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Abstract. Modern interconnects offer remote direct memory access (RDMA) features. Yet, most applications rely on explicit
message passing for communications albeit their unwanted overheads. The MPI-3.0 standard defines a programming interface for
exploiting RDMA networks directly, however, it’s scalability and practicability has to be demonstrated in practice. In this work,
we develop scalable bufferless protocols that implement the MPI-3.0 specification. Our protocols support scaling to millions of
cores with negligible memory consumption while providing highest performance and minimal overheads. To arm programmers,
we provide a spectrum of performance models for all critical functions and demonstrate the usability of our library and models
with several application studies with up to half a million processes. We show that our design is comparable to, or better than
UPC and Fortran Coarrays in terms of latency, bandwidth and message rate. We also demonstrate application performance
improvements with comparable programming complexity.
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1. Motivation

Network interfaces evolve rapidly to implement a
growing set of features directly in hardware. A key fea-
ture of today’s high-performance networks is remote
direct memory access (RDMA). RDMA enables a pro-
cess to directly access memory on remote processes
without involvement of the operating system or activi-
ties at the remote side. This hardware support enables
a powerful programming mode similar to shared mem-
ory programming. RDMA is supported by on-chip net-
works in, e.g., Intel’s SCC and IBM’s Cell systems, as
well as off-chip networks such as InfiniBand [30,37],
IBM’s PERCS [2] or BlueGene/Q [21], Cray’s Gem-
ini [1] and Aries [9], or even RoCE over Ethernet [5].
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From a programmer’s perspective, parallel pro-
gramming schemes can be split into three categories:
(1) shared memory with implicit communication and
explicit synchronization, (2) message passing with ex-
plicit communication and implicit synchronization (as
side-effect of communication) and (3) remote memory
access and partitioned global address space (PGAS)
where synchronization and communication are man-
aged independently.

Architects realized early that shared memory can
often not be efficiently emulated on distributed ma-
chines [19]. Thus, message passing became the de
facto standard for large-scale parallel programs [28].
However, with the advent of RDMA networks, it be-
came clear that message passing over RDMA incurs
additional overheads in comparison with native remote
memory access (RMA, aka. PGAS) programming [6,
7,29]. This is mainly due to message matching, prac-
tical issues with overlap, and because fast message
passing libraries over RDMA usually require differ-
ent protocols [41]: an eager protocol with receiver-side
buffering of small messages and a rendezvous protocol
that synchronizes the sender. Eager requires additional
copies, and rendezvous sends additional messages and
may delay the sending process.

In summary, directly programming RDMA hard-
ware has benefits in the following three dimensions:
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(1) time by avoiding message matching and syn-
chronization overheads, (2) energy by reducing data-
movement, e.g., it avoids additional copies of eager
messages, and (3) space by removing the need for
receiver buffering. Thus, several programming envi-
ronments allow to access RDMA hardware more or
less directly: PGAS languages such as Unified Par-
allel C (UPC [38]) or Fortran Coarrays [17] and li-
braries such as Cray SHMEM [3] or MPI-2.2 One
Sided [27]. A lot of experience with these models has
been gained in the past years [7,29,42] and several key
design principles for remote memory access (RMA)
programming evolved. The MPI Forum set out to de-
fine a portable library interface to RMA programming
using these established principles. This new interface
in MPI-3.0 [28] extends MPI-2.2’s One Sided chapter
to support the newest generation of RDMA hardware.

However, the MPI standard only defines a program-
ming interface and does not mandate an implementa-
tion. Thus, it has yet to be demonstrated that the new
library interface delivers comparable performance to
compiled languages like UPC and Fortran Coarrays
and is able to scale to large process numbers with small
memory overheads. In this work, we develop scalable
protocols for implementing MPI-3.0 RMA over RDMA
networks. We demonstrate that (1) the performance of
a library implementation can be competitive to tuned,
vendor-specific compiled languages and (2) the inter-
face can be implemented on highly-scalable machines
with negligible memory overheads. In a wider sense,
our work answers the question if the MPI-3.0 RMA in-
terface is a viable candidate for moving into the post-
petascale era.

Our key contributions are:

• We describe scalable protocols and a complete
implementation for the novel MPI-3.0 RMA pro-
gramming interface requiring O(log p) time and
space per process on p processes.

• We provide a detailed performance evaluation and
performance models that can be used for algo-
rithm development and to demonstrate the scala-
bility to future systems.

• We demonstrate the benefits of RMA program-
ming for several motifs and real-world appli-
cations on a multi-petaflop machine with full-
application speedup of more than 13% over
MPI-1 using more than half a million MPI pro-
cesses.

2. Scalable protocols for MPI-3.0 One Sided over
RDMA networks

We describe protocols to implement MPI-3.0 One
Sided purely based on low-level remote direct memory
access (RDMA). In all our protocols, we assume that
we only have small bounded buffer space at each pro-
cess, no remote software agent, and only put, get, and
some basic atomic operations for remote memory ac-
cess. This makes our protocols applicable to all current
RDMA networks and is also forward-looking towards
exascale interconnect architectures.

MPI-3.0 offers a plethora of functions with differ-
ent performance expectations and use-cases. We di-
vide the RMA functionality into three separate con-
cepts: (1) window creation, (2) communication func-
tions, and (3) synchronization functions. In addition,
MPI-3’s One Sided (RMA) specification differentiates
between two memory models, unified and separate.
The separate memory model is offering MPI-2 seman-
tics and is thus portable to a wide variety of network ar-
chitectures. The unified model provides additional se-
mantic guarantees allowing direct access to hardware
features. For example, it permits to wait (polling) for
remote updates on a memory location and it allows
fine-grained access to window memory during epochs.
The user can query an MPI window attribute to deter-
mine the memory model supported in a specific win-
dow. The implementation described in this paper offers
the stronger unified semantics for all windows, since it
is supported by all current RDMA networks.

Figure 1(a) shows an overview of MPI’s synchro-
nization functions. They can be split into active tar-
get mode, in which the target process participates in
the synchronization, and passive target mode, in which
the target process is passive. Figure 1(b) shows a sim-
ilar overview of MPI’s communication functions. Sev-
eral functions can be completed in bulk with bulk syn-
chronization operations or using fine-grained request
objects and test/wait functions. However, we observed
that the completion model only minimally affects local
overheads and is thus not considered separately in the
remainder of this work.

Figure 1 also shows abstract definitions of the per-
formance models for each synchronization and com-
munication operation. The precise performance model
for each function depends on the exact implementa-
tion. We provide a detailed overview of the asymp-
totic as well as exact performance properties of our
protocols and our implementation in the next sections.
The different performance characteristics of commu-
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Fig. 1. Overview of MPI-3.0 One Sided and associated cost functions. The figure shows abstract cost functions for all operations in terms of their
input domains. The symbol p denotes the number of processes, s is the data size, k is the maximum number of neighbors, and o defines an MPI
operation. The notation P : {p} → T defines the input space for the performance (cost) function P . In this case, it indicates, for a specific MPI
function, that the execution time depends only on p. We provide asymptotic cost functions in Section 2 and parametrized cost functions for our
implementation in Section 3. (a) Synchronization. (b) Communication.

nication and synchronization functions make a unique
combination of implementation options for each spe-
cific use-case optimal. However, it is not always easy
to choose this best variant. The exact models can be
used to design such optimal implementations (or as in-
put for model-guided autotuning [10]) while the sim-
pler asymptotic models can be used in the algorithm
design phase (cf. [20]).

To support post-petascale computers, all protocols
need to implement each function in a scalable way,
i.e., consuming O(log p) memory and time on p pro-
cesses. For the purpose of explanation and illustra-
tion, we choose to discuss a reference implementation
as use-case. However, all protocols and schemes dis-
cussed in the following can be used on any RDMA-
capable network.

2.1. Use-case: Cray DMAPP and XPMEM

We introduce our implementation FOMPI (fast one-
sided MPI), a fully-functional MPI-3.0 RMA library
implementation for Cray Gemini (XK5, XE6) and
Aries (XC30) systems. In order to maximize asyn-

chronous progression and minimize overhead, FOMPI
interfaces to the lowest available hardware APIs.

For inter-node (network) communication, FOMPI2

uses the lowest-level networking API of Gemini and
Aries networks, DMAPP (Distributed Memory Ap-
plication), which has direct access to the hardware
(GHAL) layer. DMAPP provides an RDMA interface
and each process can expose (register) local mem-
ory regions. Accessing remote memory requires a spe-
cial key (which is returned by the registration call).
DMAPP offers put, get, and a limited set of atomic
memory operations, each of them comes in three cat-
egories: blocking, explicit nonblocking, and implicit
nonblocking. All explicit nonblocking routines return a
handle that can be used to complete single operations,
implicit nonblocking operations can only be finished
by bulk completion (gsync) functions. DMAPP put and
get can operate on 1, 4, 8 and 16 Byte chunks while
atomic memory operations (AMO) always operate on
8 Bytes.

2The FOMPI source code can be found on
http://spcl.inf.ethz.ch/Research/Parallel_Programming/foMPI.
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For intra-node communication, we use XPMEM
[40], a portable Linux kernel module that allows to
map the memory of one process into the virtual ad-
dress space of another. Similar to DMAPP, processes
can expose contiguous memory regions and other pro-
cesses can attach (map) exposed regions into their own
address space. All operations can then be directly im-
plemented with load and store instructions, as well as
CPU atomics (e.g., using the x86 lock prefix). Since
XPMEM allows direct access to other processes’ mem-
ory, we include it in the category of RDMA interfaces.

FOMPI’s performance properties are self-consistent
[22] and thus avoid surprises for users. We now pro-
ceed to develop algorithms to implement the window
creation routines that expose local memory for remote
access. After this, we describe protocols for synchro-
nization and communication functions over RDMA
networks.

2.2. Scalable window creation

A window is a region of process memory that is
made accessible to remote processes. MPI-3.0 pro-
vides four collective functions for creating different
types of windows: MPI_Win_create (traditional win-
dows), MPI_Win_allocate (allocated windows),
MPI_Win_create_dynamic (dynamic windows) and
MPI_Win_allocate_shared (shared windows). We as-
sume that communication memory needs to be regis-
tered with the communication subsystem and that re-
mote processes require a remote descriptor that is re-
turned from the registration to access the memory. This
is true for most of today’s RDMA interfaces including
DMAPP and XPMEM.

Traditional windows. These windows expose exist-
ing user-memory to remote processes. Each process
can specify an arbitrary local base address for the win-
dow and all remote accesses are relative to this address.
This essentially forces an implementation to store all
remote addresses separately. This storage may be com-
pressed if addresses are identical, however, it requires
Ω(p) storage on each of the p processes in the worst
case.

Each process discovers intra-node and inter-node
neighbors and registers the local memory using XP-
MEM and DMAPP. Memory descriptors and various
information (window size, displacement units, base
pointer, et cetera) can be communicated with two
MPI_Allgather operations: the first with all processes of
the window to exchange DMAPP information and the
second with the intra-node processes to exchange XP-

MEM information. Since traditional windows are fun-
damentally non-scalable, and only included in MPI-3.0
for backwards-compatibility, their use is strongly dis-
couraged.

Allocated windows allow the MPI library to allo-
cate window memory and thus use a symmetric heap,
where the base addresses on all nodes are the same
requiring only O(1) storage. This can either be done
by allocating windows in a system-wide symmetric
heap or with the following POSIX-compliant proto-
col: (1) a leader (typically process zero) chooses a
random address which it broadcasts to all processes
in the window, and (2) each process tries to allocate
the memory with this specific address using mmap().
Those two steps are repeated until the allocation was
successful on all processes (this can be checked with
MPI_Allreduce). Size and displacement unit can now
be stored locally at each process. This mechanism re-
quires O(1) memory and O(log p) time (with high
probability).

Dynamic windows. These windows allow the dy-
namic attach and detach of memory regions using
MPI_Win_attach and MPI_Win_detach. Attach and de-
tach operations are non-collective. In our implemen-
tation, attach registers the memory region and inserts
the information into a linked list and detach removes
the region from the list. Both operations require O(1)
memory per region.

The access of the list of memory regions on a target
is purely one-sided using a local cache of remote de-
scriptors. Each process maintains an id counter, which
will be increased in case of an attach or detach opera-
tion. A process that attempts to communicate with the
target first reads the id (with a get operation) to check
if its cached information is still valid. If so, it finds the
remote descriptor in its local list. If not, the cached in-
formation are discarded, the remote list is fetched with
a series of remote operations and stored in the local
cache.

Optimizations can be done similar to other dis-
tributed cache protocols. For example, instead of the id
counter, each process could maintain a list of processes
that have a cached copy of its local memory descrip-
tors. Before returning from detach, a process notifies
all these processes to invalidate their cache and dis-
cards the remote process list. For each communication
attempt, a process has to first check if the local cache
has been invalidated (in which case it will be reloaded).
Then the local cache is queried for the remote descrip-
tor. If the descriptor is missing, there has been an at-
tach at the target and the remote descriptor is fetched
into the local cache. After a cache invalidation or a first
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time access, a process has to register itself on the tar-
get for detach notifications. We explain a scalable data
structure that can be used for the remote process list
in the General Active Target Synchronization part (see
Fig. 2(c)).

Fig. 2. Example of General Active Target Synchronization. The
numbers in the brackets for MPI_Win_start and MPI_Win_post in-
dicate the processes in the access or exposure group. (a) Source
code. (b) Data structures. (c) Free-storage management: protocol
to acquire a free element in a remote matching list, denoted as
“free-mem” below. (d) Possible execution of the complete protocol.

The optimized variant enables better latency for
communication functions, but has a small memory
overhead and is suboptimal for frequent detach opera-
tions.

Shared memory windows. Shared memory windows
can be implemented using POSIX shared memory or
XPMEM as described in [13] with constant mem-
ory overhead per core. Performance is identical to our
direct-mapped (XPMEM) implementation and all op-
erations are compatible with shared memory windows.

A note on DMAPP overheads. DMAPP requires the
storage of one handle (with a size of 48 Bytes) per
remote process. Thus, currently, all window creations
have an additional memory overhead of Θ(p), and
the communication is bound by the MPI_Allgather to
gather those descriptors. However, this linear overhead
is a current limitation of DMAPP and not our imple-
mentation or design. Assuming DMAPP had a collec-
tive context and similar displacement units per process,
one would trivially be able to implement this function
with O(log p) time and O(1) space complexity.

We now show novel protocols to implement syn-
chronization modes in a scalable way on pure RDMA
networks without remote buffering.

2.3. Scalable window synchronization

MPI differentiates between exposure and access
epochs. A process starts an exposure epoch to allow
other processes to access its memory. In order to ac-
cess exposed memory at a remote target, the origin pro-
cess has to be in an access epoch. Processes can be in
access and exposure epochs simultaneously and expo-
sure epochs are only defined for active target synchro-
nization (in passive target, window memory is always
exposed).

Fence. MPI_Win_fence, called collectively by all
processes, finishes the previous exposure and access
epoch and opens the next exposure and access epoch
for the whole window. An implementation must guar-
antee that all remote memory operations are committed
before it leaves the fence call. Our implementation uses
an x86 mfence instruction (XPMEM) and DMAPP
bulk synchronization (gsync) followed by an MPI bar-
rier to ensure global completion. The asymptotic mem-
ory bound is O(1) and, assuming a good barrier imple-
mentation, the time bound is O(log p).

General active target synchronization synchronizes
a subset of processes of a window. Exposure
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(MPI_Win_post/MPI_Win_wait) and access epochs
(MPI_Win_start/MPI_Win_complete) can be opened
and closed independently. However, a group argument
is associated with each call that starts an epoch and it
states all processes participating in the epoch. The calls
have to guarantee correct matching, i.e., if a process i
specifies a process j in the group argument of the post
call, then the next start call at process j that has process
i in the group argument matches the post call.

Since our RMA implementation cannot assume
buffer space for remote messages, it has to ensure
that all processes in the group argument of the start
call have called a matching post before the start re-
turns. Similarly, the wait call has to ensure that all
matching processes have called complete. Thus, calls
to MPI_Win_start and MPI_Win_wait may block, wait-
ing for the remote process. Both synchronizations are
required to ensure integrity of the accessed data during
the epochs. The MPI specification forbids matching
configurations where processes wait cyclically (dead-
locks).

We now describe a scalable implementation of the
matching protocol with a time and memory complex-
ity of O(k) if each process has at most k neighbors
across all epochs. In addition, we assume k is known
to the implementation. The scalable algorithm can be
described at a high level as follows: each process i
that posts an epoch announces itself to all processes
j1, . . . , jl in the group argument by adding i to a list
local to the processes j1, . . . , jl. Each process j that
tries to start an access epoch waits until all processes
i1, . . . , im in the group argument are present in its lo-
cal list. The main complexity lies in the scalable stor-
age of this neighbor list, needed for start, which re-
quires a remote free-storage management scheme (see
Fig. 2(c)). The wait call can simply be synchronized
with a completion counter. A process calling wait will
not return until the completion counter reaches the
number of processes in the specified group. To enable
this, the complete call first guarantees remote visibil-
ity of all issued RMA operations (by calling mfence
or DMAPP’s gsync) and then increases the completion
counter at all processes of the specified group.

Figure 2(a) shows an example program with two dis-
tinct matches to access three processes from process 0.
The first epoch on process 0 matches with processes 1
and 2 and the second epoch matches only with pro-
cess 3. Figure 2(b) shows the necessary data structures,
the free memory buffer, the matching list, and the com-
pletion counter. Figure 2(c) shows the part of the proto-
col to acquire a free element in a remote matching list

and Fig. 2(d) shows a possible execution of the com-
plete protocol on four processes.

If k is the size of the group, then the number of mes-
sages issued by post and complete is O(k) and zero for
start and wait. We assume that k ∈ O(log p) in scalable
programs [12].

Lock synchronization. We now describe a low-
overhead and scalable strategy to implement shared
global, and shared and exclusive process–local locks
on RMA systems (the MPI-3.0 specification does not
allow exclusive global lock all). We utilize a two-level
lock hierarchy: one global lock variable (at a desig-
nated process, called master) and p local lock variables
(one lock on each process). We assume that the word-
size of the machine, and thus each lock variable, is
64 bits. Our scheme also generalizes to other t bit word
sizes as long as the number of processes is not more
than 2�t/2�.

Each local lock variable is used to implement a
reader–writer lock, which allows only one writer (ex-
clusive lock), but many readers (shared locks). The
highest order bit of the lock variable indicates a write
access, while the other bits are used to count the num-
ber of shared locks held by other processes (cf. [24]).
The global lock variable is split into two parts. The first
part counts the number of processes holding a global
shared lock in the window and the second part counts
the number of exclusively locked processes. Both parts
guarantee that there are only accesses of one type (ei-
ther exclusive or lock all) concurrently. This data struc-
ture enables all lock operations to complete in O(1)
steps if a lock can be acquired immediately. Figure 3(a)
shows the structure of the local and global lock vari-
ables (counters).

Figure 3(b) shows an exemplary lock scenario for
three processes. We do not provide an algorithmic de-
scription of the protocol due to the lack of space (the
source-code is available online). However, we describe
a locking scenario to foster understanding of the pro-
tocol. Figure 3(c) shows a possible execution schedule
for the scenario from Fig. 3(b). Please note that we per-
muted the order of processes to (1, 0, 2) instead of the
intuitive (0, 1, 2) to minimize overlapping lines in the
figure.

Process 1 starts a lock all epoch by increasing the
global shared counter atomically. Process 2 has to wait
with its exclusive lock request until Process 1 finishes
its lock all epoch. The waiting is performed by an
atomic fetch and add. If the result of this operation
finds any global shared lock then it backs off its re-
quest and does not enter the lock, and proceeds to retry.
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Fig. 3. Example of Lock Synchronization. (a) Data structures. (b) Source code. (c) Possible schedule.

If there is no global shared lock then it enters its lo-
cal lock phase. An acquisition of a shared lock on a
specific target (MPI_Win_lock) only involves the local
lock on the target. The origin process (e.g., Process 0)
fetches and increases the lock in one atomic operation.
If the writer bit is not set, the origin can proceed. If
an exclusive lock is present, the origin repeatedly (re-
motely) reads the lock until the writer finishes his ac-
cess. All waits/retries can be performed with exponen-
tial back off to avoid congestion.

Summarizing the protocol: For a local exclusive
lock, the origin process needs to ensure two invariants:
(1) no global shared lock can be held or acquired dur-
ing the local exclusive lock and (2) no local shared or
exclusive lock can be held or acquired during the local
exclusive lock. For the first part, the locking process
fetches the lock variable from the master process and
also increases the writer part in one atomic operation
to register its wish for an exclusive lock. If the fetched
value indicates lock all accesses, then the origin backs
off by decreasing the writer part of the global lock. In
case there is no global reader, the origin proceeds to

the second invariant and tries to acquire an exclusive
local lock on its target using compare-and-swap with
zero (cf. [24]). If this succeeds, the origin acquired the
lock and can proceed. In the example, Process 2 suc-
ceeds at the second attempt to acquire the global lock
but fails to acquire the local lock and needs to back off
by releasing its exclusive global lock. Process 2 will
repeat this two-step operation until it acquired the ex-
clusive lock. If a process already holds any exclusive
lock, then it can immediately proceed to invariant two.

When unlocking (MPI_Win_unlock) a shared lock,
the origin only has to atomically decrease the local lock
on the target. In case of an exclusive lock it requires
two steps. The first step is the same as in the shared
case, but if the origin does not hold any additional ex-
clusive locks, it has to release its global lock by atom-
ically decreasing the writer part of the global lock.

The acquisition or release of a global shared lock
for all processes of the window (MPI_Win_lock_all/
MPI_Win_unlock_all) is similar to the shared case for a
specific target, except it targets the global lock.

If no exclusive locks exist, then shared locks (both
MPI_Win_lock and MPI_Win_lock_all) only take one
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remote atomic update operation. The number of remote
requests while waiting can be bound by using MCS
locks [25]. The first exclusive lock will take in the best
case two atomic communication operations. This will
be reduced to one atomic operation if the origin pro-
cess already holds an exclusive lock. Unlock opera-
tions always cost one atomic operation, except for the
last unlock in an exclusive case with one extra atomic
operation for releasing the global lock. The memory
overhead for all functions is O(1).

Flush. Flush guarantees remote completion and is
thus one of the most performance-critical functions
on MPI-3.0 RMA programming. FOMPI’s flush im-
plementation relies on the underlying interfaces and
simply issues a DMAPP remote bulk completion and
an x86 mfence. All flush operations (MPI_Win_flush,
MPI_Win_flush_local, MPI_Win_flush_all and
MPI_Win_flush_all_local) share the same implementa-
tion and add only 78 CPU instructions (x86) to the crit-
ical path.

2.4. Communication functions

Communication functions map nearly directly to
low-level hardware functions. This is a major strength
of RMA programming. In FOMPI, put and get sim-
ply use DMAPP put and get for remote accesses or lo-
cal memcpy for XPMEM accesses. Accumulates either
use DMAPP atomic operations (for many common in-
teger operations on 8 Byte data) or fall back to a simple
protocol that locks the remote window, gets the data,
accumulates it locally, and writes it back. This fallback
protocol is necessary to avoid involvement of the re-
ceiver for true passive mode. It can be improved if we
allow buffering (enabling a space–time trade-off [43])
such that active-mode communications can employ ac-
tive messages to perform the remote operations atomi-
cally.

Handling datatypes. Our implementation supports
arbitrary MPI datatypes by using the MPITypes li-
brary [33]. FOMPI offers 2 different strategies to han-
dle MPI datatypes for putting data. The Maximal Block
Strategy communicates directly in each step the max-
imum possible number of elements that are contigu-
ous in the local and the remote memory. This is re-
peated until both MPI datatypes are fully processed.
This approach avoids copying and is bufferless, but
uses the maximum number of communication opera-
tions. The Fixed Buffer Size Strategy reduces the num-
ber of communication operations by overlapping copy-

ing with communication. While elements are contigu-
ous in the remote memory, elements are copied into
a temporary buffer until a predefined size is reached,
then the temporary buffer is communicated. The Maxi-
mal Block Strategy is used to handle MPI datatypes for
inter-node get and accumulate operations and always
for intra-node communication to avoid data serializa-
tion. A detailed analysis of the different strategies was
done by Schneider et al. [35], while a more detailed ex-
planation of the FOMPI implementation can be found
in [11].

While offering the full functionality of the rich MPI
interface, our implementation is highly tuned for the
common case of contiguous data transfers using intrin-
sic datatypes (e.g., MPI_DOUBLE). Our full implemen-
tation adds only 173 CPU instructions (x86) in the op-
timized critical path of MPI_Put and MPI_Get. We also
utilize SSE-optimized assembly code to perform fast
memory copies for XPMEM communication.

2.5. Blocking calls

The MPI standard allows an implementation to
block in several synchronization calls. Each correct
MPI program should thus never deadlock if all those
calls are blocking. However, if the user knows the de-
tailed behavior, she can tune for performance, e.g., if
locks block, then the user may want to keep lock/un-
lock regions short. We describe here which calls may
block depending on other processes and which calls
will wait for other processes to reach a certain state. We
point out that, in order to write (performance) portable
programs, the user cannot rely on such knowledge in
general!

With our protocols, (a) MPI_Win_fence waits for all
other window processes to enter the MPI_Win_fence
call, (b) MPI_Win_start waits for matching calls of
MPI_Win_post from all processes in the access group,
(c) MPI_Win_wait waits for MPI_Win_complete calls
from all processes in the exposure group, and
(d) MPI_Win_lock and MPI_Win_lock_all wait until
they acquired the desired lock.

3. Detailed performance modeling and evaluation

We now describe several performance features of
our protocols and implementation and compare it to
Cray MPI’s highly tuned point-to-point as well as its
relatively untuned one sided communication. In addi-
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tion, we compare FOMPI with two major HPC PGAS
languages: UPC and Fortran 2008 with Coarrays, both
specially tuned for Cray systems. We did not evaluate
the semantically richer Coarray Fortran 2.0 [23] be-
cause no tuned version was available on our system.
We execute all benchmarks on the Blue Waters system,
using the Cray XE6 nodes only. Each compute node
contains four 8-core AMD Opteron 6276 (Interlagos)
2.3 GHz and is connected to other nodes through a 3D-
Torus Gemini network. We use the Cray Programming
Environment 4.1.40 for MPI, UPC, and Fortran Coar-
rays, and GNU gcc 4.7.2 when features that are not
supported by Cray’s C compiler are required (e.g., in-
line assembly for a fast x86 SSE copy loop).

Our benchmark measures the time to perform a sin-
gle operation (for a given process count and/or data
size) at all processes and adds the maximum across all
ranks to a bucket. The run is repeated 1,000 times to
gather statistics. We use the cycle accurate x86 RDTSC
counter for each measurement. All performance fig-
ures show the medians of all gathered points for each
configuration.

3.1. Latency and bandwidth

Comparing latency and bandwidth between one
sided RMA communication and point-to-point com-
munication is not always fair since RMA communica-
tion may require extra synchronization to notify the tar-
get. All latency results presented for RMA interfaces
are guaranteeing remote completion (the message is
committed in remote memory) but no synchronization.
We analyze synchronization costs separately in Sec-
tion 3.2.

We measure MPI-1 point-to-point latency with stan-
dard ping-pong techniques. For Fortran Coarrays, we
use a remote assignment of a double precision array of
size SZ:

double p r e c i s i o n , dimension ( SZ ) : :
buf [ * ]

do memsize in a l l s i z e s <SZ
buf ( 1 : memsize ) [ 2 ] = buf ( 1 : memsize )
sync memory

end do

In UPC, we use a single shared array and the in-
trinsic function memput, we also tested shared pointers

with very similar performance:

shared [ SZ ] double * buf ;
buf = u p c _ a l l _ a l l o c ( 2 , SZ ) ;
f o r ( s i z e =1 ; s i z e <=SZ ; s i z e * =2) {

upc_memput(& buf [ SZ ] , &p r i v _ b u f [ 0 ] ,
s i z e ) ;

upc_fence ;
}

In MPI-3.0 RMA, we use an allocated window and
passive target mode with flushes:

MPI_Win_allocate ( SZ , . . . , &buf , &win ) ;
MPI_Win_lock ( exc l , 1 , . . . , win ) ;
f o r ( s i z e =1 ; s i z e <=SZ ; s i z e * =2) {

MPI_Put(& buf [ 0 ] , s i z e , . . . , 1 , . . . ,
win ) ;

MPI_Win_flush ( 1 , win ) ;
}
MPI_Win_unlock ( 1 , win ) ;

Figures 4(a), (b) and 5(a) show the latency for vary-
ing message sizes for intra- and inter-node put, get.
Due to the highly optimized fast-path, FOMPI has
more than 50% lower latency than other PGAS mod-
els while achieving the same bandwidth for larger
messages. The performance functions (cf. Fig. 1) are:
Pput = 0.16 ns·s+1 µs and Pget = 0.17 ns·s+1.9 µs.

3.1.1. Overlapping computation
The overlap benchmark measures how much of the

communication time can be overlapped with compu-
tation. It calibrates a computation loop to consume
slightly more time than the latency. Then it places com-
putation between the communication and the synchro-
nization and measures the combined time. The ratio
of overlapped computation is then computed from the
measured communication, computation, and combined
times. Figure 5(b) shows the ratio of the communica-
tion that can be overlapped for Cray’s MPI-2.2, UPC
and FOMPI MPI-3.0.

3.1.2. Message rate
The message rate benchmark is very similar to the

latency benchmark, however, it benchmarks the start of
1,000 transactions without synchronization. This deter-
mines the overhead for starting a single operation. The
Cray-specific PGAS pragma defer_sync was used
in the UPC and Fortran Coarrays versions for full op-
timization. Figure 6(a) and (b) show the message rates
for DMAPP and XPMEM (shared memory) commu-
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Fig. 4. Latency comparison for remote put/get for DMAPP communication. Note that MPI-1 Send/Recv implies remote synchronization while
UPC, Fortran Coarrays and MPI-2.2/3.0 only guarantee consistency. (a) Latency inter-node put. (b) Latency inter-node get. (Colors are visible in
the online version of the article; http://dx.doi.org/10.3233/SPR-140383.)

Fig. 5. (a) shows a latency comparison for remote put/get for XPMEM (shared memory) communication. Note that MPI-1 Send/Recv im-
plies remote synchronization while UPC, Fortran Coarrays and MPI-2.2/3.0 only guarantee consistency. (b) demonstrates the communication/
computation overlap for put over DMAPP, Cray MPI-2.2 has much higher latency up to 64 kB (cf. Fig. 4(a)), thus allows higher overlap.
XPMEM implementations do not support overlap due to the shared memory copies. (Colors are visible in the online version of the article;
http://dx.doi.org/10.3233/SPR-140383.)

nications, respectively. Injecting a single 8-Byte mes-
sage costs 416 ns for inter-node and 80 ns (∼190 in-
structions) for intra-node case.

3.1.3. Atomics
Figure 7 shows the performance of the DMAPP-

accelerated MPI_SUM of 8-Byte elements, a non-
accelerated MPI_MIN and 8-Byte CAS. The perfor-
mance functions are Pacc,sum = 28 ns · s + 2.4 µs,
Pacc,min = 0.8 ns · s + 7.3 µs and PCAS = 2.4 µs.
The DMAPP acceleration lowers the latency for small
messages while the locked implementation exhibits a

higher bandwidth. However, this does not consider the
serialization due to the locking.

3.2. Synchronization schemes

In this section, we study the overheads and model
the performance of the various synchronization modes.
Our performance models can be used by the program-
mer to select the best option for the problem at hand.

The different modes have nontrivial trade-offs. For
example General Active Target Synchronization per-
forms better if small groups of processes are synchro-
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Fig. 6. Message rates for put communication for all transports. (a) Message rate inter-node. (b) Message Rate intra-node. (Colors are visible in
the online version of the article; http://dx.doi.org/10.3233/SPR-140383.)

Fig. 7. Atomic operation performance. (Colors are visible in the on-
line version of the article; http://dx.doi.org/10.3233/SPR-140383.)

nized and fence synchronization performs best if the
synchronization groups are essentially as big as the
full group attached to the window. However, the exact
crossover point is a function of the implementation and
system. While the active target mode notifies the tar-
get implicitly that its memory is consistent, in passive
target mode, the user has to do this explicitly or rely
on synchronization side effects of other functions (e.g.,
allreduce).

Global synchronization. Global synchronization is
offered by fences in MPI-2.2 and MPI-3.0. It can be di-
rectly compared to Fortran Coarrays sync all and
UPC’s upc_barrier which also synchronize the
memory at all processes. Figure 8(a) compares the
performance of FOMPI with Cray’s MPI-2.2, UPC,
and Fortran Coarrays implementations. The perfor-

mance function for FOMPI’s fence implementation is:
Pfence = 2.9 µs · log2(p).

General active target synchronization. Only MPI-
2.2 and MPI-3.0 offer General Active Target (also
called “PSCW”) synchronization. A similar mecha-
nism (sync images) for Fortran Coarrays was un-
fortunately not available on our test system. Fig-
ure 8(b) shows the performance for Cray MPI and
FOMPI when synchronizing an one-dimensional Torus
(ring) where each process has exactly two neighbors
(k = 2). An ideal implementation would exhibit
constant time for this benchmark. We observe sys-
tematically growing overheads in Cray’s implemen-
tation as well as system noise [15,31] on runs with
more than 1,000 processes with FOMPI. We model
the performance with varying numbers of neighbors
and FOMPI’s PSCW synchronization costs involving
k off-node neighbor are Ppost = Pcomplete = 350 ns ·k,
and Pstart = 0.7 µs, Pwait = 1.8 µs.

Passive target synchronization. The performance of
lock/unlock is constant in the number of processes
(due to the global/local locking) and thus not graphed.
The performance functions are Plock,excl = 5.4 µs,
Plock,shrd = Plock_all = 2.7 µs, Punlock = Punlock_all =
0.4 µs, Pflush = 76 ns and Psync = 17 ns.

We demonstrated the performance of our protocols
and implementation using microbenchmarks compar-
ing to other RMA and message passing implementa-
tions. The exact performance models for each call can
be utilized to design and optimize parallel applications,
however, this is outside the scope of this paper. To
demonstrate the usability and performance of our pro-
tocols for real applications, we continue with a large-
scale application study.
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Fig. 8. Synchronization latencies. (a) Latency for global synchronization. (b) Latency for PSCW (ring topology). (Colors are visible in the online
version of the article; http://dx.doi.org/10.3233/SPR-140383.)

4. Application evaluation

We selected two motif applications to compare our
protocols and implementation with the state of the art:
a distributed hashtable representing many big data and
analytics applications and a dynamic sparse data ex-
change representing complex modern scientific appli-
cations. We also analyze the application MIMD Lattice
Computation (MILC), a full production code with sev-
eral hundred thousand source lines of code, as well as
a 3D FFT code.

In all codes, we tried to keep most parameters con-
stant to compare the performance of PGAS languages,
MPI-1 and MPI-3.0 RMA. Thus, we did not employ
advanced concepts, such as MPI datatypes or process
topologies, that are not available in all implementations
(e.g., UPC and Fortran Coarrays).

4.1. Distributed hashtable

Our simple hashtable represents data analytics appli-
cations that often require random access in distributed
structures. We compare MPI point-to-point commu-
nication, UPC, and MPI-3.0 RMA. In the implemen-
tation, each process manages a part of the hashtable
called the local volume consisting of a table of el-
ements and an additional overflow heap to store el-
ements after collisions. The table and the heap are
constructed using fixed-size arrays. In order to avoid
traversing of the arrays, pointers to most recently in-
serted items as well as to the next free cells are stored
along with the remaining data in each local volume.
The elements of the hashtable are 8-Byte integers.

The MPI-1 implementation is based on MPI Send
and Recv using an active message scheme. Each pro-
cess that is going to perform a remote operation sends
the element to be inserted to the owner process which
invokes a handle to process the message. Termination
detection is performed using a simple protocol where
each process notifies all other processes of its local ter-
mination. In UPC, table and overflow list are placed in
shared arrays. Inserts are based on proprietary (Cray-
specific extensions) atomic compare and swap (CAS)
operations. If a collision happens, the losing thread ac-
quires a new element in the overflow list by atomi-
cally incrementing the next free pointer. It also updates
the last pointer using a second CAS. UPC_fences are
used to ensure memory consistency. The MPI-3.0 im-
plementation is rather similar to the UPC implementa-
tion, however, it uses MPI-3.0’s standard atomic oper-
ations combined with flushes.

Figure 9(a) shows the inserts per second for a batch
of 16k operations per process, each adding an ele-
ment to a random key (which resides at a random pro-
cess). MPI-1’s performance is competitive for intra-
node communications but inter-node overheads signif-
icantly impact performance and the insert rate of a sin-
gle node cannot be achieved with even 32k cores (op-
timizations such as coalescing or message routing and
reductions [39] would improve this rate but signifi-
cantly complicate the code). FOMPI and UPC exhibit
similar performance characteristics with FOMPI being
slightly faster for shared memory accesses. The spikes
at 4k and 16k nodes are caused by different job layouts
in the Gemini torus and different network congestion.
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Fig. 9. Application motifs: (a) Hashtable representing data analytics applications and key-value stores, (b) dynamic sparse data exchange rep-
resenting graph traversals, n-body methods, and rapidly evolving meshes [16]. (a) Inserts per second for inserting 16k elements per process
including synchronization. (b) Time to perform one dynamic sparse data exchange (DSDE) with 6 random neighbors. (Colors are visible in the
online version of the article; http://dx.doi.org/10.3233/SPR-140383.)

4.2. Dynamic sparse data exchange

The dynamic sparse data exchange (DSDE) repre-
sents a common pattern in irregular applications [16].
DSDE is used when a set of senders has data des-
tined to arbitrary target processes but no process knows
the volume or sources of data it needs to receive. The
DSDE pattern is very common in graph-based compu-
tations, n-body simulations, and adaptive mesh refine-
ment codes. Due to the lack of space, we use a DSDE
microbenchmark as proxy for the communication per-
formance of such applications [16].

In the DSDE benchmark, each process picks k tar-
gets randomly and attempts to send eight Bytes to each
target. The DSDE protocol can either be implemented
using alltoall, reduce_scatter, a nonblocking barrier
combined with synchronous sends, or one sided accu-
mulates in active target mode. The algorithmic details
of the protocols are described in [16]. Here, we com-
pare all protocols of this application microbenchmark
with the Cray MPI-2.2 and FOMPI MPI-3.0 imple-
mentations. Figure 9(b) shows the times for the com-
plete exchange using the four different protocols (the
accumulate protocol is tested with Cray’s MPI-2.2 im-
plementation and FOMPI) and k = 6 random neigh-
bors per process. The RMA-based implementation is
competitive with the nonblocking barrier, which was
proved optimal in [16]. FOMPI’s accumulates have
been tuned for Cray systems while the nonblocking
barrier we use is a generic dissemination algorithm.
The performance improvement relative to other proto-
cols is always significant and varies between a factor
of two and nearly two orders of magnitude.

4.3. 3D Fast Fourier Transform

We now discuss how to exploit overlap of computa-
tion and communication with our low-overhead imple-
mentation in a three-dimensional Fast Fourier Trans-
formation. We use the MPI and UPC versions of the
NAS 3D FFT benchmark. Nishtala et al. and Bell et
al. [7,29] demonstrated that overlap of computation
and communication can be used to improve the per-
formance of a 2D-decomposed 3D FFT. We compare
the default “nonblocking MPI” with the “UPC slab”
decomposition, which starts to communicate the data
of a plane as soon as it is available and completes the
communication as late as possible. For a fair compari-
son, our FOMPI implementation uses the same decom-
position and communication scheme like the UPC ver-
sion and required minimal code changes resulting in
the same code complexity.

Figure 10(a) shows the performance for the strong
scaling class D benchmark (2048×1024×1024) on dif-
ferent core counts. UPC achieves a consistent speedup
over MPI-1, mostly due to the overlap of communi-
cation and computation. FOMPI has a slightly lower
static overhead than UPC and thus enables better over-
lap (cf. Fig. 5(b)), resulting in a slightly better perfor-
mance of the FFT.

4.4. MIMD lattice computation

The MIMD Lattice Computation (MILC) Collabo-
ration studies Quantum Chromodynamics (QCD), the
theory of strong interaction [8]. The group develops a



88 R. Gerstenberger et al. / Enabling highly-scalable remote memory access programming with MPI-3 One Sided

Fig. 10. Applications: The annotations represent the improvement of FOMPI over MPI-1. (a) 3D FFT performance. (b) MILC: Full application
execution time. (Colors are visible in the online version of the article; http://dx.doi.org/10.3233/SPR-140383.)

set of applications, known as the MILC code. In this
work, we use version 7.6.3 as a base. That code reg-
ularly gets one of the largest allocations of computer
time at US NSF supercomputer centers. The su3_rmd
code, which is part of the SPEC CPU2006 and SPEC
MPI benchmarks, is included in the MILC code.

The code performs a stencil computation on a four-
dimensional rectangular grid. Domain decomposition
is performed in all four dimensions to minimize the
surface-to-volume ratio. In order to keep data consis-
tent, neighbor communication is performed in all eight
directions, in addition, global all reductions are done
regularly to check convergence of a solver. The most
time consuming part of MILC is the conjugate gradi-
ent solver which uses nonblocking MPI communica-
tion overlapped with local computations.

The performance of the full code and the solver have
been analyzed in detail in [4]. Several optimizations
have been applied, and a UPC version that demon-
strated significant speedups is available [36]. This ver-
sion replaces the MPI communication with a simple
remote memory access protocol. A process notifies all
neighbors with a separate atomic add as soon as the
data in the “send” buffer is initialized. Then all pro-
cesses wait for this flag before they get (using Cray’s
proprietary upc_memget_nb) the communication
data into their local buffers. This implementation seri-
alizes the data from the application buffer into UPC’s
communication buffers. Our MPI-3.0 implementation
follows the same scheme to ensure a fair comparison.
We place the communication buffers into MPI win-
dows and use MPI_Fetch_and_op and MPI_Get with
a single lock all epoch and MPI_Win_flush to perform
the communications. The necessary changes are small

and the total number of source code lines is equiva-
lent to the UPC version, We remark that additional op-
timizations may be possible with MPI, for example,
one could use MPI datatypes to communicate the data
directly from the application buffers resulting in addi-
tional performance gains [14]. However, since our goal
is to compare to the UPC version, we only investigate
the packed version here.

Figure 10(b) shows the execution time of the whole
application for a weak-scaling problem with a local lat-
tice of 43 × 8, a size very similar to the original Blue
Waters Petascale benchmark. Some phases (e.g., CG)
of the computation execute up to 45% faster, however,
we chose to report full-application performance. The
UPC and FOMPI codes exhibit essentially the same
performance, while the UPC code uses Cray-specific
tuning and the MPI-3.0 code is portable to different
architectures. The full-application performance gain
over the MPI-1 version is more than 15% for some con-
figurations. The application was scaled successfully up
to 524,288 processes with all implementations. This
result and our microbenchmarks demonstrate the scal-
ability and performance of our protocols and that the
new RMA semantics can be used to improve full appli-
cations to achieve performance close to the hardware
limitations in a fully portable way. Since most of those
existing applications are written in MPI, a step-wise
transformation can be used to optimize most critical
parts first.

5. Related work

The intricacies of MPI-2.2 RMA implementations
over InfiniBand networks have been discussed by Jiang
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et al. [18] and Santhanaraman et al. [34]. Zhao et
al. describe an adaptive strategy to switch from ea-
ger to lazy modes in active target synchronizations in
MPICH 2 [43]. This mode could be used to speed up
FOMPI’s atomics that are not supported in hardware.

PGAS programming has been investigated in the
context of UPC and Fortran Coarrays. An optimized
UPC Barnes Hut implementation shows similarities
to MPI-3.0 RMA programming by using bulk vector-
ized memory transfers combined with vector reduc-
tions instead of shared pointer accesses [42]. Nishtala
at al. and Bell et al. used overlapping and one-sided
accesses to improve FFT performance [7,29]. Highly
optimized PGAS applications often use a style that can
easily be adapted to MPI-3.0 RMA.

The applicability of MPI-2.2 One Sided has also
been demonstrated for some applications. Mirin et
al. discuss the usage of MPI-2.2 One Sided coupled
with threading to improve the Community Atmosphere
Model (CAM) [26]. Potluri et al. show that MPI-2.2
One Sided with overlap can improve the communi-
cation in a Seismic Modeling application [32]. How-
ever, we demonstrated new MPI-3.0 features that can
be used to further improve performance and simplify
implementations.

6. Discussion and conclusions

In this work, we demonstrated how MPI-3.0 can be
implemented over RDMA networks to achieve similar
performance to UPC and Fortran Coarrays while offer-
ing all of MPI’s convenient functionality (e.g., Topolo-
gies and Datatypes). We provide detailed performance
models, that help choosing among the multiple op-
tions. For example, a user can use our models to de-
cide whether to use Fence or PSCW synchronization
(if Pfence > Ppost + Pcomplete + Pstart + Pwait, which
is true for large k). This is just one example for the
possible uses of our detailed performance models.

We studied all overheads in detail and provide in-
struction counts for all critical synchronization and
communication functions, showing that the MPI inter-
face adds merely between 150 and 200 instructions in
the fast path. This demonstrates that a library inter-
face like MPI is competitive with compiled languages
such as UPC and Fortran Coarrays. Our implementa-
tion proved to be scalable and robust while running on
524,288 processes on Blue Waters speeding up a full
application run by 13.8% and a 3D FFT on 65,536 pro-
cesses by a factor of two.

We expect that the principles and extremely scalable
synchronization algorithms developed in this work will
act as a blue print for optimized MPI-3.0 RMA imple-
mentations over future large-scale RDMA networks.
We also expect that the demonstration of highest per-
formance to users will quickly increase the number of
MPI RMA programs.
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