.
In fact, both studies find that aggregate throughput in-
creases by 12 to 23% on average over the current state
of practice, and [11] shows that system energy effi-
ciency increases by 11 to 22%.

In conclusion, given the high cost of large supercom-
puters and the great performance and efficiency ben-
efit of co-location, it is essential that we provide fair
pricing mechanisms to make co-location practical.

3. POPPA overview

In this section, we present the overview of the Per-
sistent Online Precise Pricing Agent (POPPA) frame-
work. Our primary design objective for POPPA is to
provide accurate performance interference estimates
for parallel applications with negligible overhead. As
shown in Fig. 2, POPPA consists of a main monitoring
agent called the Controller and a series of Execution
Managers.

Execution Manager. Each Execution Manager is re-
sponsible for launching and overseeing the entire exe-
cution of a parallel application on a given machine. The
Execution Managers read from the central job queue
and select the next job to run according to the job pri-
ority and its resource needs. An Execution Manager
launches the selected job and attaches a performance
monitoring context (PMC) to the job. The PMC moni-
tors the job performance by reading and evaluating ap-
propriate hardware performance counters. During exe-
cution, the Execution Manager updates and reports the
current status and performance data of the job to the
Controller.

Controller. The Controller is the main component of
POPPA. Its principle responsibility is to conduct shut-
tering, a mechanism to measure and quantify the per-
formance interference among the co-running applica-
tions. In essence, the Controller periodically pauses
each application but one for a very short period and
monitors the performance impact on the lone running
application. To measure this impact, the Controller
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Fig. 2. Interaction between POPPA components and other enti-
ties. (Colors are visible in the online version of the article; http://
dx.doi.org/10.3233/SPR-140387.)

probes the PMCs of each active job to acquire the per-
formance data and logs it. We present more details
of the shuttering mechanism including our algorithms
and policies in Section 5 and evaluate its accuracy and
overhead in Section 8.

Figure 2 presents how POPPA can be used for pric-
ing. After execution of a job has completed, the Pricer
thread analyzes the raw performance data logged by
the Controller and quantifies the performance inter-
ference and degradation. More details of the analysis
and pricing are presented in Sections 4 and 6. Based
on the quantification, the Pricer produces the price to
be charged and propagates it to the Account Manager,
which then deducts the price from the user’s bank of
SUs.

4. Pricing model

In this section, we discuss the key issues related to
pricing and accounting on current supercomputers and
extend those notions to a supercomputer with job co-
locations.

4.1. Pricing without co-location

For purposes of this discussion, assume that a user
wants to run a job ¢ on a supercomputer and that F;
denotes the price that the user is charged for running .

In present day systems, P; is given by Eq. (1), where
L is a rate constant in terms of service units per core
per time quanta, C; is the number of cores that a job
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uses in whole compute node increments, and 77 is the
run time of the program.

From this equation, we can see that the price variable
P; is linearly proportional to both the cores variable C};
and the time variable T;.

4.2. Pricing with co-location

In this section, we propose how one could mod-
ify the existing pricing model to more fairly price ap-
plications when co-locations are present. In particu-
lar, if we have a job ¢ that is co-located with a set of
jobs J, we want a formula that will produce a rea-
sonable price PZ-C 0(‘]), which takes into account the net
interference from all applications in J. To this end,
we replace L with a rate function F', yielding Eq. (2),
where F':R x R — R. Tis"lo is the run time when the

job i gets all compute nodes to itself and T;O(J) is the
run time of the job ¢ when ¢ is co-located with the set
J of other jobs.

PZ'CO(J) _ F(T;OIO,T;O(J)> * C; * T;olo_ 2)

Ideally, F' is monotonically non-increasing so that
the more degradation an application suffers from co-
location, the more the user is discounted. For the pur-
poses of this paper, we assume utility is proportional
to 1 minus the rational degradation. Therefore if we
equate utility to fairness, then we select F' such that
users are discounted at a rate proportional to the degra-
dation that each of their jobs experiences due to con-

tention from co-runners. Thus if Dgo(‘]) is the degra-

dation, then we want Pfo(‘]) = (- Dfo(‘])) % prolo,
Consequently we define F' as follows:

1
Tiso o
Tpo( J)

7

=L (1 - D). 3)

F(TiSOIO, Tico(J)) — L«

By substituting Eq. (3) into Eq. (2) we see that we
achieve the specific pricing model shown in Eq. (4).

T.SO]O
PZ-CO(J) S CZO(J)
Ti

% O % TP, @)

While Eq. (4) is good for the user, we acknowledge
that it is an idealistic model. Its simplicity makes it

easy for end users to understand; however, we note
other factors such as resource manager queue wait
times, job priority, workload composition, the ratio of
each shared resource a job consumes, machine archi-
tecture, and scheduling policy, i.e. capability versus ca-
pacity are also important factors when determining a
fair price. Thus supercomputing facilities will have to
decide what F' makes sense for each of their systems.

5. Precise shutter mechanism

As previously mentioned, POPPA’s chief design ob-
jective is to produce fair prices with high precision, low
overhead, and without the need for a priori knowledge.
To achieve these goals we have designed precise shut-
tering, an online co-runner interference masking ap-
proach. Essentially, the precise shuttering mechanism
functions by alternating an application’s execution en-
vironment between one where co-runners are execut-
ing and another where they are effectively absent.

Figure 3 shows shuttering in action on two applica-
tions A and B that are co-located. The shuttering al-
gorithm alternates between execution regions where A
and B co-execute, A executes while B sleeps, A and B
co-execute, and B executes while A sleeps. We repeat
this pattern throughout the execution of the programs.

To gain insight from shuttering, we must measure
the performance of each application before, during,
and after shutter regions. During each shutter of du-
ration 8, we leverage hardware performance monitors
via 1ibpfm4 [19,49] to measure the instructions per

i = ] KEY
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L L Ll L \
Program A Program B

Fig. 3. Shown here is shuttering in action on two separate jobs. Dur-
ing a shutter, one job executes while all others sleep. (Colors are
visible in the online version of the article; http://dx.doi.org/10.3233/
SPR-140387.)
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cycle of the sole non-sleeping application. To infer the
degradation due to co-runners, we also measure the in-
structions per cycle (IPC) of all active applications &
microseconds before the shutter and 8 microseconds
directly after it.

Since we are primarily concerned by how perfor-
mance changes with the presence or absence of con-
tention, we only need to monitor the performance dur-
ing small windows around shutters. We also perform
each shutter infrequently to minimize the perturbation
of application execution and parameterize the rate of
shutter samples to control POPPA’s overhead. As we
show in this work, frequent shutters are not required to
produce an accurate predictive model.

5.1. Algorithms
In this section, we present the logic of the shut-

ter mechanism, whose core parts are shown in Algo-
rithms 1-3. Below we define a list of common data

Algorithm 1. Measure(i, S, K)

1: Initialize array perfValue of length | A[4]|
2: fork=0to K — 1do
3: for each thread ¢ that is part of A[:] do
4: perfValue[t] = ReadCounters(t)
5: end for
6 Sleep for S us
7 for each thread ¢ that is part of A[:] do
8: perfDict[t].append(ReadCounters(t) —
perfValue[t])
9: end for
10: end for

Algorithm 2. Shutter_Core(j, S, K)

1: fori =0to|A| — 1, where i # j do

2 for each thread ¢ that is part of A[:] do
3 Pause ¢

4 end for

5: end for

6: Measure(j, S, K)

7: for i =0to |A| — 1, where i # j do

8 for each thread ¢ that is part of A[:] do
9

: Resume ¢
10: perfDict[t].append(THREAD_ASLEEP)
11: end for
12: end for

Algorithm 3. POPPA_Core

1: j=0

2: while true do

3 for i = 0 to |A| — 1 in parallel do
Measure(i, S, K)

end for

Shutter_Core(j, S, K)

for i = 0 to |A| — 1 in parallel do
Measure(i, S, K)

end for

10: j= @G+ 1mod|A|

11: Sleep P us

12: end while

R A AN

structures and constants used by the algorithms:

e A, an array of co-located applications;

e perfDict, a lookup table that stores the measured
IPC values of each application;

e K, the number of IPC measurements to make in a
row in a specific region;>

e S, the length of the each measurement in ps;

e P, the length of time between groups of measure-
ments, i.e. the normal execution period, in ps;

e §, the length of a shutter, approximately K * .S.

The core routine is Algorithm 3. At each iteration,
we first measure the IPC of each application while co-
located (lines 3-5). We then shutter application j by
calling Shutter_Core (line 6), which subsequently calls
Measure to measure the IPC while j is running alone.
After that, we measure the IPC of all applications and
increment j (lines 7-10). Then the shutter component
of POPPA goes to sleep for P ps of normal execution
(line 11). Since POPPA is persistent, this process re-
peats continually as applications end and new applica-
tions enter the application pool.

5.2. Tuning the shutter mechanism

The shutter implementation presents a number of
challenges. In particular, selecting the correct granu-
larity to shutter at is key to accurately quantifying in-
terference without noticeably adding to it. The first pa-
rameter is the gap between shutters P. As P is de-
creased, the amount of time that POPPA is active in-
creases, consequently also increasing overhead. Since
utilization in supercomputers is often above 95%, we

2We fix K = 1 for experiments and analyses in Section 8.
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assume that each core has an application thread as-
signed to it. Due to this fact, POPPA must time slice
with application threads. If POPPA is active for £% of
a single core’s execution time, then assuming POPPA
threads do not migrate, one of the co-running appli-
cations is likely to suffer at least an % hit to perfor-
mance due to synchronization between processes.

Since the POPPA runtime inevitably has overhead,
we experimented with conducting round-robin migra-
tion of the POPPA threads to distribute the perfor-
mance impact of time slicing across all application
threads; however, we determined that a better solu-
tion was to select values for K, P and S that make
POPPA’s CPU utilization very low, as migration is not
guaranteed to be fine-grain enough to mitigate the ef-
fect of time slicing.

Another important parameter is 8 the duration of a
shutter. In our implementation, this quantity is equal to
the base cost of doing a shutter on 8 MPI processes,
approximately 120 to 200 ps (see Fig. 4 in Section 8.1),
plus K x.S, where K S is the product of the number of
consecutive measurements and the length of each such
measurement. During a shutter, the paused application
makes no progress, thus keeping shutter duration very
short relative to P is a primary concern.

An unexpected find relating to the shutter mecha-
nism is that in certain cases, POPPA actually slightly
improves the performance of co-located applications.
During shutters, applications that sleep sacrifice a
small amount of forward progress and the lone runner
receives a performance boost from reduced contention.
When the net performance boost from running in isola-
tion offsets the net performance loss from sleeping, ap-
plications speed up relative to the baseline co-schedule
performance. For pairs of two applications, speedup
occurs when a co-schedule increases one application’s
run time by more than 2x relative to running with half
the cores idle per socket. This phenomenon is demon-
strated empirically in Section 8.2.

6. Estimating degradation

In this section, we present our method for linking the
raw data that POPPA produces to the actual prices we
charge.

6.1. Idealized model for degradation

Our pricing model assumes that for an application ¢,
we know the degradation Dgo(‘]) that 7 suffers as a re-

sult of co-location with a set J of applications. In our

pricing model discussion, we formulated 1 — Dgo(‘])

T_solo

as W While this gives us a precise way to cal-

culatle degradation, POPPA cannot directly measure
Tis‘)l‘). Thus, we modify the formulation such that it is
amenable to the IPC data that POPPA produces.

On modern chip multiprocessors, if we are given an
execution time in seconds, we can convert this to a
value in clock cycles. Thus if we know the clock ticks
per second, we can write the performance of ¢ normal-
ized to running alone as the ratio of clock cycles C’l-s"lo

and CZ-CO(J) (see below):

1
Perftom — | _ peot) — S ®)
K3

Additionally, if we assume i to be a truly serial pro-
gram, then it is the case that ¢’s dynamic instructions I;
do not change. Thus I3°1° = IZ-CO(J), and consequently

we can transform Eq. (5) into a ratio of IPCs by multi-
co(J)

plying by IZSW yielding the following:

co(J)
IPCS

IpCiole ©
K2

Perf;*™ =

6.2. Known challenges with parallel programs

For parallel programs, however, it turns out that
Eq. (6) is often imprecise. Many parallel programs
contain mutexes, semaphores, and other locking mech-
anisms to enforce program correctness by preventing
data races. When a load imbalance occurs, that is, one
parallel process advances faster than its siblings, these
locking mechanisms can distort both dynamic instruc-
tion count and CPU clock cycles.

With MPI, this issue is quite prevalent. If a commu-
nication routine is implemented as blocking, then it is
common practice to have the thread that initiated the
routine to poll for a certain number of cycles and then
sleep. During this polling period, the thread executes a
while loop where it continually tests whether the com-
munication operation has completed. If the thread fails
to finish the communication operation within a certain
interval, it is put to sleep and signaled to wake up when
the operation has completed. Because contention and
background noise on the system can cause this polling
period to change in duration, the number of dynamic
instructions attributed to these communication regions
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is variable. With MVAPICH?2, the MPI-2 implementa-
tion, the maximum polling period can be adjusted [2].
While we were tempted to disable polling, we knew
that doing so would be disadvantageous. In particular,
polling greatly increases individual application perfor-
mance because the blocking thread avoids the perfor-
mance hit associated with going to sleep and waking
back up, as it can proceed as soon as communication
has finished. Thus, we decided to keep the parameters
that maximized performance even though it made pre-
cise prediction more challenging.

6.3. Filtering

Even though Eq. (6) is imprecise in the presence of
variable execution, we find that in practice, it is still
sufficient for producing reasonable degradation esti-
mates. We also assume that the average over the N IPC
samples that we collect is roughly equivalent to the ac-
tual average IPC during shutters (IPC;OIO) and during
normal paired execution (IPC°). These assumptions
are presented below in Eqs (7) and (8).

co(J)
IPCS
1
IPC0l0

N§0]o
i solo
220 PGS

solo
N, %

) (7

Perfgorm ~

IPCS° ~ and

Nico CcO (8)

IPC ~ 72]-:]35(3@3»

1

POPPA gives us data in the form of a stream of
blocks of IPC measurements, each consisting of K
IPC measurements just before a shutter, K measure-
ments during a shutter, and K afterward. We de-
note this stream of blocks as B and the [th such
block as Bj; within each block Bj, the K IPC val-
ues in B; before the shutter are denoted as IPC}’efore,

the K IPC values during a shutter as IPC?Uﬁng, and
the K IPC values after a shutter as IPC?ﬁer. Thus
By = (IPCYefore IPC{"™ [PCifier). We denote the
arithmetic means of each of these values as IPC}’ef"re,

IPC‘Zjurlrlg and IPC;ifter . Using this notation, we present
the filtering algorithm (Algorithm 4) that allows us to
increase the precision of the performance estimate.
Algorithm 4 aims to reduce noise from sampling
IPC. It removes groups of IPC values where the IPC
during a shutter is not greater than the IPC directly be-

Algorithm 4. Filtered prediction (IPC tuples B)

1: Initialize IPC® and IPCS° to 0

2: for each (IPCE’ef"re,IPC?uri"g,IPC?fter) in B do

30 if [IPCPefore — Jpcifier] < § and IPCPefore <
IPC?uring and IPC?ﬁer < IPC?uring then

4 IPCe £ 0.5(IPCPefore 4. [pCafier)

5 IPCSO]O ; IPCduring

6: end if

7: end for 1

8: Return (PC_—IPCT,

IPCsolo

fore and after. Since a shutter can only relieve shared
resource contention, the IPC during a shutter should
always exceed the IPC before and after a shutter if
all measurements occur during the same computational
phase. The second mechanism, which states that the
absolute difference in IPC before and after cannot ex-
ceed & works to ensure that clusters that cross phase
boundaries are removed. We empirically determined
0 = 0.05 to be a reasonable value.

7. Experimental setup

This section describes our methodology. We ran our
experiments on the Gordon Supercomputer [26,48].
Each node is dual-socket. For each socket, there is an
8-core Intel EM64T Xeon ES (Sandy Bridge) proces-
sor. Simultaneous multithreading is disabled [62]. The
CPU frequency is 2.6 GHz, and each core has pri-
vate 32 KB instruction and data L1 caches, a private
256 KB L2 cache, and each socket has 20 MB of L3.
There are 64 GB of DRAM. Compute nodes run Cen-
tOS linux with kernel version 2.6.32. The interconnect
is QDR InfiniBand with 8 GB/s of bidirectional band-
width, and the topology is a 3D torus of switches [24,
58]. Our applications and benchmarks are shown in the
table that follows. These benchmarks and applications
encompass a wide variety of scientific domains such as
subatomic particle physics [42], plasma physics [37],
molecular dynamics [34], ocean modeling [1], com-
putational fluid dynamics [46,52], shock hydrodynam-
ics [31], finite element methods [38] along with various
other numerical methods that are of high interest to the
HPC community. We also note that GTC and MILC, in
particular, use a substantial number of dedicated allo-
cation hours on many leadership class machines.



A.D. Breslow et al. / Enabling fair pricing on HPC systems with node sharing 67

Table 1

Benchmarks, Miniapps and Applications used in the evalua-
tion of POPPA

Swim [57], ADVECT3D [51], pcubed [35]

NAS Parallel Benchmarks: CG, FT, LU, MG [5,45]

Lulesh [31], MiniGhost [38], MiniFE [38], NekBone [46,52]
GTC [37], LAMMPS [34], MILC [42], POP [1]

We compile GTC, LAMMPS, MILC, POP, CG,
FT, LU and MG with GNU compilers version 4.7
and MVAPICH2 version 1.7. LULESH, MiniGhost,
MiniFE and NekBone are compiled with PGI compil-
ers version 11.9 and OpenMPI version 1.6. See Table 1
for a full list of programs used to evaluate POPPA.

In our experiments, we co-locate two 8 process MPI
applications together on the same set of sockets. Each
socket has half its cores run one application and the
other half run the other. Applications co-run together
for a minimum of 5 iterations of both applications. As
soon as one application ends, we immediately restart
it. Data collection stops once both applications have
completed 5 iterations. For the shutter mechanism, we
fix K = 1 and P = 200 ms.

8. Evaluation

In this section, we evaluate the accuracy, overhead,
and the pricing fairness of POPPA.

8.1. Quantifying POPPA’s base overhead

In this section, we quantify the minimum time to ex-
ecute components within the main loop of the POPPA
daemon. The main loop consists of the three core oper-
ations of Algorithm 3 — measuring the IPC of the appli-
cation just prior to the shutter, issuing the shutter and
measuring the IPC of the application during that win-
dow, and measuring the IPC of the application imme-
diately following the shutter.

For these experiments, we co-locate two MPI bench-
marks, an auto-generated loop from the pcubed
benchmark suite and a busy loop, called the NULL co-
runner, that runs for the duration of the pcubed loop.
In POPPA, we set all of the sleep parameters to 0, so
we can measure the minimum execution time for all
subcomponents of the loop. During each iteration of
the main loop, we measure its total execution time,
the time to measure the IPC both before and after the
shutter, the total execution time of the shutter, the time

600
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BB Read Counters Pre/Post Shutter
500/ | @M Shutter Residual

[ Read Counters Shutter

400

200/
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=)
=)
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Fig. 4. Breakdown of base overhead to execute a single iteration
of POPPA’s core algorithm, where reading PMC values dominates
total time. (Colors are visible in the online version of the article;
http://dx.doi.org/10.3233/SPR-140387.)

to send the SIGSTOP and SIGCONT signals, and the
time to make the IPC measurements during the shut-
ter.

Figure 4 presents the results. On the z-axis we vary
the number of threads in each job. So 4 corresponds
to four pcubed tasks bound to cores 0, 2, 4 and 6
and four busy loop tasks bound to cores 1, 3, 5
and 7. The y-axis shows the total time in ps to execute
the main loop. When studying this figure, several in-
teresting trends emerge. Not surprisingly, adding more
threads increases the minimum loop execution time.
Execution time is dominated by IPC measurement in
the form of calls to 1ibpfm, particularly those outside
the shutter region. In fact, we spend about 4x as much
time measuring the IPC outside of shutter regions com-
pared to within them. This difference in overhead re-
sults from (1) we only measure active threads within
a shutter, which is an optimization decision that we
made, so the overhead to read the performance coun-
ters doubles outside of a shutter, and (2) we make two
sets of IPC measurements outside of a shutter (before
and after) versus a single set of measurements during
one.

We see that the mean time to shutter does not exceed
130 ps and the mean time to execute the main loop does
not exceed 500 ps. Thus, our mechanism is fine grained
enough to measure the IPC at sub-millisecond intervals
for thread counts that are representative of contempo-
rary multi-socket systems.

In addition to the minimum delays incurred by shut-
tering, we quantify the effect of enlarging the amount
of time spent in a shutter. For this experiment, we fix
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Fig. 5. The relative overhead of expanding the duration of a shutter,
where points correspond to measurements and lines correspond to
instantiations of the model. (Colors are visible in the online version
of the article; http://dx.doi.org/10.3233/SPR-140387.)

the sleep time at the end of the main loop, P (see Sec-
tion 5.1), to 200,000 ps and increase the shutter dura-
tion, 8 (see Section 5.1), multiplicatively by factors of
2 from 200 ps to 409,600 ps. We separately co-run each
of the NAS Parallel Benchmarks (NPB) with the busy
loop NULL. Since NULL generates no interference,
any dilation in run time is a direct result of increasing
the shutter window.

Figure 5 presents the results. All four benchmarks
exhibit a similar trend. When 8§ is small relative to P,
the overhead is small, but as the ratio 8§ : P increases,
so does the overhead. However, the overhead begins
to flatten out as 8 approaches and exceeds the value
of P.

We need to formulate an analytical model for the
overhead that a pricing shutter creates for an arbitrary
co-located pool of n jobs. To do so, we examine the
overhead from n consecutive shutters. Over the course
of n shutters, each job will run in isolation once and
sleep n — 1 times while a single other job enjoys the
privilege. Each such shutter has duration 8. Thus each
job will sleep for (n — 1) * 8 seconds.

The total time for n iterations of the main loop of
the daemon is also important for the analysis. Measur-
ing the IPC before, during and after a shutter is 38, as
each takes S time. After this, the daemon sleeps P sec-
onds. This pattern is cyclic, so the combined time is
n * (38 4+ P). Equation (9) shows ratio of sleep time to
total time

sleep time  (n — 1) %38

26,0 = T nx(38+P)

€))

total time

The model for the execution time of the jobs in Fig. 5
is shown below:

1
1—-Z(,P)
n* (38 + P)

A PY L (10)

T(S,P) =T,

Here T; is the run time of application ¢ when co-
located with the NULL co-runner. When we examine
the model fit to the data in Fig. 5, we observe that
CG-FIT,FT-FIT, LU-FIT,MG-FIT almostexactly
predict the actual overhead of the shutter for all § in
{100 % 2% us|1 < k < 12} and a fixed P of 200 ms.
This model incorporates S, P and T'; if we know any
two of these quantities, we can solve for the third. Thus
administrators can decide on a system by system basis
what is exactly an acceptable amount of degradation
due to the pricing shutter and choose values of § and
P accordingly.

8.2. Determining the sampling rate

In this section, we evaluate the precision and over-
head of the POPPA daemon for different shutter
lengths (8 values) while keeping P fixed to 200 ms.
We saw in the previous section, that the overhead due
to the shuttering mechanism has an analytical upper
bound given by Eq. (10). Using this equation, we se-
lected values of 8§ with less than 5% overhead: 200,
400, 800, 1600, 3200, 6400, 12,800 and 25,600 ps.

We ran two sets of pairwise experiments. In the first,
we co-located the NPBs with a contentious co-runner
(ADVECT3D with a grid size of 256%), and in the
other we co-scheduled the NPBs with a moderately
contentious co-runner (Swim with a grid dimension of
1503). Figure 6(a)—(d) show the performance predic-
tion accuracy of the POPPA daemon for CG, FT, LU
and MG when they are co-located with ADVECT3D.
Both the accuracies of the unfiltered and filtered pre-
dictors are shown. For clarity, we opt not to present the
results for 400, 1600 and 6400 ps.

In this set of experiments, we are able to very ac-
curately predict the contention with negligible over-
head. Filtering improves prediction performance. Our
predictors have the largest error for FT. § = 200 us
gives the highest accuracy, but as § increases, so does
the error. This error results from FT’s very fine grain
phases, which coarser granularity shutters have trouble
capturing.
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Figures 7(a)—-(d) show the prediction accuracy for
the NPBs paired with Swim. Again, our prediction ac-
curacy is very precise. In this case, we note that the fil-
tered prediction is sometimes overly zealous when pre-
dicting contention. However, this result is unsurprising
given that filtering removes clusters of IPC measure-
ments where the IPC measured during a shutter does
not exceed the IPC directly before and after.

A contrasting finding between the experiments with
ADVECT3D and Swim concerns daemon overhead as
a function of 8. In the experiments with ADVECT3D,
overhead is flat regardless of & whereas it sharply in-
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fact that ADVECT3D is configured to be contentious
whereas Swim is not. During a shutter, the lone run- Fig. 8. Overhead of POPPA on NAS benchmarks co-located with

ADVECT-256. (Colors are visible in the online version of the article;

ning application receives a respite from the contention hitp:/idx.dot.org/10.3233/SPR- 140387.)

generated by the other application. In the case of the
NPBs with ADVECT3D, this causes each NPB to

speed up by approximately 2, which offsets the lost present both the daemon’s overhead and its distribu-
throughput from sleeping during alternate shutters. By tion for the surveyed values of S. In Fig. 8, regardless
contrast, Swim degrades each NPB by at most 15%, so of the value of 8, overhead due to the pricing shutter
the time spent sleeping cannot be masked. never exceeds 2%. However, in Fig. 9, this value ex-

These experiments show that the shutter duration & ceeds 4%, which is clearly too costly. § = 3200 ps de-
is largely irrelevant for accuracy. Thus when select- livers an overhead of less than 1% and with the small-
ing §, it makes sense to select a value that induces min- est variation. For this reason, we use & = 3200 ps for

imal overhead and run time variation. Figures 8 and 9 the remainder of our experiments.
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8.3. Pairwise evaluation

In this section, we evaluate the precision of POPPA
on pairwise co-locations. Since our filtered prediction
was better in aggregate in our previous experiments,
we apply that prediction mechanism rather than the
simple one. We run co-schedules of all possible com-
binations of our 12 benchmarks and real applications.

Figure 10 shows the accuracy of our filtered pre-
dictor at quantifying degradation. The x-axis lists the
names of the benchmarks, and the y-axis lists the co-
runners. Individual cells present the percentage dif-
ference in predicted run time versus actual, where
negative values represent underprediction and positive
values represent overprediction. The top row “mean”
presents the mean absolute error across the apps, and
the right most column “mean” presents the mean abso-
lute error that an application creates in the prediction
accuracy for the other codes.

Figure 11 presents the degradation of each applica-
tion as a percentage of run time relative to running with
the NULL co-runner, i.e half the cores vacant on each
socket. The top row presents the mean degradation of
each scientific code on the x-axis and the right most
column presents the mean degradation each applica-
tion on the y-axis causes to its co-runners.

If we study Figs 10 and 11 in concert, a number of
interesting trends emerge. POPPA does well at quan-
tifying degradation for all pairings consisting exclu-
sively of our real applications, GTC, LAMMPS, MILC
and POP. Our mean absolute error is 2.5% and absolute
error never exceeds 5.8%. We accurately characterize
both ends of the spectrum. We predict high degrada-
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tion for MILC paired with itself and we neither sig-
nificantly underpredict or overpredict for pairings with
low mutual contention such as GTC-LAMMPS and
LAMMPS-POP. For pairings of real apps with bench-
marks, the prediction accuracy is generally quite good
except for when MILC is co-located with MiniFE and
FT.

For our proxy apps LULESH, MiniFE, MiniGhost
and NekProxy (NekBone), the results are more mixed.
We are able to predict their performance with a mean
absolute error of 3.8%. MiniFE is a particularly inter-
esting because in each case we overpredict the degra-
dation for its co-runner (mean of 7.5%). This overpre-
diction is an artifact of the filtering algorithm. When
we use our unfiltered predictor, we overpredict by at
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most 1.5% for MiniFE’s co-runners. MiniGhost, by
contrast causes us to underpredict contention for some
of its co-runners.

On the NPBs, our prediction error is slightly higher.
If we exclude FT, our mean absolute prediction error
is within 5.3%. FT however, poses challenges both for
its prediction and applications it is co-located with.
In both cases, we underpredict the actual degradation.
This underprediction is due to the duration § of the
shutter. If we reexamine Fig. 6(b), we observe that
8 = 200 ps yields the highest accuracy when FT is
co-located with a contentious co-runner. We also ob-
serve in Fig. 7(b) that out of the possible values for 8,
8 = 3200 ps prognosticates the lowest contention. On
the whole, our system is generous and tends towards
modestly underpredicting contention. Our mean abso-
lute error across all pairings is 4.0%.

8.4. Pricing fairness

In this section, we show POPPA’s pricing fairness
versus the state-of-practice and the oracle. Figure 12
shows the distribution of relative SUs charged for each
application using the different pricing schemes. On av-
erage, the state-of-practice would charge users 14%
more as result of co-locating their jobs. Jobs that de-
grade more, pay more. POPPA on the other hand dis-
counts users by an average of 7.4%, which is close to
the 11.5% discount that the oracle would offer.

When we examine the minimum and maximum rel-
ative SUs charged, we also see favorable results for
POPPA. The maximum discount given by POPPA is
40.8%, which is close to the oracle’s 38.3%. The max
normalized price paid by a user using POPPA’s coun-

sel is 103.8% of the spread baseline versus the ora-
cle’s 99.8%. In the minority of cases where POPPA
charges more than the spread baseline (23/144), it is
usually smaller than run-to-run variation, with a mean
surcharge of 1.3%. In addition, the mean price paid for
each application never exceeds 99.2% of the baseline,
and thus over time, all users will receive a discount.
Contrast this with the state-of-practice, where a user
running MILC in the worst case can pay up to 62.1%
more and on average would expect to pay 24.9% more
as a result of cross-application interference.

If we consider the impact of POPPA’s discounts, we
find they are entirely tenable. Recall that the job strip-
ing study [11] found that co-locating MPI benchmarks
and full-scale applications at scale increased mean sys-
tem throughput by 12 to 23%. Thus discounting users
by a mean 7.4% does not inflate the purchasing power
of SUs, and so SU allocation need not be changed.

9. Related work

There are a number of works that investigate pricing
or identify pricing as a key issue for large scale grid
and cloud infrastructures [3,47,54,64]. Our work dif-
fers from these works in that we address the pricing
issue in supercomputers with co-locations. To the best
of our knowledge, our work is the first to explore this
problem space.

Although this work addresses challenges related to
fair pricing, it shares similarities with research that ad-
dresses identifying and mitigating contention in mul-
ticore systems. Early work on simultaneous multi-
threading processors investigated co-scheduling of het-
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erogeneous threads [13,55,56] as a way to increase
throughput by reducing contention.

Cross core contention has also been extensively
studied [14,40,41,66]. A mechanism similar to the
pricing shutter is explored in [41] but differs in that it
is in the commercial data center space and in that it fo-
cuses on L3 miss rates with and without the presence
of contention.

Another solution to mitigating contention has been
cache partitioning both in software and in hardware
[15,44,53,59]. Core fusion is an architectural design
that helps reduce the cross core contention problem
by dynamically combining simpler cores into larger
cores [29,60]. Others have examined using scheduling
to mitigate contention [8,9,21,22,65] and [50,61] in-
vestigate scheduling considerations in mapreduce en-
vironments.

There are also studies that evaluate the effective-
ness of analytical and statistical models to solve prob-
lems related to contention [16,25,36,63]. The compu-
tational complexity, heuristics and approximation al-
gorithms for optimal multiprocessor scheduling are ex-
plored in [10,23,30,32].

10. Conclusion

We have provided a mechanism to enable fair pric-
ing on HPC systems, one of the fundamental road-
blocks to enable node sharing on HPC systems. By
employing POPPA, we can accurately measure perfor-
mance degradation across a range of MPI applications.
Using this data, we price users in a fashion that ap-
proaches the optimal fairness provided by the oracle,
and our mean absolute prediction error is 4% across all
combinations of 12 application codes.

POPPA is not a definitive solution to the pricing
problem but a key part of a more holistic solution.
Going forward, the development of additional, light-
weight techniques for application introspection will
become essential. By harnessing this dynamic infor-
mation, further optimization opportunities will arise.
Through combining these solutions, the road to exas-
cale supercomputers looks bright.
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