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Abstract. Automatic tuning (auto-tuning) of software has emerged in recent years as a promising method that tries to automat-
ically adapt the behaviour of a program to attain different performance objectives on a given computing system. This method
is gaining momentum due to the increasing complexity of modern multicore-based hardware architectures. Many solutions to
auto-tuning have been explored ranging from simple random search to more sophisticate methods like machine learning or evo-
lutionary search. To this day, it is still unclear whether these approaches are general enough to encompass all the complexities
of the problem (e.g. search space, parameters influencing the search space, input data sensitivity, etc.), or which approach is
best suited for a given problem. Furthermore, the growing interest in auto-tuning a program for several objectives is increas-
ing this confusion even further. The goal of this paper is to formally describe the problem addressed by auto-tuning programs
and review existing solutions highlighting the advantages and drawbacks of different techniques for single-objective as well as

multi-objective auto-tuning approaches.
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1. Introduction

Over the last decade we have observed major
changes in computing systems [11]. The penetration
of multi- and many-core processors in all segments
of the computing market has implied a programming
paradigm shift from serial to parallel computing. The
dominance of desktops, laptops and server PCs has
faded and has been replaced by new computing sys-
tems of smart embedded systems, mobile devices and
Cloud infrastructures. The rise of heterogeneous par-
allel computers where parts of a computing device is
shut off to stay within a power limit, has been among
others caused by the profound effect of energy con-
sumption on computing systems. Cyber physical sys-
tems are becoming more and more popular, where data
can be gathered, for instance, from users or embed-
ded systems, processed on Cloud computers, and re-
sults are delivered to users through their mobile de-
vices. As a consequence of this wide spectrum of dif-
ferent computing systems, optimizing an application
for performance has become a challenging task. Appli-
cations optimized for one computing system may not
be optimal for another, thus optimization of programs
commonly has to be repeated for every computing sys-
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tem. In the last years, a new optimization technique
known as software auto-tuning or simply auto-tuning
has emerged to deal with this challenge. The idea of
auto-tuning is to automatically generate or modify pro-
grams to optimize for one or several non-functional be-
havior(s) on a given target architecture. Auto-tuning
has been implemented as part of programming envi-
ronments, compilers, operating systems or libraries.
Auto-tuning is commonly applied to optimize pro-
grams for very specific objectives. For instance, pro-
grams on small-scale embedded systems are being op-
timized for program size and memory footprint. En-
ergy consumption or temperature is important to be
minimized for mobile systems. Execution times and
power limits are first order goals for applications on
high performance or supercomputing systems. Eco-
nomic costs are of paramount interest for programs that
are running on Cloud infrastructures. Time and safety
are crucial for critical and mixed critical systems, and
security for desktop computers connected to the Inter-
net. Few systems are sophisticated enough to simulta-
neously deal with two or more objectives. Providing
auto-tuning methods that can deal with multiple objec-
tives at the same time becomes more and more impor-
tant as different non-functional behavior such as execu-
tion time, economic costs, security, energy consump-
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tion and others may all be important with some kind
of priority for an increasing number of domains in sci-
ence, engineering and commerce.

Although the number of works in the field of auto-
tuning has considerably increased, there is a lack of
studies that systematically elaborate and compare auto-
tuning techniques for optimizing programs. The goal
of this paper is to define the software auto-tuning prob-
lem and to describe what optimization techniques can
be applied for solving a single- and multi-objective
optimization problem, what are their advantages and
drawbacks.

Outline. This paper is structured as follows. The next
section formally presents the problem of automatic
software tuning and different mechanisms to modify
the non-functional program behavior. Section 3 de-
scribes different approaches for single-objective auto-
tuning; Section 4 is devoted to the multi-objective op-
timization problem. In Section 5, we include an empir-
ical comparison of several single and multi-objective
auto-tuners. Finally, Section 6 indicates the main ad-
vantages and drawbacks of some of the most important
software auto-tuning methods, as well as some guide-
lines for future work.

2. Automatic tuning of programs

In [27], the term Software Automatic Tuning is de-
fined as a technology intended to automatically adapt
the execution of a program P to attain optimal non-
functional behavior (e.g. execution time) on a given
computing system.

The process of software adaptation can be real-
ized in two basic non-orthogonal ways. Firstly, we
can tune P without modifying its code by finding
the optimal configuration of the computing system
on which P will be executed or the runtime system
which is linked with P. Examples of system param-
eters that influence the execution time of a program
are the number of threads, the affinity or mapping of
threads onto physical cores, the frequency at which the
core is clocked (tunable via DVFS [18]), or the work
group/grid size in the case of a GPU application writ-
ten in OpenCL/Cuda. A program P that is executed on
a specific computing system can be parameterized with

a set of tunable system parameters P(zs,,...,Zs,),
where x5, ..., 25, are defined prior to the execution
of P.

Secondly, we can tune a program P by generat-
ing a semantically equivalent but syntactically differ-

ent version of P by using transformation systems such
as compiler or by applying them manually. This can
be achieved by code transformations such as loop un-
rolling, blocking, tiling, software pipelining, data lay-
out changes, to mention a few. Given a program P,
a code transformation 7' produces a new program P’
as output. We denote the operation of applying a code
transformation as P @ T' — P’. Notice that the result
of applying a code transformation is a new program to
which successive code transformations can be applied.
For example the application of two code transforma-
tions 77 and 7> would be denoted as (P ® T1) ® 1»;
obviously, the order in which these transformations are
applied matters, since the second transformation is not
applied to the original program P but to a modified ver-
sion (P’) of P. In most of the cases, code transforma-
tions expose some additional parameters which need
to be set. We refer to them as transformation parame-
ters. For example the loop unrolling code transforma-
tion exposes the unrolling factor (number of times the
loop body should be replicated). Another parameter is
the tile size for loop tiling. In these cases, a code trans-
formation 7" can be denoted as T'(zy,, . . . , Tp,), ), Where
Tpy»---»Tp, are the m program parameters exposed
by T'.

Given a program P and a computing system expos-
ing the system parameters xs, . . ., Ts,, , auto-tuning of
P can be viewed as the process of determining the
optimal values for these parameters, the optimal se-
quence of ¢ successive transformations to be applied
Ti,...,T; and the optimal values for these transforma-
tions parameters in order to attain the best value of a
specific non-functional behavior f. Every execution of
P with a specific value setting for system and program
parameters as well as specific sequence of transforma-
tions refers to an alternative (solution) of P. To the best
of our knowledge, no auto-tuning work simultaneously
addressed the search for

e a sequence of transformations,

o the program parameters for these transformations,
and

o the system parameters.

Instead existing work often tries to prune the search
space, for example by searching only the system pa-
rameters or search only for an optimized sequence of
transformations but ignoring program parameters, or
searching only for program parameters without consid-
ering alternative transformation sequences, etc.

Different non-functional behaviors, such as execu-
tion time, energy consumption, reliability, or economic
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costs, can be the target of the optimization process. If
our interest is to tune a program for several of these
non-functional behaviors simultaneously, represented
by a vector of optimization functions f = (fi,..., fr),
then software auto-tuning becomes a multi-objective
optimization problem, since many of these behaviors
may conflict with each other. Many auto-tuning works
do not consider auto-tuning as a multi-objective prob-
lem, and are limited to optimize a single objective at a
time. In addition, many works considering several op-
timization goals, usually transform these objectives to
a single objective function to be optimized.

Single- and multi-objective auto-tuning face an op-
timization problem, which can be defined in terms of
a search: finding the alternative(s) optimizing the de-
sired non-functional behavior(s). In every search it is
important to distinguish between two terms: the search
space, and the objective space. The search space de-
fines the set comprising all possible alternatives (i.e.,
the domain of the function to be optimized). The ob-
jective space consists of the function values for f of
the alternatives in the search space (i.e., the co-domain
of the function to be optimized). The objective space
is single-dimensional in the case of a single-objective
auto-tuning problem, and r-dimensional in the case of
the multi-objective auto-tuning problem where r is the
number of objectives. Figure 1 depicts the search and
objective spaces of an auto-tuning problem to find the
best tile sizes for a matrix-vector multiplication code,
where the goal is to minimize the execution time and
the energy consumption of the code.

Original Program without Tiling
for (i = 0; 1 < N; i++)
for (j = 0; J < N; j++)
cli) += alil[3] * bljl;

Search space
(set comprising all possible
alternatives for T1 and T2)

(24,584)

(301,138)

Possible values of T2

Two points in the search
space may also have the
same value in the

Possible values of T1

®

It should be noted that auto-tuning can be applied
to the code regions Ry,..., Ry composing a program
P or to the whole program P. In the first case, auto-
tuning tries to find the system parameters and program
transformations which optimize each of those code re-
gions independently. In the second case, the system pa-
rameters and program transformations are searched in
order to optimize the entire program. Notice that the
solutions to both problems may be different since sys-
tem parameters and transformations which optimize a
single code region can negatively impact other regions
and therefore the entire program.

Solving an auto-tuning problem is a challenging task
due to several reasons. Firstly, there is no obvious so-
lution to this problem due to complex and counter-
intuitive relations between transformations and param-
eter values; and second, exhaustive search techniques
are not feasible since it is not possible to evaluate all
the possible value combinations of the computing sys-
tem parameters, transformations and values of their ex-
posed parameters within a reasonable amount of time.
To overcome these problems, different techniques to
prune and navigate the search space in a smart way
have been proposed. Many of these techniques rely on
generating different alternatives by assigning values to
the system parameters or applying a sequence of trans-
formations (with specific program parameters) to the
input program P. These alternatives are then executed
on the target computing system. For each evaluated al-
ternative we measure the corresponding values for ev-

Transformed Program with Tiling

for (1 = 0; 1 < N; 1 += T1)
for (j = 0; jJ < N; j += T2)
for (x = i; x < min(i + Tl, N); x++)
for (v = j; y < min(j + T2, N); y++)
clx] += alx][yl * blyl;

Objective space
(function values of the points
within the search space)

(117.’5'65) Different objective

/ values for different
77777777777777777777 rm points in the
search space
(99,5.01)
gl gl e E —>l

Execution Time (milliseconds)

objective space

Fig. 1. Search and objective spaces for a matrix-vector multiplication code example for different tile sizes. The goals are to minimize the execution
time and energy consumption. (Colors are visible in the online version of the article; http://dx.doi.org/10.3233/SPR-140394.)
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ery function in f whose outcome is then used to decide
which additional alternatives are to be generated. This
procedure is known as iterative compilation [21] in the
literature.

Auto-tuning of programs can be further classified as
to when it is applied. Offline auto-tuning means that
a program is tuned during an offline phase before the
program is executed in “production mode” on the tar-
get computing system. In contrast, online auto-tuning
refers to tuning the program while it is being executed
in production mode. The latter approach is more chal-
lenging than the former mainly because of two reasons.
Firstly, auto-tuning implies additional overhead that in-
creases the overall execution time of a program. Sec-
ondly, selecting a poor performing alternative can de-
teriorate some values of f of a running program, which
cannot be acceptable for some applications. Offline
auto-tuning does not suffer by these problems. How-
ever, online approaches have an important advantage
over offline auto-tuning, as they can tune a program
for the current load of a computing systems which is
difficult to consider for an offline tuning approach. In
both cases, the suitability of a method for offline or on-
line auto-tuning may depend on the number of times
the code regions of a program (to be tuned) are ex-
ecuted. Only if these code regions are executed rea-
sonably often during a single program run, then on-
line auto-tuning can explore a large enough part of the
search space to effectively optimize the program.

In the following sections we analyse different tech-
niques for single- and multi-objective auto-tuning
highlighting their main differences, advantages and
disadvantages.

3. Techniques for software auto-tuning

In this section we describe different techniques
for performing software auto-tuning. Figure 2 de-
picts different techniques that have been applied in
this field. These techniques are presented in a hier-
archy structure. The first level of the hierarchy dis-
tinguishes between techniques which always compute
local or global optima (where applicable) and tech-
niques which do not fulfil that goal. Among the for-
mer group of techniques, we separate exact techniques
from approximation techniques. The first group as-
sures to determinate the global optimal configuration.
Techniques within this group are rarely applicable. On
the other hand, approximation techniques only guar-
antee to compute a local optimal configuration of the
program. This group is further divided in two classes:
heuristic and metaheuristics. Heuristics are usually
faster than metaheuristics but are problem dependent
and can only be applied under certain restrictions; in
other words, there are programs for which some heuris-
tic methods cannot be applied. Metaheuristics may
take longer than heuristics to compute a solution, but

Classification of existing auto-tuning methods

Guaranteed local/global optimum
(where applicable)

optimum not guaranteed

Exact Techniques
(global optimum guaranteed)

Approximation Techniques
(at least a local optimum guaranteed)

Mathematical

Exhaustive Search Heuristics

Machine Random
Learning Search
Metaheuristics + Notan * Results non

reproducible

non-linearity

and

non-
convexity

heuristic, only
applicable in
continuous spaces
and for linear
functions

Simplex

* Get easily trapped in

local optimum

Analysis * Applicable to almost any problem optimization
technique
. i © L t of
+ Canonly be Rarely Ziggzb'e“” huge| ||| . proplem dependent e et
appliedin techniques Trajectory based i
presence of * Examples: dynamic . Not q licable to all ) Y Population based some problems
aformula programming or problems * Fast convergence * Local minima are and reproduce
« Difficulties enumerative search « Simplex methods are towards a minimum less likely than for them for
with an example of (local or global) trajectory based problems with

method

* Well suited for

multi-objective
auto-tuning

* local/global

Local Simulated
Search Annealing

Evolutionary
Computation

similar features

optimum
depends on their
presence in
training data

Fig. 2. Hierarchical presentation of software auto-tuning techniques. (Colors are visible in the online version of the article; http://dx.doi.org/

10.3233/SPR-140394.)
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do no impose hard restrictions on the problems to be
solved.

In the following, for each of the approaches included
in the figure we discuss their working principle, their
main benefits and drawbacks. We do not claim to cover
all possible single-objective optimization techniques
but focus on some of the most prominent and effective
techniques which have been considered previously in
the auto-tuning field.

3.1. Mathematical analysis

Mathematical analysis is based on the idea of com-
puting the first and second order derivatives of a func-
tion whose analytical formulation is known. That in-
formation is used to determine whether a function has
an optimum value and whether this is a maximum or a
minimum. Mathematical analysis is rarely applied for
software auto-tuning. One of the main difficulties is
the absence of a mathematical function modelling the
behavior of the computing system in many cases. The
computing system appears in these cases to the user as
a black box where the input is a program and the out-
put is the execution time (or another optimization crite-
rion) of that program. In some cases, even if a formula-
tion for these black boxes exist, the complexity govern-
ing the behaviour of a computer system components,
like the memory hierarchy, would probably correspond
to a non-linear functions or non-convex search spaces,
making difficult the application of mathematical anal-
ysis in this context.

3.2. Exhaustive search

Exhaustive search consists in a systematic evalua-
tion of every possible alternative within a search space
and the selection of the best performing with respect
to an optimization criterion. This approach renders its
application impossible for many auto-tuning instances
due to the size of the search space, since it may take
even years to complete.

3.3. Local search or hill climbing methods

Local search techniques, such as the hill climbing
method (see [6]), represent another option to solve op-
timization problems for which exhaustive search is im-
practical. Local search methods start with an alterna-
tive which is iteratively modified until no further im-
provements are possible. These modifications consist
of small variations of the current alternative. An exam-

ple of local search applied in the context of auto-tuning
is described in [29], where transformations to a pro-
gram are applied by setting compiler flags. The method
described in that paper starts by applying all transfor-
mations to the input program (i.e., all the compilation
flags are set). The method then removes the transfor-
mation (i.e., unset a flag), if any, that has the highest
negative impact on the optimization criterion. Obvi-
ously, to determine the transformation with the highest
negative impact, compiler flags are unset one after the
other, the program is compiled and executed without
that flag, and the resulting alternative has to be eval-
uated on the target computing system and compared.
If the method does not find a transformation anymore
that negatively affects a solution, then the current set
of flags that are set is returned.

In theory, local search methods can be applied to de-
termine the parameters of a computer system and/or
the sequence of transformations to be applied to-
gether with their parameters. In practice, however, lo-
cal search methods suffer from two major drawbacks:
(1) the computed alternative highly depends on the
chosen initial solution; and, (2) a huge search space
may require evaluating a prohibitively large set of al-
ternatives. These drawbacks are particularly critical in
the context of auto-tuning of programs where interac-
tions between different transformations and parameter
values are expected to generate irregular and complex
search spaces.

3.4. Simulated annealing

Simulated annealing [20] is basically an extension
of local search techniques that reduces the probability
of getting trapped in local minima. This technique still
suffers from the aforementioned drawbacks (1) and (3)
of the local search. In spite of this, simulated anneal-
ing has been used for auto-tuning of programs. For ex-
ample, in [15], simulated annealing is applied to de-
termine the program parameter values of a sequence
of transformations 77, . . ., T3 which must be manually
proposed by the user.

3.5. Nelder-Mead or simplex-based techniques

Nelder-Mead or simplex-based methods [28] are
non-linear optimization strategies. They navigate a
search space evaluating different alternatives within it,
and assure convergence towards a local optimum (un-
less strong conditions are met) after evaluating a unde-
termined number of alternatives. A main disadvantage
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of these methods is that they can only be applied to
optimize continuous functions which only depend on
real variables, therefore, being only applicable when
the search space is a subset of R™*, where m is a num-
ber of real parameters whose value should be deter-
mined by the simplex. This is a hard restriction in the
field of auto-tuning, meaning that simplex methods, for
example, cannot be used to determine the sequence of
transformations 77, . .., T} that must be applied to the
input program P. Instead, the sequence of transforma-
tions needs to be selected beforehand by an expert and
the method can only be used to tune the parameters ex-
posed by that set of prefixed transformations. Simplex
should not be directly applied to optimize parameters
whose values belong to a discrete or non-sorted set. For
example, simplex cannot be applied to determine the
mapping of threads onto CPU cores, since the space
of possible solutions consists of permutations of thread
identifiers (which is not a continuous space). In spite of
these deficiencies, simplex-based methods have been
considered by numerous works [15,33] to determine
tile sizes values and loop unrolling factors.

3.6. Evolutionary computation

Evolutionary computation [3] encompasses differ-
ent search techniques which have their inspiration in
the evolution of species in the nature. Examples of
evolutionary computation techniques are Genetic Al-
gorithms (GA), Genetic Programming (GP), Evolu-
tionary Strategy (ES), or some other methods which
mimic the behaviour of some species in nature, such
as Ant Colony Optimization (ACO — [24]). All these
techniques share common behaviour. They all work
with a set of different alternatives, which in most cases
are randomly generated i.e., random values of the pa-
rameters governing the computing system, random se-
quences of transformations and random values of their
associated parameters. This set is used to iteratively
generate new alternatives by reusing the transforma-
tions and parameter values of the best configurations
found so far. In summary, an evolutionary computation
method navigates the search space following a stochas-
tic path which explores with a higher probability the
areas in the search space where the best sequences of
transformations and parameter values are located. Evo-
lutionary methods have been applied for auto-tuning
of programs in several works. In [16], an evolution-
ary method auto-tunes a program by determining the
compilation flag setting which yields the best execu-
tion time. In [22], a genetic algorithm is used to find

the optimal tile sizes and unroll factors of a program to
which tiling and unrolling transformations are manu-
ally applied. Also a genetic algorithm is applied in [2]
to compute the optimal algorithm to auto-tune an ap-
plication for optimal execution time and accuracy.

The popularity of Evolutionary Computation meth-
ods is based on their ability to potentially handle an
optimization problem and their robustness to deal with
complex search spaces such as those associated with
auto-tuning of programs.

3.7. Random search

Random search implies to evaluate a set of ran-
dom alternatives and to derive the alternative with the
best outcome regarding the optimization criterion. The
main disadvantage of this approach is the lack of any
guarantee to find any optimal solution (global or local).
Random search techniques may however be suitable in
those cases where the difference in the value of a spe-
cific criterion of the best and worst alternatives is rather
small, or when no other technique is available. The re-
sults produced by a random search are usually not re-
producible in different applications of the method.

3.8. Machine learning methods

Machine learning methods are based on the concept
of learning some behaviour from data. Examples of
machine learning methods are Neural Networks [30],
Support Vector Machines (SVN) [8], Gaussian Pro-
cesses [5], etc. The learnt behaviour can be of different
nature, for example, classification, model a function,
etc. In the context of auto-tuning, the desired behaviour
to be learnt can be the optimal value of the hardware
parameters of the computer system, the sequence of
transformations to be applied and the optimal param-
eter values exposed by these transformations. A ma-
chine learning method first evaluates several alterna-
tives within the search space for k different input pro-
grams P,..., P. The set of evaluated alternatives is
referred to as training data. The size of this set cannot
be predicted beforehand and it depends on the size of
the whole search space: the larger the search space, the
higher the size. The number of required input applica-
tions is also not easy to be determined. Ideally, a set
of applications covering all possible program features
is desired. Some features of the input programs with
the training data results are correlated once the train-
ing data has been evaluated. The process of generating
and evaluating the training data and learning some be-
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haviour from this data is referred to as training. Once
the training is finished, and given a new program Pey
to be optimized, then Py is compared with the pro-
grams in the training data to predict the optimal val-
ues of the system parameters, the sequence of transfor-
mations and their optimal program parameter values.
The main advantage of machine learning methods is
that the training has to be done only once and tuning
a new application is instantaneous which only requires
querying the selected machine learning method with
the new program features. In general machine learn-
ing methods are considered to be good candidates for
online tuning. However, in order to efficiently perform
online auto-tuning, the training data must include in-
formation about the load of a computer system to gen-
erate optimal configurations for each different system
load.

Machine learning methods mainly reproduce be-
haviour that has been observed in the training data.
Thus, the generation of the training data is crucial
when applying machine learning to auto-tune pro-
grams. As an example, a machine learning method will
not be able to generate the optimal parameters of a
transformation 7" if the training data does not cover
these optimal values. More specifically, if 7' consists
of tiling a loop, the training data must comprise the al-
ternative with the optimal or least well-performing tile
sizes. As predicting the optimal tile sizes for a tiled
loop is not an easy task and must require the applica-
tion of search techniques (as the ones introduced in this
section), machine learning methods are only applied to
reduce the search space in the literature. For example,
in [1] machine learning is applied to determine the op-
timal sequence of transformations for a set of bench-
mark problems. For these transformations no parame-
ters are considered or their value is fixed prior to the
application of machine learning. Notice that this ap-
proach is only valid when the range of possible values
of the parameters is small, and different values of the
parameters do not have a significant impact on the code
behaviour. In [14], machine learning is used to learn
the optimal setting of compilation flags for a program
when using GCC. Furthermore, neural networks [30]
can be used to learn the behaviour of a given transfor-
mation 7T'(x) for different values of the parameter x.
Later on, the model is used by another optimization
technique in order to search for optimal values of z.
Other works use machine learning to determine the
hardware configuration for which an application per-
forms best. For example, in [7,25] machine learning
is used to determine an optimized kernel distribution
strategy for OpenCL over a set of CPUs and GPUs.

4. Multi-objective software auto-tuning

This section is devoted to describe the main dif-
ferences between single-objective and multi-objective
software auto-tuning and to review existing approaches
for multi-objective auto-tuning.

As commented before, software auto-tuning is ap-
plied many times to simultaneously optimize several
non-functional behaviours of a program which may be
in conflict. In this case, improving a program P re-
garding to a given non-functional behaviour a implies
to worsen it regarding to another non-functional be-
haviour b. This has been already observed by some
authors in the field of software auto-tuning. For in-
stance, [31] demonstrates an auto-tuning case study to
optimize both execution time and power consumption
simultaneously. Code versions that are optimal for one
objective are not optimal for others.

In such a situation, software auto-tuning is a multi-
objective optimization problem to optimize a vector
£ = {f1,.... f) of r criteria. The main characteristic
of this type of problems is that there does not exist a
single alternative which is optimal for all the criteria.

Solving a multi-objective optimization problem con-
sists in computing a set of alternatives each of them
representing a trade-off among the optimization crite-
ria [9]. The alternatives in this set fulfill two condi-
tions. Firstly, they cannot be further improved without
worsening at least one of the optimization functions.
Secondly, none of them is better than the others for all
the objective functions. In the field of multi-objective
optimization, solutions within this set are referred to as
non-dominated solutions, and the set itself is defined
as Pareto set. The same set, when only the value of
the optimization functions are considered, is referred
to as Pareto front. This set is highly valuable to decide
about which solution to select. The Pareto front shows
all the relations among the optimization functions and
it reveals trade-offs which are very difficult to detect
without it.

Although the field of multi-objective optimization
has been very active in the last decade and several
methods have been proposed for computing the Pareto
set/front of a problem, much related auto-tuning work
still transforms the multi-objective auto-tuning prob-
lem into a single-objective one (which are solved by
any of the solution methods described in the previous
section) which can be classified into two approaches.
The first approach optimizes only one of the objectives
as much as possible and consider the remaining objec-
tives as constraints that cannot be violated. The prob-



292 J. Durillo and T. Fahringer / From single- to multi-objective auto-tuning of programs: Advantages and implications

lem with this approach is how to set realistic values
for the constraints. On the one hand constraint values
must be realistically achievable. On the other hand, it
may be possible by marginally relaxing one of the con-
straints may enable an optimization method to dramat-
ically improve the selected objective to be optimized.
The second approach, which is most widely used
for auto-tuning, reduces the problem to a single objec-
tive by means of aggregating objective functions. This
aggregation reflects the user preferences defined over
the optimization criteria. For example, given a problem
that minimizes the r objective functions (f1,..., fr)
and a vector of preferences (A, ..., Ar) over the ob-
jective functions, then we can transform this problem
to optimize the following function with 7, \; = I:

S Ak ()

i=1

In the following, we evaluate the advantages of com-
puting the Pareto front versus computing a single solu-
tion with an aggregation method.

4.1. Aggregation of the objective functions

Aggregation approaches provide a single solution
without the need to select a specific solution from the
Pareto front. However, this approach should be care-
fully used since there is no guarantee that the computed
solution fulfils user preferences. Figure 3 and Table 1
demonstrate an example and problems associated with
aggregation. For an application for which execution
time (f1) and energy consumption (f>) must be min-
imized, we have plotted the same Pareto front twice.
The leftmost plot shows the real values of the objec-
tive functions for each alternative within the Pareto set;
the rightmost plot visualizes the same Pareto front with
normalized values (between 0 and 1) for the objective

551 i
Q@
5 | .|
4.5+ =
|
3.76 5.5 8.16

N 107

functions. These two Pareto fronts apparently have the
same geometric shape and in fact they are the same.

The numerical values of the alternatives composing
the Pareto fronts are tabulated in Table 1. This table
is divided in two parts: the left side part contains the
information of the Pareto front without normalization;
and, the right side part contains the information of the
Pareto front after normalization. In both cases, the ta-
ble contains for each solution in the Pareto front the
weight vectors for which that solution is the optimal
one in an aggregation approach like the one depicted
by Eq. (1). This way, the first row on the left part in-
dicates that the solution f; = 3.7 x 107, f, = 6.12
is the optimal one (smallest value) of this equation
for any A; € [0.00001,1] and A, € [0.0,0.99999].
This table exposes that for an aggregation approach
with preference vectors for which a solution within the
Pareto front is optimal depends on the range of val-
ues of the optimization functions. For example, for the
Pareto front without normalization, the solution (tabu-
lated in the first row) minimizing f; optimizes Eq. (1)
for practically all weight vectors except for A\; = 0,
and Ay = 1. This means that an aggregation approach
will almost always provide the same solution even
though the user may have selected a different solution
if the entire Pareto front would have been available.
This problem is due to the different value ranges for
the objective functions f; and f,. On the other hand,
for the Pareto front with normalization, there exists a
larger variety of optimal solutions depending on the
outcome of the weight vectors. It should be noted that
the example shown in Fig. 3 and Table 1 corresponds to
a real application code for which execution time (mea-
sured in milliseconds) and energy consumption (mea-
sured in Watt/hour) have been optimized.

In order to avoid such a misinterpretation of results,
the objectives should be normalized prior to the appli-
cation of an aggregation approach. Unfortunately, the

1 —e— Pareto front (normalized) n

0.8 |- .
0.6 - *

12

0.4+ *
02+ *

0 | | | | | | | |
0 01 02 03 04 05 06 07 08 09 1

h

Fig. 3. The same Pareto front plotted twice. The left diagram illustrates the actual objective values. The right diagram shows the objectives values
after being normalized to the [0, 1] interval. (Colors are visible in the online version of the article; http://dx.doi.org/10.3233/SPR-140394.)
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Table 1
Preferences (A1, \p) and resulting objective values (fy,f>) that minimize Eq. (1)
Pareto front without normalization Pareto front with normalization
Weight vector Solution Weight vector Solution

Al A2 fi f2 Al A2 J1 2

[0.00001, 1.0] [0.0,0.99999] 3.7 x 107 6.12 [0.74,1.0] [0,0.26] 0 1
[0.0,0.00001] [0.99999, 1.0] 3.9 x 107 6.04 [0.73,0.74] [0.26,0.27] 0.04 0.95
4.1 x 107 5.95 0.07 0.90
4.4 x 107 5.29 [0.63,0.74] [0.26,0.37] 0.15 0.55
4.6 x 107 5.21 [0.62,0.63] [0.37,0.38] 0.19 0.51
4.8 x 107 5.15 0.24 0.48
4.9 x 107 4.97 [0.35,0.62] [0.38,0.65] 0.25 0.38
5.5 x 107 4.94 [0.34,0.35] [0.65,0.66] 0.39 0.37
5.8 x 107 4.91 0.46 0.35
7.5 x 107 4.39 0.86 0.07
7.7 x 107 4.30 [0.24,0.34] [0.66,0.76] 0.90 0.02

8.1 x 107 4.25 [0.0,0.24] [0.74,1.0] 1 0

minimum and maximum values for every optimization
function are required ahead of the normalization pro-
cess. These values are usually not known before solv-
ing the optimization problem. Although different ag-
gregation methods have been applied in the literature,
all of these methods suffer by this drawback when ob-
jectives values are not normalized and the minimum
and maximum value for each objective is unknown.

Despite these drawbacks, aggregation methods have
been used in several works. In [26], dynamic pro-
gramming, is used to reduce the energy consumption
while maintaining or improving the performance of
message-passing and shared memory applications. The
search strategy relies on models for predicting execu-
tion time and energy consumption, thus avoiding the
evaluation of alternatives to derive their execution time
and energy consumption. [32] introduces how to op-
timize several combinations of power and execution
time based on preferences by means of a hierarchical
search procedure. In [34] real power measurements are
obtained from a dedicated power device to guide the
search for optimal solutions.

4.2. Computing the whole Pareto front of solutions

Computing the whole Pareto front have several ad-
vantages over the aforementioned method. Firstly, it
can be shown to the user who can visually explore it
and select the solution which best fits his/her interests.
Secondly, solutions within the Pareto front can be au-
tomatically selected afterwards, using an aggregation
approach (or any other decision making procedure as

showed in [12]), therefore releasing the user of having
to manually pick a solution out of the Pareto front. In
this latter case, the aggregation approach does not suf-
fer by the previously mentioned drawbacks: the Pareto
front can be normalized because it contains already the
optimal solutions for every optimization function.

Computing the Pareto front does not necessarily re-
quire additional computational effort compared to a
single-objective approach. Furthermore, in some cases,
computing the Pareto front may result in better results
for each single objective than optimizing these objec-
tives separately. An example of this was shown in [23],
where using a multi-objective approach avoid getting
trapped in local optima, and therefore, computing bet-
ter results.

Some of the techniques applied for single-objective
optimization do not have an equivalent multi-objective
counterpart. For example, despite some attempts to ap-
ply machine learning to optimize multiple criteria [14],
machine learning has never been used to solve a truly
multi-objective optimization problem by computing
the entire set of Pareto efficient solutions. The same ap-
plies to simplex-based techniques, local search meth-
ods, or simulated annealing.

Other popular optimization techniques use exhaus-
tive search, random search, or evolutionary algorithms.
Exhaustive and random search techniques can be ex-
tended for multi-objective optimization by simply in-
cluding an external archive which contains all the non-
dominated solutions found so far. In order to properly
capture those solutions, the insertion mechanism of so-
lutions in this archive should work as follows. Before
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inserting a solution s, it is compared with the content
of the archive. If s is dominated by a solution in the
archive, then s is discarded, otherwise, s should be in-
serted in the archive and all solutions dominated by s
should be removed. Exhaustive search, random search
and evolutionary algorithms also suffer from the same
drawbacks explained for the multi-objective case: pro-
hibitively high computational effort, and no guaran-
tee of finding solutions close to the optimal. Random
search has been explored for auto-tuning of programs
in [19]. Exhaustive search techniques remain also un-
practical for multi-objective auto-tuning.

Multi-objective evolutionary algorithms are popu-
lar methods for solving multi-objective optimization
problems. They guarantee an approximation of the
Pareto front with a reasonable computational effort.
Only little work is known in the literature that explored
these algorithms for auto-tuning of programs. For ex-
ample, the trade-off between execution time and re-
source usage has been investigated in [19]. Reference
[17] explored execution time and efficiency or exe-
cution time or efficiency and compilation time. The
trade-off between time and energy consumption/power
has been analyzed in [13] and [4]. However, multi-
objective evolutionary algorithms suffer by the same
drawbacks as mentioned for single-objective auto-
tuning approaches. In particular, they are difficult to
employ for online auto-tuning due to the number of
different alternatives that should be tested.

5. Empirical comparison

This section presents our results for an empirical
evaluation of single versus multi-objective auto-tuning
considering some of the techniques described in pre-
vious sections. For this evaluation we use a parallel
implementation of an n-body simulation which con-
tains two-nested loops to which loop tiling has been
applied. For each loop the tile size is exposed as
a tunable parameter. The different auto-tuning tech-
niques will explore these tile size parameters, the num-
ber of threads for running this code, and the proces-
sor clock frequency (by using DVFS - dynamic volt-
age and frequency setting). Our target machine is a
quad-socket shared-memory system equipped with In-
tel Xeon E5-4650 processors, each offering 8 cores
clocked at 1.2-2.6 GHz. Each core features private L1
and L2 caches of 64 and 256 KB each in addition to
the CPU-wide shared L3 cache of 20 MB. The system
provides 128 GB of main memory, uses a Linux oper-

ating system with a 3.5.0 kernel and our backend com-
piler is GCC 4.6.3. Hyper-Threading was not used for
any of our experiments.

The evaluated techniques for single-objective auto-
tuning comprise local search (LS), simulated anneal-
ing (SA), and a genetic algorithm (GA) as a represen-
tative for evolutionary computation. The goal of these
approaches is to tune the code for minimizing execu-
tion time. We have not considered any other technique
described in Section 2. We had no mathematical mod-
els for describing the behaviour of different configura-
tions of the code. Exhaustive search cannot be applied
due to the size of the search space. Simplex cannot be
applied since the search space is discrete. Finally, for
using machine learning, we would have needed more
codes with similar features compared to the ones ex-
posed by the n_body applications in order to generate
enough data for the training phase.

In order to examine multi-objective auto-tuners
we have considered a genetic algorithm known as
NSGA-II [10], and RS-GDE3 a differential evolu-
tion method endowed with a mechanism to effectively
prune the search space. The former is a very popular
algorithm in the field of multi-objective optimization,
and the latter has been applied in [19] to optimize exe-
cution time and resource-usage of five different paral-
lel programs. In our experiment, the goal of these two
methods is to optimize the code minimizing its execu-
tion time and the energy consumption entailed by its
execution.

For the sake of a fair comparison, all the techniques
evaluate the same number of code alternatives, which
we set to a total of 500, therefore implying a similar
computational effort. In order to achieve statistical sig-
nificance for our observations, we have repeated every
experiment 30 times.

Figure 4 shows the fastest configuration evaluated
by each technique during the different iterations. The
LS and SA have taken more time than the evolution-
ary techniques to converge towards a solution. Among
all the evaluated techniques, RS-GDE3 has been the
technique computing the fastest solution at much ear-
lier iterations than all other techniques. The numerical
results averaged after the 30 runs are summarized in
Table 2.

Figure 5 displays the Pareto fronts derived with RS-
GDE3 and NSGA-II versus the solutions computed by
the single-objective auto-tuners. We can observe that
the Pareto front computed by RS-GDE3 contains the
best solution for each objective. When comparing RS-
GDE3 with NSGA-II, we can find out that RS-GDE3
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Fig. 4. Improvement in execution time behavior of the configuration computed by different iterations of various auto-tuning techniques for an
n-body program. (Colors are visible in the online version of the article; http://dx.doi.org/10.3233/SPR-140394.)

by the different auto-tuning algorithms

Table 2

Runtime of the fastest configuration of the n_body program found

Method Time (milliseconds)
Local search 7.56e 4 08
Simulated annealing 7.52e 4+ 08
Genetic algorithm 7.45¢ 4- 08
NSGA-II 7.45e + 08
RS-GDE3 7.15e + 08

in many cases obtains solutions with shorter execution
time and lower energy consumption than the ones com-
puted by NSGA-IL

Regarding the experiments conducted with single-
objective auto-tuners, we found out that the local
search and simulated annealing approach derived so-
lutions with larger execution time than the ones com-
puted by the multi-objective approaches. The genetic
algorithm found a solution that is faster than the one
determined by NSGA-II; however, the advantage of
NSGA-II is that its solution consumes less energy. The
comparison included in this section demonstrates the
potential of multi-objective auto-tuners compared to
single-objective approaches: With the same computa-
tional effort, the multi-objective auto-tuners not only
provide a set of trade-off solutions between execution
time and energy consumption, but they also derive bet-

ter configurations with lower execution time compared
to single-objective methods.

6. Conclusions and future work

In this paper we described and compared differ-
ent approaches to auto-tuning of programs for single-
and multi-objective optimization. Although many ap-
proaches exist, to the best of our knowledge none of
them deal with the general auto-tuning problem stated
in Section 2. Instead, different methods are applied to
solve different relaxed versions of the problem. For ex-
ample, search approaches like hill climbing, simplex
or evolutionary computation methods have been ex-
tensively explored to determine the optimal parameter
values of a computing system, or the parameter val-
ues of a set of fixed transformations; some of these ap-
proaches guarantee to find close to optimal solutions
but they can be computationally quite expensive. Ma-
chine learning methods have been successfully applied
to determine optimized sequences of program transfor-
mations or compiler flag settings. The computational
effort is included in the generation and evaluation of
the training data. However, once this phase is com-
pleted, the application of the method is fast. The results
derived by machine learning based auto-tuning depend
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Fig. 5. Single vs multi-objective auto-tuning results for the m-body program. (Colors are visible in the online version of the article;

http://dx.doi.org/10.3233/SPR-140394.)

on the similarity of a program to be optimized com-
pared to those codes used during the training phase.
Furthermore, if we want to obtain results close to the
optimal solutions, then these solutions should be in-
cluded in the training data. In order to achieve this,
search methods must be applied ahead of the machine
learning phase.

For multi-objective optimization many works in the
literature reduce the problem to a single-objective
problem by using preferences. We argue in this pa-
per that these preferences should be carefully applied,
in particular if the objective values are not normal-
ized. Multi-objective approaches that determine the en-
tire Pareto front have not extensively researched in the
past. We empirically demonstrated in this paper the po-
tential of multi-objective compared to single-objective
auto-tuning both in terms of optimization results and
effort to derive these results.

Important future research directions in the area of
auto-tuning of programs for multiple objectives com-
prise, firstly, the design of methods combining the
advantages of search based approaches and machine
learning suitable for solving the general auto-tuning
problem. Secondly, more aggressive techniques to re-
duce the huge auto-tuning search space must be devel-
oped. Thirdly, more sophisticated techniques for deriv-
ing the entire Pareto front for multi-objective problems

and the design of advanced methods for selecting a so-
lution out of the Pareto front, are required.
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