Scientific Programming 22 (2014) 109-124
DOI 10.3233/SPR-140385
I0S Press

109

2HOT: An improved parallel hashed oct-tree
N-body algorithm for cosmological

simulation !

Michael S. Warren

Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA

E-mail: msw@lanl.gov

Abstract. We report on improvements made over the past two decades to our adaptive treecode N-body method (HOT). A math-
ematical and computational approach to the cosmological N-body problem is described, with performance and scalability mea-
sured up to 256k (218) processors. We present error analysis and scientific application results from a series of more than ten 69
billion (4096°) particle cosmological simulations, accounting for 4 x 10%° floating point operations. These results include the first
simulations using the new constraints on the standard model of cosmology from the Planck satellite. Our simulations set a new
standard for accuracy and scientific throughput, while meeting or exceeding the computational efficiency of the latest generation

of hybrid TreePM N-body methods.

Keywords: Computational cosmology, N-body, fast multipole method

1. Introduction

We first reported on our parallel N-body algorithm
(HOT) 20 years ago [67] (hereafter WS93). Over the
same timescale, cosmology has been transformed from
a qualitative to a quantitative science. Constrained by a
diverse suite of observations [39,44,47,49,53], the pa-
rameters describing the large-scale Universe are now
known to near 1% precision. In this paper, we describe
an improved version of our code (2HOT), and present
a suite of simulations which probe the finest details of
our current understanding of cosmology.

Computer simulations enable discovery. In the
words of the Astronomy and Astrophysics Decadal
Survey, “Through computer modeling, we understand
the deep implications of our very detailed observa-
tional data and formulate new theories to stimulate fur-
ther observations” [33]. The only way to accurately
model the evolution of dark matter in the Universe is
through the use of advanced algorithms on massively
parallel computers (see [26] for a recent review). The
origin of cosmic structure and the global evolution of
the Universe can be probed by selecting a set of cos-

I This paper received a nomination for the Best Paper Award at the
SC2013 conference and is published here with permission of ACM.

mological parameters, modeling the growth of struc-
ture, and then comparing the model to the observations
(Fig. 1).

Computer simulations are playing an increasingly
important role in the modern scientific method, yet
the exponential pace of growth in the size of calcu-
lations does not necessarily translate into better tests
of our scientific models or increased understanding of
our Universe. Anywhere the relatively slow growth in
the capacity of human attention intersects with the ex-
ponential explosion of information, new tensions are
created. The timespan between the completion of a
large simulation and the publication of scientific re-
sults based upon it is now often a year or more, and
is growing longer instead of shorter. In the application
described here, the sheer complexity of managing the
volume of information in many layers of data and code
has required additional software tools to be developed.
We have written substantially more lines of software
for data analysis, generating initial conditions, testing
and task management than are present in the 2HOT
code base. The scale of simulations requires most of
these ancillary tools to be parallel as well.

High-performance computing (HPC) allows us to
probe more questions with increased resolution and re-
duced statistical uncertainty, leading to new scientific

1058-9244/14/$27.50 © 2014 - IOS Press and the authors. All rights reserved

110 M.S. Warren / 2HOT: An improved parallel hashed oct-tree N-body algorithm for cosmological simulation

Fig. 1. Recent results from the Planck satellite [39] compared with light-cone output from 2HOT. We present our numerical simulation results
in the same HEALPix2 [18] Mollewide projection of the celestial sphere used by Planck. The upper figure shows the density of dark matter in
a 69 billion particle simulation (upper left) compared with the fluctuations in the cosmic microwave background. The obvious difference in the
upper panel is due to the imperfect removal of sources within our galaxy in the Planck data. The statistical measurements of the smaller details
match precisely between the observation and simulation. The lower figure shows the simulation compared with the gravitational lensing signal
measured by Planck. (Colors are visible in the online version of the article; http://dx.doi.org/10.3233/SPR-140385.)

discoveries. However, reducing the statistical errors
more often than not uncovers systematic errors previ-
ously masked by statistical variance. Addressing these
details takes us out of realm of HPC into applied math-
ematics, software engineering and data analysis. How-
ever, without progress on all fronts, the over-arching
scientific questions can not be answered. A corollary of
this point is that making a code faster is often a poor in-
vestment when the aim is to answer a particular scien-
tific question. More important than speed is the code’s
applicability to the problem, correctness, and even less
tangible properties such as robustness and maintain-
ability. For those reasons, we focus here on the wide
variety of changes made to 2HOT over the past two
decades which have enabled us to produce the state-of-
the-art scientific results presented in Section 6.

One of our first scientific N-body simulations of
dark matter [70] used 1.1 million particles and was per-
formed on the 64-node Caltech/JPL Mark III hyper-

2http://healpix.jpl.nensa.gov.

cube in 1990. The simulation was completed in 60 h,
sustaining 160 Mflop/s with a parallel efficiency of
85%. In 2012 we used 2HOT on 262 thousand proces-
sors with over one trillion (10'?) particles, sustaining
in excess of 1.6 Petaflops with a parallel efficiency of
90% [63]. Since our first parallel treecode simulations,
the message-passing programming model, time to so-
lution and parallel efficiency are nearly the same, but
the problem size has increased by a factor of a million,
and performance a factor of 10 million.

Since WS93, HOT was been extended and op-
timized to be applicable to more general problems
such as incompressible fluid flow with the vortex
particle method [41] and astrophysical gas dynamics
with smoothed particle hydrodynamics [12,15,16]. The
code also won the Gordon Bell performance prize and
price/performance prize in 1997 [60] and 1998 [65].
It was an early driver of Linux-based cluster architec-
tures [60,62,64] and helped call attention to power is-
sues [13,69]. Perhaps surprisingly (given that WS93
was presented at the same conference as the draft MPI

M.S. Warren / 2HOT: An improved parallel hashed oct-tree N-body algorithm for cosmological simulation 111

1.0 standard), the fundamental HPC abstractions in the
code have changed little over two decades, while more
significant changes have been required in its mathe-
matical and cosmological underpinnings.

2. Mathematical approach
2.1. Equations of motion

The mathematical equations governing the evolution
of structure in an expanding Universe are generally
solved using comoving coordinates, £ = 7/a(t). 7 is
the “proper” coordinate, while the scale factor a(t) is
defined via the Friedmann equation

(H/H0)2 = QR/CL4 +QM/CL3 —|—Qk/a2 +QDE
(1)

in terms of the Hubble parameter H = a/a and the
densities of the various components of the Universe;
radiation in the form of photons and ultra-relativistic
particles (€2R), mass in the form of cold dark matter
and baryons (), spatial curvature (€2;.) and dark en-
ergy or a cosmological constant (Qpg). The particle
dynamics are defined in terms of the motion relative to
the background model, the scale factor and the accel-
eration due to gravity [37],
dv; a 1

& t2i= 2)

Cosmological evolution codes most often account for
cold dark matter, baryons and dark energy. The Boltz-
mann solvers which calculate the power spectrum of
density perturbations use all of the components, in-
cluding photons and massless and massive neutrinos.
For precise computations, it is now necessary to in-
clude these other species. Using the parameters of the
Planck 2013 cosmological model, the age of the Uni-
verse is 3.7 million years older if photons and radiation
from massless neutrinos are not treated correctly. The
linear growth factor from redshift 99 (an expansion of
100) changes by almost 5% (from 82.8 to 79.0) un-
der the same circumstances. 2HOT integrates directly
with the computation of the background quantities and
growth function provided by CLASS [27], either in
tabular form or by linking directly with the CLASS
library, and thereby supports any cosmology which
can be defined in CLASS. 2HOT additionally main-
tains the ability to calculate the scale factor and lin-

ear growth factor analytically (when radiation or non-
trivial dark energy is not included) in order to be able to
directly compare with codes which do not yet support
them.

2.2. Multipole methods

Using N particles to represent the Universe, tree-
codes and fast multipole methods reduce the N2 scal-
ing of the right-hand side of equation (2) to O(N) or
O(N log N) — a significant savings for current cosmo-
logical simulations which use N in the range of 10'°
to 1012,

2.2.1. Background subtraction

Large cosmological simulations present a unique set
of challenges for multipole methods. The Universe is
nearly uniform at large scales. This means the resultant
acceleration on a particle from distant regions is a sum
of large terms which mostly cancel. We can precisely
quantify this effect by looking at the variance of den-
sity in spheres of radius r, which is an integral of the
power spectrum convolved with a top-hat window,

/ oo(dk/k)&,";W(kr)? A3)
0

For a sphere of radius 100 Mpc/h, the variance is 0.068
of the mean value for the standard model. This value
scales with the growth of cosmic structure over time,
so at the beginning of a simulation it will be a factor
of 50-100 lower. At early times when we calculate the
acceleration from a 100 Mpc cell in one direction, 99%
of that value will cancel with a cell in the opposite di-
rection, leaving a small remainder (the “peculiar” ac-
celeration). This implies that the error tolerance needed
for these large cells is 100 times stricter than for the
short-range interactions. For larger volumes or earlier
starting times, even more accuracy is required. This
suggests that eliminating the background contribution
from the partial acceleration terms would be beneficial.

The mathematical equations describing the evolving
Universe subtract the uniform background, account-
ing for it in the evolution of the scale factor a(t).
Fourier-based codes do this automatically, since the
DC component has no dynamical effect. For treecodes,
the proper approach is less obvious. Essentially, we
wish to convert the always-positive mass distribution
into density perturbations dp/p. These density con-
trasts can be positive or negative, making the gravita-
tional problem analogous to an electrostatics problem,
with positive and negative charges.

112 M.S. Warren / 2HOT: An improved parallel hashed oct-tree N-body algorithm for cosmological simulation

Since we wish to retain the particle-based represen-
tation of the density, the background subtraction can
be obtained by adding the multipole expansion of a
cube of uniform negative density to each interaction.
Since the multipole expansion of a cube is fairly sim-
ple due to symmetries, this can be done with a few op-
erations if the multipole expansions are with respect to
the cell centers (rather than the center of mass). This
in turn adds a few operations to the interaction rou-
tines, since dipole moments are now present. At scales
near the inter-particle separation, this approach breaks
down, since any empty cells which would be ignored
in a direct summation must be accounted for, as well as
requiring high-order expansions for neighboring cells
with only a few particles, which would normally be
calculated with cheaper monopole interactions. Rather
than modify each interaction for the near field, we
define a larger cube which approximately surrounds
the local region of empty and single particle cells and
calculate the background acceleration within the sur-
rounding cell (Fig. 2). This acceleration term can be
done with a multipole and local expansion, or our cur-
rent approach of using the analytic expression for the
force inside a uniform cube [46,59].

d o4
R . L R ° el
. °
° L] L]
I . ° °
o o . o: ° . .
o °
o . C
° o o °
L] Ld
. ° o . .
.o ° : .a+- L
° .
. . o |o° e b
° q P ° o
o © 9 £y
° . P o o o
L] ° 3 .
.o 7¢ ° . ° ° °

Fig. 2. An illustration of background subtraction, which greatly im-
proves the performance of the treecode algorithm for nearly uni-
form mass distributions (such as large-volume cosmological simu-
lations, especially at early times). The bodies inside cell a interact
with the bodies and cells inside the gray shaded area as usual. Bod-
ies inside cell a interact with all other cells (b, for example) after
the background contribution of a uniform density cube is subtracted
from the multipole expansion. Empty cell ¢ (which would be ignored
in the usual algorithm) must have its background contribution sub-
tracted as well. The background contribution of the gray shaded area
to the calculated force and potential of the bodies in a is removed
analytically. (Colors are visible in the online version of the article;
http://dx.doi.org/10.3233/SPR-140385.)

A subtle point is that in the far-field we only want to
subtract the uniform background expansion up to the
same order as the multipole expansion of the matter to
minimize the error. If a cube of particles is expanded
to order p = 4, the p = 6 and higher multipoles from
the background are not included, so they should not
be subtracted. Using background subtraction increases
the cost of each interaction somewhat, but results in
a huge improvement in overall efficiency, since many
fewer interactions need to be computed. At early times
we have measured an improvement of a factor of five.
The multipole acceptance criterion (MAC) based on
an absolute error also becomes much better behaved,
leading to improved error behavior as well.

2.2.2. Multipole error bounds

A critical ingredient of any optimized multipole
method is the mathematical machinery to bound or es-
timate the error in the interactions. The methods we
previously developed [45,68] allow us to dynamically
decide between using different orders of expansion or
refinement, automatically choosing the most efficient
method to achieve a given accuracy.

The expressions we derived in [68] support meth-
ods which use both multipole and local expansions
(cell—cell interactions) and those which use only mul-
tipole expansions (cell-body interactions with A = 0).
The scaling of these methods with N depends on pre-
cisely how the error is constrained while increasing
N, but generally methods which support cell—cell in-
teractions scale as O(/NV) and those that do not scale
as O(N log N). Our experience has been that using
O(N)-type algorithms for cosmological simulation ex-
poses some undesirable behaviors. In particular, the
behavior of the errors near the outer regions of lo-
cal expansions are highly correlated. To suppress the
accumulation of these errors, the accuracy of the lo-
cal expansion must be increased, or their spatial scale
reduced to the point where the benefit of the O(V)
method is questionable, at least at the modest accura-
cies of current cosmological simulations. For this rea-
son, we have focused on the implementation and opti-
mization of an O(N log N) method.

Consider a configuration of sources as in Fig. 3. The
sources are contained within a “source” cell, V of ra-
dius bmax, while the field is evaluated at separation B
from By),, the center of “sink” cell W.

In terms of an arbitrary Green’s function, G, the field
is:

H(Blay) = /V dBy)G(Bay — Byp(By). (@)

M.S. Warren / 2HOT: An improved parallel hashed oct-tree N-body algorithm for cosmological simulation 113

Sink Cell

Source Cell

Fig. 3. An illustration of the relevant distances used in the multipole
expansion and error bound equations.

Expanding G around B(g), = B), — By, in a
Taylor series leads to the Cartesian multipole expan-
sion:

P 1y
(B = Z ua(n)G(B(R)O)

1
n!
n=0

© B(},(Bag + B)
+ @) (Bay), ()

where @, is the error term, and the moment tensor is
defined relative to a center, B;) as:

M™(B)) = / dBy)(By) — Bz)™ p(Bgy).-

(6)
We have used a notational shorthand in which Bgf;
indicates the n-fold outer product of the vector By
with itself, while ® indicates a tensor inner-product
and O;,)G indicates the rank-n tensor whose compo-
nents are the partial derivatives of GG in the Cartesian
directions. We can further expand the result by writing
B((]’;‘/)I)(B(y)o + Ba)) as a sum over powers of the com-
ponents of B, and then recollecting terms (see Eqs
(12)—(14) in [68]).

While the mathematical notation above is compact,
translating this representation to an optimized interac-
tion routine is non-trivial. The expression for the force
with p = 8 in three dimensions begins with 3% = 6561
terms. We resort to metaprogramming, translating the
intermediate representation of the computer algebra
system [74] directly into C code. This approach is ca-
pable of producing the necessary interaction routines
through p = 8 without human intervention. A better
approach would combine a compiler with knowledge
of the computing architecture into the symbolic alge-
bra system, allowing very high-level optimizations us-

ing mathematical equivalences that are lost once the
formulae are expressed in a general programming lan-
guage. To our knowledge, no such system currently ex-
ists.

We have also investigated support for pseudo-
particle [25] and kernel-independent [76] approaches
which abstract the multipole interactions to more eas-
ily computed equations. For instance, the pseudo-
particle method allows one to represent the far field of
many particles as a set of pseudo-particle monopole in-
teractions. We have found that such approaches are not
as efficient as a well-coded multipole interaction rou-
tine in the case of gravitational or Coulombic interac-
tions, at least up to order p = 8.

2.3. Time integration

The original version of HOT integrated the equa-
tions of motion using the leapfrog techniques de-
scribed in [11], with a logarithmic timestep at early
times. This approach has proven inadequate for high-
accuracy simulations. Fortunately, the theory for sym-
plectic time integration in a comoving background was
developed by [42], which we have fully adopted. The
advantages of this integrator are discussed in detail
in [50]. We calculate the necessary integrals for the
“drift” and “kick” operators in arbitrary cosmologies
with code added to the background calculations in
CLASS [27]. We additionally restrict the changes of
the timestep to exact factors of two, rather than allow-
ing incremental changes at early times. Any change
of timestep breaks the symplectic property of the
integrator, but making occasional larger adjustments
rather than continuous small adjustment (as is done
in GADGET?2 [50]) appears to provide slightly better
convergence properties. We have also modified 2HOT
to save “checkpoint” files which maintain the leapfrog
offset between position and velocity. This allows the
code to maintain 2nd-order accuracy in the time inte-
gration when restarting from a saved file. Otherwise,
the initial (first order) step in the leapfrog scheme can
lead to detectable errors after restarting at early times.

2.4. Boundary conditions

Periodic boundary conditions have been applied to
multipole methods in a variety of ways, but most
often are variants of the Ewald method [22]. For
2HOT, we have adopted the approach described in [8],
which is based on the central result of Nijboer and
De Wette [34]. Effectively the same method in a Carte-

114 M.S. Warren / 2HOT: An improved parallel hashed oct-tree N-body algorithm for cosmological simulation

sian basis was first used in a cosmological simulation
by Metchnik [32]. This method sums the infinite se-
ries of each relevant combination of powers of the co-
ordinates, which can be taken outside the sum of pe-
riodic replicas (since the multipole expansion of each
replica is identical). These pre-computed coefficients
are then used in a local expansion about the center of
the volume. We use p = 8 and ws = 2, which accounts
for the boundary effects to near single-precision float-
ing point accuracy (one part in 10~7). The computa-
tional expense of this approach is about 1% of the total
force calculation for the local expansion, and 5-10%
for the 124 boundary cubes, depending on the overall
accuracy tolerance.

2.5. Force smoothing

The standard practice in cosmological N-body sim-
ulations is to smooth the forces at small scales, usu-
ally with a Plummer or spline [50] kernel. We have im-
plemented these smoothing kernels in 2HOT, as well
as the additional kernels described by Dehnen [10].
Dehnen concludes that the optimal softening method
uses a compensating kernel, with forces that are higher
than the Newtonian force at the outer edge of the
smoothing kernel, which compensates for the lower
forces in the interior and serves to reduce the bias in the
force calculation. Our tests confirm these conclusions,
and we use Dehnen’s K'1 compensating kernel for our
simulations, except for the tests comparing directly to
other codes.

3. Computational approach
3.1. Domain decomposition

The space-filling curve domain decomposition ap-
proach we proposed in WS93 has been widely adopted
in both application codes (e.g. [20,24,50,75]) and more
general libraries [29,36]. Our claim that such order-
ings are also beneficial for improving memory hierar-
chy performance has also been validated [31,50]. We
show an example of a 3-d decomposition of 3072 pro-
cessor domains in Fig. 4.

The mapping of spatial co-ordinates to integer keys
described in WS93 converts the domain decompo-
sition problem into a generalized parallel sort. The
method we use is similar to the sample sort described
in [48], with the on-node portion done with an Amer-
ican flag radix sort [30]. After using the samples to

Fig. 4. A demonstration of our space-filling curve domain decom-
position for a highly evolved cosmological simulation on 3072 pro-
cessors in a cube 1 Gpc/h across. We view one face of the 3-d com-
putational volume, cycling through 16 different colors in turn for
each processor domain. Starting in the lower left, the sequence goes
black, red, green, blue, cyan, and then continues underneath in the
z-dimension (not visible), returning to the front face with dark blue,
brown, purple, white, etc. (The colors are visible in the online ver-
sion of the article; http://dx.doi.org/10.3233/SPR-140385.)

determine the edges of the processor domains, in the
initial HOT implementation the data was moved us-
ing a loop over all pairs of processors needing to ex-
change data. We converted the data exchange to use
MPI_Alltoall () forimproved scalability. This ex-
posed problems in the implementation of Alltoall on
large machines for both OpenMPI and the Cray sys-
tem MPI. The first “scalability surprise” was related to
the way buffers were managed internally in OpenMPI,
with the number of communication buffers scaling as
the number of processes squared. This did not allow
our code to run on more than 256 24-core nodes us-
ing OpenMPI. We had to rewrite the implementation
of Alltoall using a hierarchical approach, with only
one process per node relaying messages to other nodes.
The second was a “performance surprise” as defined
by [54], where replacing the Cray system implementa-
tionof MPI_Alltoall () with a trivial implementa-
tion using a loop over all pairs of processes exchanging
data led to a huge performance improvement when us-
ing more than 32k processors. Note that after the initial
decomposition, the Alltoall communication pattern is
very sparse, since particles will only move to a small
number of neighboring domains during a timestep.
This also allows significant optimization of the sample

M.S. Warren / 2HOT: An improved parallel hashed oct-tree N-body algorithm for cosmological simulation 115

sort, since the samples can be well-placed with respect
to the splits in the previous decomposition.

3.2. Tree construction and traversal

The parallel tree construction in WS93 used a global
concatenation of a set of “branch” nodes from each
processor to construct the tree at levels coarser than
the individual processor domains. While this is an ad-
equate solution up to a few thousand processors, at
the level of tens of thousands of domains and larger,
it leads to unacceptable overhead. Most of the nodes
communicated and stored will never be used directly,
since the local traversal will only probe that deeply
in the tree near its own spatial domain. Instead of a
global concatenation, we proceed with a pairwise hi-
erarchical aggregation loop over ¢ up to log, Nproc by
exchanging branch nodes between nearest neighbors in
the 1-d space-filling curve, incrementally updating the
tree with those nodes, then doing the same with the
2'th neighbor. This provides a minimal set of shared
upper-level nodes for each processor domain, and has
demonstrated its scalability to 256k processors.

In [68] we describe a tree traversal abstraction which
enables a variety of interactions to be expressed be-
tween “source” and “sink” nodes in tree data struc-
tures. This abstraction has since been termed dual-tree
traversal [19,77]. The dual-tree traversal is a key com-
ponent of our method to increase the instruction-level
parallelism in the code to better enable new CPU and
GPU architectures (see Section 3.3).

During the tree traversal we use the same re-
quest/reply protocol described in WS93 using the
global key labels assigned during the tree construc-
tion phase. Additional bits to label the source processor
have been added to the hcells to support machines with
up to 2!8 processors. Our initial approach to hiding la-
tency in the tree traversal was recast in the form of an
active message abstraction. We believe that such event-
driven handlers are more robust and less error-prone
to implement correctly [35]. We currently use our own
implementation of active messages within MPI, which
we call “Asynchronous Batched Messages” (ABM).
ABM is a key component of our ability to overlap com-
munication and computation and hide message latency.
MPI has supported one-sided communications prim-
itives for many years, but their performance is often
worse than regular point-to-point communication. It is
likely that synchronization and locking overheads and
complexity are to blame [3]. Newer implementations
of active messages [73] are an attractive alternative,
which we plan to implement as time allows.

3.3. Improving instruction-level parallelism

In WS93 we used the fact that particles which are
spatially near each other tend to have very similar cell
interaction lists. By updating the particles in an or-
der which takes advantage of their spatial proximity,
we improved the performance of the memory hier-
archy. Going beyond this optimization with dual-tree
traversal, we can bundle a set of m source cells which
have interactions in common with a set of n sink par-
ticles (contained within a sink cell), and perform the
full m x n interactions on this block. This further im-
proves cache behavior on CPU architectures, and en-
ables a simple way for GPU co-processors to provide
reasonable speedup, even in the face of limited pe-
ripheral bus bandwidth. We can further perform data
reorganization on the source cells (such as swizzling
from an array-of-structures to a structure-of-arrays for
SIMD processors) to improve performance, and have
this cost shared among the n sinks. In an m x n interac-
tion scheme, the interaction vector for a single sink is
computed in several stages, which requires writing the
intermediate results back to memory multiple times,
in contrast to the WS93 method which required only
one write per sink. For current architectures, the write
bandwidth available is easily sufficient to support the
m X n blocking.

Taking advantage of instruction-level parallelism is
essential. In the past, obtaining good CPU performance
for gravitational kernels often required hand-tuned as-
sembly code. Implementing the complex high-order
multipole interactions using assembly code would
be extremely difficult. Fortunately, the gcc compiler
comes to the rescue with vector intrinsics [51]. We use
gce’s vector_size attribute, which directs the com-
piler to use SSE or AVX vector instructions for the la-
beled variables. By providing the interaction functions
with the appropriately aligned and interleaved data, gcc
is able to obtain near optimal SIMD performance from
C code.

We have also implemented our gravitational interac-
tion functions with both CUDA and OpenCL kernels
on NVIDIA GPUs, obtaining single-precision perfor-
mance of over 2 Tflops on a K20x (Table 3). We have
implemented these kernels within 2HOT and demon-
strated a 3x speedup over using the CPU alone. The
ultimate performance of our code on hybrid GPU
architectures depends on the ability of the to per-
form a highly irregular tree-traversal quickly enough
to provide the necessary flow of floating-point inten-
sive gravitational interactions. A parallel scan and sort

116 M.S. Warren / 2HOT: An improved parallel hashed oct-tree N-body algorithm for cosmological simulation

based on our space-filling curve key assignment is one
example of a successful approach [4].

We have generally achieved near 40% of peak
(single-precision) CPU performance on the supercom-
puters we have ported our code to over the past
20 years. We are working toward demonstrating the
performance of 2HOT on Titan, using 18,688 NVIDIA
K20x GPUs. With 25% of peak performance, we
would obtain near 20 Tflops on that machine.

3.4. Managing the simulation pipeline

In order to better integrate the various codes in-
volved, and to simplify the management of the multi-
ple configuration files per simulation, we have devel-
oped a Python [58] metaprogramming environment to
translate a high-level description of a simulation into
the specific text configuration files and shell scripts re-
quired to execute the entire simulation pipeline. With-
out this environment, it would be extremely difficult to
guarantee consistency among the various components,
or to reproduce earlier simulations after new features
have been added to the individual software agents. It
also allows us to programmatically generate the config-
uration of thousands of simulations at once, that would
previously have to be configured manually.

3.4.1. Task management

Modern simulation pipelines present a complex task
for queueing systems. Given the flexibility of 2HOT,
which can run on an arbitrary number of processors,
or be interrupted with enough notice to write a check-
point, we would like to control our tasks using higher-
level concepts. We wish to specify the general con-
straints on a simulation task and have the system per-
form it in an efficient manner with as little human at-
tention as possible. For example, “Please run our sim-
ulation that will require 1 million core-hours using as
many jobs in sequence as necessary on at least 10,000
cores at a time, but use up to 2x as many cores if the
wait for them to become available does not increase
the overall wallclock time, and allow our job to be pre-
empted by higher-priority jobs by sending a signal at
least 600 seconds in advance”. Optimal scheduling of
such requests from hundreds of users on a machine
with hundreds of thousands of processors is NP-hard,
but there seems to be ample room for improvement
over the current systems, even without an “optimal”
solution.

Data analysis often requires many smaller tasks,
which queueing systems and MPI libraries have lim-
ited support for as well. We have developed an ad-

ditional Python tool called stask. It allows us to
maintain a queue inside a larger PBS or Moab al-
location which can perform multiple smaller simula-
tions or data analysis tasks. It has also proven use-
ful to manage tens of thousands of independent tasks
for MapReduce style jobs on HPC hardware. For
instance, we have used this approach to generate
6-dimensional grids of cosmological power spectra, as
well as perform Markov Chain Monte Carlo analyses.

3.4.2. Checkpoints and I/O

2HOT reads and writes single files using collective
MPI/IO routines. We use our own self-describing file
format (SDF), which consists of ASCII metadata de-
scribing raw binary particle data structures. I/O re-
quirements are driven primarily by the frequency of
checkpoints, which is in turn set by the probability of
failure during a run. For the production simulations de-
scribed here, we experience a hardware failure which
ends the job about every million CPU hours (80 wall-
clock hours on 12,288 CPUs). Writing a 69 billion par-
ticle file takes about 6 minutes, so checkpointing every
4 h with an expected failure every 80 h costs 2 h in I/O
and saves 4-8 h of re-computation from the last per-
manently saved snapshot. At LANL, we typically ob-
tain 5-10 Gbytes/s on a Panasas filesystem. We have
demonstrated the ability to read and write in excess of
20 Gbytes/s across 160 Lustre OSTs on the filesystem
at ORNL. By modifying our internal I/O abstraction to
use MPI/IO across 4 separate files to bypass the Lustre
OST limits, we have obtained I/O rates of 45 Gbytes/s
across 512 OSTs. These rates are sufficient to support
simulations at the 102 particle scale at ORNL, assum-
ing the failure rate is not excessive.

3.4.3. Version control of source code and data

To assure strict reproducibility of the code and
scripts used for any simulation and to better man-
age development distributed among multiple super-
computer centers, we use the git version control sys-
tem [56] for all of the codes in the simulation pipeline,
as well as our Python configuration system. We addi-
tionally automatically propagate the git tags into the
metadata included in the headers of the data which is
produced from the tagged software.

3.4.4. Generating initial conditions

We use the Boltzmann code CLASS [7,27] to cal-
culate the power spectrum of density fluctuations for a
particular cosmological model. A particular realization
of this power spectrum is constructed using a version
of 2LPTIC [9] we have modified to support more than
23! particles and use the FFTW3 library.

M.S. Warren / 2HOT: An improved parallel hashed oct-tree N-body algorithm for cosmological simulation 117

3.4.5. Data analysis

One of the most important analysis tasks is generat-
ing halo catalogs from the particle data by identifying
and labeling groups of particles. We use vEind [38]
implemented with the HOT library to perform both
friend-of-friends (FOF) and isodensity halo finding.
More recently, we have adopted the ROCKSTAR halo
finder [6], contributing some scalability enhancements
to that software, as well as interfacing it with SDF. Our
plans for future data analysis involve developing inter-
faces to the widely-adopted yt Project [57], as well
as contributing the parallel domain decomposition and
tree traversal technology described here to yt.

Many of the mathematical routines we developed
over the years as needed for our evolution or analy-
sis codes have been replaced with superior implemen-
tations. The GSL [17] and FFTW [14] libraries have
been particularly useful.

4. Scalability and performance

In Table 1 we show the performance of our N-body
code on a sample of the major supercomputer architec-
tures of the past two decades. It is perhaps interesting
to note that now a single core has more memory and
floating-point performance than the fastest computer in
the world in 1992 (the Intel Delta, on which we won
our first Gordon Bell prize [66]). We show a typical
breakdown among different phases of our code in Ta-
ble 2, and single processor performance in Table 3.

We present strong scaling results measured on
Jaguar in Fig. 5. These benchmarks represent a single
timestep, but are representative of all aspects of a pro-
duction simulation, including domain decompo