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Abstract. The spectacular growth in the number of cores in current supercomputers poses design challenges for the development
of performance analysis and tuning tools. To be effective, such analysis and tuning tools must be scalable and be able to manage
the dynamic behaviour of parallel applications. In this work, we present ELASTIC, an environment for dynamic tuning of large-
scale parallel applications. To be scalable, the architecture of ELASTIC takes the form of a hierarchical tuning network of nodes
that perform a distributed analysis and tuning process. Moreover, the tuning network topology can be configured to adapt itself to
the size of the parallel application. To guide the dynamic tuning process, ELASTIC supports a plugin architecture. These plugins,
called ELASTIC packages, allow the integration of different tuning strategies into ELASTIC. We also present experimental tests
conducted using ELASTIC, showing its effectiveness to improve the performance of large-scale parallel applications.
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1. Introduction

Supercomputers are a widely used resource in many
areas of modern research. However they are a costly
resource, and access is often limited to an allocation of
execution hours.

Normally, parallel applications running on super-
computers do not make efficient use of resources. This
provokes longer than expected running times, which
“waste” computation hours and reduce the available
time for further executions. In this context, analysis
and tuning tools that identify, understand and fix per-
formance problems are more valuable than ever.

To apply performance analysis and tuning to par-
allel applications executed on supercomputers, it is
paramount that these tools have been specifically de-
signed following a scalable and modular architecture
that enables the control and analysis of an extremely
large number of tasks.

Nowadays, there are automatic performance analy-
sis tools, such as Scalasca [9], Periscope [1] or TAU
[13], capable of scaling and looking for performance
problems of parallel applications. Nevertheless, if the
behaviour of the parallel applications depends on input
data, or may even change during each execution due to
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data evolution, such analysis could not be enough. In
these cases, dynamic analysis and tuning of the appli-
cation during its execution, such as that performed by
MATE [10], Active Harmony [14], and other tools, is
necessary. However, most of these tuning tools do not
scale well, mainly due to a centralised analysis process.

Taking into consideration these facts, this paper ad-
dresses the lack of large-scale dynamic tuning in the
current performance analysis area. We present the de-
sign and implementation of ELASTIC, a dynamic tun-
ing environment for MPI large-scale parallel applica-
tions. Its operation supports continuous and automatic
monitoring, performance analysis and modifications
while the application is running. ELASTIC’s design is
based on a novel model [4,5] whose scalability proper-
ties arise from the decentralisation of the dynamic tun-
ing process. From this model, ELASTIC’s architecture
is structured as a hierarchical tuning network of dis-
tributed nodes that conduct dynamic tuning in a decen-
tralised manner.

Using ELASTIC, an experimental evaluation has
been carried out, consisting of dynamically detecting
and resolving performance problems over a large-scale
parallel application. From the obtained results, it can
be concluded that ELASTIC is able to scale, and effec-
tively improve the performance of large-scale parallel
applications at runtime.
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The remainder of this paper is organised as fol-
lows. Section 2 presents an overview of the model from
which ELASTIC’s design arises. Section 3 describes
ELASTIC’s design, followed by details of its imple-
mentation in Section 4. The experimental evaluation
performed using ELASTIC is depicted in Section 5.
Section 6 describes the related work. The conclusions
and outlook are presented in Section 7.

2. Model for hierarchical dynamic tuning

ELASTIC’s design is based on a model that en-
ables the hierarchical distribution of the analysis and
tuning process. It uses an abstraction mechanism that
offers a reduced representation of the application
state, enabling global performance improvements to be
achieved.

Let A := {¢;: 0 < % < n — 1} be a parallel ap-
plication composed of n distributed processes, which
we will call rasks. When A is too large to be dynam-
ically analysed and tuned in a centralised manner, the
proposed model decomposes it into a number of non-
empty subsets of tasks, called domains, which can be
dealt with separately.

The Decomposition Process over A, A — {D:
0 < k < d — 1}, must produce domains, Dy, that are
disjoint and cover the entire application. Dynamic tun-
ing of each of these separate domains will lead to local
performance improvements in the parallel application.

To achieve global performance improvements, the
model proposes the Abstraction Process. In this pro-
cess, each domain obtained after decomposing the
original parallel application is represented as a single
virtual parallel application task, U;CO) = abstract(Dy,),
0<k<d-1

This abstraction means that the performance of a vir-
tual task is analysed using information collected from
the domain that it represents and, similarly, tuning ap-
plied to a virtual task is actually carried out on the un-
derlying domain.

When taken together, the virtual tasks representing
all the domains of the original application form a new
virtual parallel application, vO = {v](co) 0<k<d—-
1}, which is composed of fewer tasks than the original.

While the number of tasks of the virtual parallel ap-
plication is still too great to be analysed in a centralised
manner, the decomposition and abstraction processes
are repeated:

(1) Decomposition. A virtual parallel application at
level £ is decomposed, VO {D;f): 0<k<
dp — 1}.

(2) Abstraction. The domains are abstracted to cre-
ate new virtual tasks at level ¢ + 1, vg"H) =

abstract(Dg)), 0 < k < dp — 1, which form a
virtual parallel application at this level, YD =
(D 0 <k < dp— 1),

Following these decomposition and abstraction pro-
cesses, we obtain a hierarchy of virtual parallel appli-
cations, with the lowest level being the original paral-
lel application and the highest level having few enough
tasks to be analysed and tuned in a centralised manner.
Figure 1 shows how the model works for an SPMD
application. Level ¢ is the root when D((f) =V,

Application decomposition and the abstraction
mechanism permit analysis and tuning to be performed
separately on each domain composed of real or virtual
tasks. This pattern leads to a hierarchical distribution
of the analysis and tuning process of the parallel ap-
plication. As such, the analysis and tuning conducted
over the virtual parallel application at the highest level
results in a global performance improvement over the
real parallel application.

In order to offer effective distributed dynamic tun-
ing, the model follows a collaborative approach which
requires the integration of user knowledge to guide the
performance analysis and tuning and to define the ab-
straction process. This information is codified in the
form of a performance model and an abstraction model
respectively.

Performance models are a set of analytical expres-
sions that represent the behaviour of a parallel appli-
cation with the aim of predicting its performance. To
represent a performance model for dynamic tuning, we
use terminology from MATE [10]:

e A set of measurement points, which determines
the parameters of the application to be monitored
and the points where they have to be measured.

e A set of evaluation strategies and/or expressions
used for finding performance problems and giv-
ing solutions to them. Such strategies and expres-
sions are evaluated on the data collected from the
measurement points.

e A set of tuning points and actions, and a synchro-
nisation method. A tuning point specifies what
must be changed in the application, a tuning ac-
tion is the change to be performed on that point,
and the synchronisation method determines the
conditions that must hold to perform the tuning
action in a consistent manner.
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Virtual Parallel Application (V(O))
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Fig. 1. Decomposition and abstraction of an SPMD application following the model for hierarchical dynamic tuning. (Colors are visible in the

online version of the article; http://dx.doi.org/10.3233/SPR-140392.)

The model for hierarchical dynamic tuning also re-
quires a description about how to perform the abstrac-
tion between levels in the hierarchy. This knowledge
forms the Abstraction model. When a virtual task is
dynamically tuned following a performance model, the
abstraction model must provide information about:

e How to calculate the measurement points of a vir-
tual task from the events produced in the set of
virtual or real tasks belonging to the domain that
it represents.

e How to translate the set of tuning points, actions
and synchronisation method of a virtual task to be
applied to the set of virtual or real tasks from the
domain that it represents.

e How to decompose a real or virtual parallel appli-
cation into domains of tasks which can be anal-
ysed and tuned following the performance model
to be used at its level in the hierarchy.

Therefore, using performance models, dynamic tun-
ing can be applied to any domain of tasks, whether real
or virtual. When dynamic tuning is applied to domains
composed of virtual tasks, using the abstraction mech-
anism such process is actually occurring on the set of
domains of real tasks that they represent.

The model presented can be used to attack certain
problems that only require local analysis to be solved,
for example, optimising the memory usage of an appli-
cation task. In this case, no abstraction occurs as only
analysis in the base of the hierarchy is necessary. Other
problems can only be solved at a global level, while
the rest of the hierarchy supports it via the abstraction

mechanism. An example of such a situation is tuning
MPI parameters, which must be the same for all appli-
cation tasks.

However, many problems can be attacked in a hi-
erarchically distributed manner, where analysis is per-
formed at all levels in the hierarchy. Load balancing
can be performed both locally and globally in such
a way that local performance improvements can be
achieved without worsening the global performance of
the application.

3. Design

ELASTIC is an environment for large-scale dy-
namic tuning, whose design is based on the model pro-
posed in [4] and summarised in Section 2. In this sec-
tion we outline the translation of this model into the
design of ELASTIC.

To create a decentralised analysis and tuning pro-
cess, as well as to fit the model requirements, a tun-
ing network of distributed nodes is structured as a hi-
erarchical tree. Each node in the tuning network is
formed of two modules: an Analysis and Tuning Mod-
ule (ATM) and an Abstractor (see Fig. 2).

The base of the tuning network is made up of Ab-
stractor—-ATM pairs, where each ATM is responsible
for improving the performance of a disjoint subset of
parallel application tasks, called its analysis and tun-
ing domain. To do it, the ATMs operate in three con-
tinuous phases: monitoring, performance analysis and
modification. First, the ATMs instrument the parallel
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Fig. 2. General hierarchical tuning network. (Colors are visible in the online version of the article; http://dx.doi.org/10.3233/SPR-140392.)
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Fig. 3. Detail of Fig. 2 showing the Abstractor—ATM connections in the tuning network. (Colors are visible in the online version of the article;

http://dx.doi.org/10.3233/SPR-140392.)

application, using instrumentation orders for monitor-
ing. These orders indicate the points in the applications
that have to be measured to gather information about
its behaviour. In the analysis phase, ATMs receive this
information in form of events, search for bottlenecks,
and give solutions for overcoming them. Events are
messages generated by the parallel application tasks
which contain the information previously requested by
the monitoring orders. Finally, instrumentation orders
for tuning are sent by the ATMs to apply the given so-
lution. The tuning orders specify the points to be dy-
namically changed in the application to improve its
performance.

The decentralised dynamic tuning process
performed by the base level ATMs leads to local per-
formance improvements in the parallel application.
However, to obtain global performance improvements,
dynamic tuning of larger segments of the application
is required. Following the abstraction concepts of the
model, it is necessary to abstract each domains of real
tasks. In the design, this abstraction is provided by the
Abstractor components associated to each of the base
level ATMs.

The Abstractor receives events about the state of the
children in the analysis and tuning domain of its asso-
ciated ATM. Then, it summarises this information and
sent it to its parent ATM in the form of a new event.
When an Abstractor receives an instrumentation order
for monitoring or tuning from its parent ATM, it must
translate the order to be applied to the analysis and tun-
ing domain of its associated ATM. As it can be seen in
Fig. 3, the Abstractor makes the connection with the
parent ATM, and the ATM associated to this Abstrac-
tor connects with its analysis and tuning domain, i.e.,
its immediate children. Consequently, the Abstractor
is responsible for representing its associated ATM as a
parallel application task (the virtual task of the model)
to its parent ATM.

Following the proposed model, while the number of
ATMs at the base level is too big to be analysed in a
centralised manner, these ATMs are decomposed into
domains that can be tuned separately. In the design, this
tuning process will be carried out by the ATMs at the
higher level in the hierarchy. Therefore, the base level
ATMs become the analysis and tuning domains of the
ATMs located at the higher level in the hierarchy.
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Fig. 4. Abstraction mechanism: Abstractor—-ATM design. (Colors are visible in the online version of the article; http://dx.doi.org/10.3233/

SPR-140392.)

The abstraction and decomposition process contin-
ues until the set of ATMs at a specific level can be anal-
ysed in a centralised manner by a single ATM, the root
ATM of the tuning network. Finally, the model is de-
signed as a hierarchical tuning network of Abstractor—
ATM pairs. Each ATM is able to dynamically tune its
analysis and tuning domain, which leads to a hierar-
chical distribution of the analysis and tuning process.
Each Abstractor also virtualises the domain of its as-
sociated ATM and presents it, to its parent ATM, as an
application task.

The operation of the proposed hierarchical tuning
network is based on the action of the Abstractor—-ATM
pair as a single entity. As it can be seen in Fig. 3, the
Abstractor makes the connection with the parent ATM,
and the ATM associated to this Abstractor connects
with its analysis and tuning domain. The functional de-
sign of the Abstractor—ATM pair and its communica-
tion paths are shown in Fig. 4.

The Abstractor is composed of two main modules,
in which the knowledge about the abstraction model is
contained:

o [nstrumentation Order Translator. Once an in-
strumentation order for monitoring or tuning is re-
ceived by the Abstractor, the Instrumentation Or-
der Translator transforms it into one or more new
instrumentation orders which will be sent to the
children.

e Event Creator. This module creates events using
the data contained in events received from its as-
sociated ATM. Created events encapsulate the in-
formation requested by monitoring orders previ-
ously received by the Abstractor from its parent
ATM.

The Abstractor communicates with its associated
ATM via an internal API. Every ATM is composed of
three modules:

e Performance Evaluator. This module contains the
information necessary to carry out the monitor-
ing, analysis and tuning of the parallel applica-
tion, i.e., the performance model.

e Event Manager. This module is responsible for
receiving and managing events generated by the
parallel application tasks or other descendant
ATMs. An event received by this module may be
created as a result of the monitoring instrumen-
tation orders generated by its Performance Eval-
uator or the Performance Evaluator of an ances-
tor ATM. In the first case, the Event Manager will
transfer this event to its Performance Evaluator,
and in the second case it will transfer it to the
Event Creator module of its associated Abstrac-
tor. In this way the events required by the ances-
tor ATMs may flow through the hierarchy. The
knowledge required to route incoming events is
based on whether the monitoring order which pro-
voked the generation of this event originated in
the ATM or the Abstractor at this level.

o [nstrumentation Order Sender. This module has
to send the instrumentation orders received from
its Performance Evaluator, or from its associated
Abstractor, to its analysis and tuning domain.

4. Implementation

The current implementation of ELASTIC can be
used to dynamically improve the performance of MPI
parallel application running on UNIX systems.
4.1. Architecture

ELASTIC’s architecture, shown in Fig. 5, is based

on a hierarchical network composed of the following
components:
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Fig. 5. ELASTIC’s architecture. (Colors are visible in the online version of the article; http://dx.doi.org/10.3233/SPR-140392.)

o ELASTIC Front-End (EFE). The root process of
the network, responsible for creating and instanti-
ating the internal processes of the tuning network.

o Abstractor-Analysis and Tuning Module (ATM)
pairs. Located at the internal nodes of the tun-
ing network, they carry out the distributed perfor-
mance analysis and tuning of the application, as
well as providing the abstraction mechanism be-
tween levels in the hierarchy.

e ELASTIC Back-End (EBE). A daemon that con-
trols the execution and dynamic instrumentation
of each parallel application task, receiving mon-
itoring and tuning orders from the Abstractor—
ATM pair.

e Task Monitoring Library (TMLib). A shared li-
brary that is dynamically loaded by the EBE in
each task, to support monitoring and performance
data gathering.

These components cooperate to control and improve
the execution of a parallel application through continu-
ous monitoring, analysis and tuning. In the monitoring
phase, ELASTIC uses event tracing to collect informa-
tion about the application at the task level. This infor-
mation is sent to the Abstractor—ATM pairs, where au-
tomatic performance analysis is conducted. After de-
tecting a performance problem, tuning orders are sent
to the EBE to be inserted into the application task at
runtime.

The hierarchical communication layer of ELASTIC
is established through MRNet [12]. This framework al-
lows for the connection of the EFE with the EBEs as
well as enabling the Abstractor—ATM pairs to be dis-
tributed across MRNet’s TBON of internal processes,

utilising the strength of filters. Filters are functions lo-
cated at the internal nodes of the TBON that synchro-
nise and aggregate the data that flows through the hier-
archy. More details of how ELASTIC takes advantage
of the features of MRNet can be found in [4].

ELASTIC uses the Dynlnst Library [3] to dynam-
ically generate code and insert it into the applica-
tion during runtime, without recompiling or restart-
ing the parallel application. Specifically, via DynlInst,
ELASTIC inserts into the parallel application tasks
(a) monitoring code to generate events to be traced, and
(b) tuning code to apply the solution obtained after the
performance analysis with the aim of improving the
performance of the application.

It should be noted that the tuning network topology
of ELASTIC can be configured to accommodate the
size of the parallel application and the complexity of
the tuning strategy being employed [6].

4.2. ELASTIC package

The knowledge required to guide the performance
analysis and tuning process 1is integrated into
ELASTIC in the form of plugins called ELASTIC
packages. An ELASTIC package is a set of code and
configurations that allow a tuning strategy. It is ap-
plied to improve the performance of a parallel appli-
cation and is specified in terms of performance and
abstraction models. To develop ELASTIC packages,
ELASTIC provides the Tuning and Abstraction API.
This API consists of a set of methods from different
classes which represent the components of the Abstrac-
tor—ATM pair and their behaviour. Figure 6 shows the
specific methods of the Tuning and Abstraction API
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which must be overwritten, codifying the performance
and abstraction models, to implement an ELASTIC
package. Decomposition occurs prior to run time, and
it must be manually defined outside the ELASTIC
package.

The ELASTIC’s plugin architecture gives the flexi-
bility to tackle a wide range of performance problems
just by interchanging the ELASTIC packages.

5. Experimental evaluation

We have carried out several experimental tests with
the aim of proving the effectiveness and feasibility of
ELASTIC as an environment that can be used to dy-
namically improve the performance of MPI large-scale
parallel applications.

The evaluation consists of executing a parallel appli-
cation which presents a specific performance problem
and using ELASTIC to dynamically detect and resolve
this problem. In this experimentation, we have used a
synthetic parallel application with controlled load im-
balance. It allows for testing different configurations in
the most controlled manner.

The synthetic application has been developed fol-
lowing the SPMD programming paradigm using MPI
as the library for inter-process communication.

The tasks that compose the application are logically
arranged in a square two dimensional grid. Each task is
only able to communicate directly with its neighbour-
ing tasks.

Each iteration consists of a computation phase fol-
lowed by a communication phase. Each task has a
number of work units, which represent a fixed amount
of computation to be performed in each iteration. In
this way, the amount of work to be performed by each
task in the computation phase is proportional to the
number of work units it has. In the communication
phase, each task exchanges messages with all of its
neighbouring tasks. Each message has a fixed size. The
number of iterations of the application is set to 100.

In order to ensure that the synthetic application was
able to operate in a large-scale context, the amount of
work to be performed in each iteration was kept equiv-
alent to the number of parallel application tasks. In our
experimental evaluation, each task started the execu-
tion with 20 work units. The dynamic imbalance in-
serted into the application also remains proportional to
the size of the application.

To demonstrate the dynamic tuning capabilities of
ELASTIC, load imbalance was introduced into the

synthetic application at runtime in form of points of
additional load, hotspots, localised to logical areas of
the application grid.

(1) Single Localised Hotspot: This scenario is char-
acterised by presenting a single area of additional
workload located at the centre of the application
grid. The introduced load accounts for an addi-
tional 10% of the initial application workload for
all application sizes.

(2) Multiple Hotspots: In this scenario the additional
load introduced is distributed amongst a num-
ber of smaller hotspots. Hotspots are introduced
in three groups, each group at specific moments
during the execution of the synthetic application.

Each group of hotspots represents an additional 7%
of the initial application load (21% throughout the
entire execution) for all the application sizes. The
hotspots are randomly placed in the application grid.

5.1. Load balancing ELASTIC package

To resolve the inefficiencies related to the load im-
balance problems, an ELASTIC package has been de-
signed and integrated into ELASTIC. It should be note
that the same ELASTIC package is used in all the Ab-
stractor—ATM pairs. Figure 7 outlines the content of
this ELASTIC package, divided into its two concep-
tual parts, the performance model and the abstraction
model.

This ELASTIC package attempts to balance the
number of work units evenly amongst all the tasks in
the synthetic application. Each instance balances the
load in the analysis and tuning domain of the ATM
where it is located. Firstly, the package monitors the
state of its domain and detects which tasks are under-
loaded and which are overloaded. Then, the package
decides how to redistribute the work units according to
the communication pattern presented in the synthetic
application using local migrations between neighbour-
ing tasks. The load balancing algorithm used in this
ELASTIC package is proposed in [4].

5.2. Effectiveness evaluation

The experimental evaluation was executed on the
supercomputer SuperMUC at Leibniz Supercomputing
Centre, using up to three islands, each one composed
of 512 nodes interconnected by Infiniband FDR10. The
nodes have 2 8-core 2.7 GHz Intel Xeon processors and
run SuSe Linux.
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vector<Monitoring Order> PerformanceEvaluator::InitialMonitoringOrders()

Contains the monitoring points of the performance model.

bool PerformanceEvaluator::NewEvent(Event *e)

Manages the storage of events and recognise when the performance evaluation can
be activated.

vector<Order> PerformanceEvaluator::EvaluatePerformance()
Conducts the performance problem detection process.

vector<Monitoring Order> InstrumentationOrderTranslator::

TranslateMonitoringOrder (MonitoringOrder *mo)

Converts monitoring orders from the parent level to be applied to the level below.

vector<Tuning Order> InstrumentationOrderTranslator::
TranslateTuningOrder (TuningOrder *to)

Converts tuning orders from the parent level to be applied to the level below.
bool EventCreator::NewEvent(Event *e)

Stores the events required to create a new event.
vector<Event> EventCreator::CreateEvent()

Creates a new event using the information about each of the events recorded in the

EventCreator::NewEvent function.

Fig. 6. Tuning and abstraction methods required to implement an ELASTIC package.

Load Balance Performance Model

Abstraction Model

Performance Expressions

max_work is the maximum number of work units for a task in a domain.

ideal_work is average number of work units for tasks in a domain.

If (max_work) - ideal_work > threshold) then
LB_Synthethic()

Constraint: the work units only can be
moved between neighbouring tasks

1 Input: work units per task in the domain.
H— Output: work units to send to the neighbouring tasks.

—> Measurement Points
work_units
iteration_id
task_id

Per task Monitoring Order

Event generated per task
Event(work_units, iteration_id, task_id)

—» Tuning Points
Variables of each task that indicate the number of work units
to move to neighbour tasks

(move_north, move_east, move_south, move_west) |

— Domains composed of contiguous blocks of tasks.

Application Decomposition

can be analysed and tuned separately

Event Creation

| Event(domain_work_units, iteration_id, ATM_id)

domain_work_units is the sum of the work units for all
the tasks in the domain

Tuning Order Translation
Input:

Tuning_order (move_north, units_north, move_east, units_east,
move_south, units_south, move_ west, units_west)

Function to map the input order to the level below:

for direction in ["north", "east", "south", "west"] do
for task in border(direction) do
Add_Tuning(task, ("move "+direction,
move_units(direction)/
length(border(direction))))

Output for each task in the domain:

Tuning_order (move_north, units_north, move_east, units_east,
move south, units_south, move west, units_west)

Fig. 7. ELASTIC package for load balancing in the synthetic application.

The synthetic application was executed with differ-
ent numbers of tasks from 256 up to 16,384 tasks.
To dynamically tune the application, the topology of
ELASTIC’s tuning network was chosen following the
method proposed in [6], which choses topologies com-
posed by the minimum number of non-saturated Ab-
stractor—ATM pairs. The details of these topologies are
given in Table 1.

The 256 task application is dynamically tuned by a
centralised tuning network, for the rest of the number
of tasks, the application is dynamically tuned by net-
works of two levels.

ELASTIC’s tuning network is located on different
physical nodes from those running the synthetical par-
allel application, giving each Abstractor—ATM four

Table 1
ELASTIC tuning network topologies over the synthetic application
Number of Level 0 Level 1
application tasks number of ATMs number of ATMs
256 1 -
1,024 4 1
2,304 9 1
4,096 16 1
9,216 36 1
16,384 64 1

cores due to multi-threaded nature of MRNet internal
nodes [2]. This does not include the EBEs, which run
in the same core as the task they control.
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Fig. 8. Centralised hotspot scenario: execution time of the original
and tuned synthetic application. (Colors are visible in the online ver-
sion of the article; http://dx.doi.org/10.3233/SPR-140392.)
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Fig. 9. Multiple hotspot scenario: execution time of the original and
tuned synthetic application. (Colors are visible in the online version
of the article; http://dx.doi.org/10.3233/SPR-140392.)

Figures 8 and 9 present the execution time of the
synthetic application with and without ELASTIC per-
forming dynamic tuning, for the two considered sce-
narios, single and multiple hotspot respectively. The
percentage presented depicts the reduction in the exe-
cution time when the application is tuned by ELASTIC
compared to the original application.

For both scenarios, the effects of the load balance
conducted by ELASTIC are reflected in an improve-
ment of the application performance in terms of a re-
duction in the total execution time of the synthetic ap-
plication for all sizes tested.

The improvement is reduced with the size of the par-
allel application. This is due to the restrictions placed
on the migration process, where work units can only
be migrated between neighbouring tasks. As the ap-
plication grid size increases, it takes longer to spread
the load throughout the grid, irrespective of the load
balancing strategy employed. This is a problem with
the lack of scalability of the local migrations available
to this application, and not an artefact of ELASTIC’s
scalability.

It can be seen that the reduction in the performance
improvement gained with the size of the synthetic ap-
plication is not as pronounced in the multiple hotspot
scenario as in the case of the centralised hotspot. This
is because the multiple hotspots are introduced in a
more distributed manner and so it does not take as long
to spread the additional load throughout the applica-
tion grid, as if the additional load is located in a single
hotspot.

Using ELASTIC, experimental tests were also per-
formed over a real agent-based MPI parallel appli-
cation, which describes how an epidemic spreads
throughout a population. In the functional behaviour
of the agent-based application, the computation associ-
ated with an agent does not depend on the application
task where it is performed. This gives rise to an “any-
to-any” communication pattern, wherein each task may
exchange information with any other task in each itera-
tion. For the same reason, migration can be performed
between any tasks in the application.

The agent-based application suffers from load im-
balance due to the agent life cycle. To solve this prob-
lem, an ELASTIC package was developed according
to the characteristics of the application. The load bal-
ancing algorithm implemented in this ELASTIC pack-
age takes advantage of the application’s communica-
tion pattern to conduct an immediate distribution of
the load between tasks, because the restriction of local
communication does not exist. This behaviour permits
ELASTIC to reach its full potential, achieving reduc-
tions of around 30% in the execution time when dy-
namically tuning this application. The full details of
this experimentation can be found in [4].

The important outcome of the results presented in
this section is that ELASTIC is able to manage the
data generated during the monitoring process and use
its tuning network to effectively detect load imbalances
and correct them at runtime. From this, it can be con-
cluded that ELASTIC is able to scale to dynamically
tune large-scale parallel applications, its primary ob-
jective.

5.3. ELASTIC overhead

A primary consideration when designing ELASTIC
was limiting the overhead that the dynamic tuning pro-
cess introduces into the parallel application.

The overhead in ELASTIC comes from (1) inserting
and removing code during the monitoring and tuning
phases, (2) the execution of this code, and (3) the con-
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Table 2
ELASTIC overhead measured in the synthetic application

Number of With ELASTIC Without ELASTIC Overhead
application tasks (s) (s) (%)
256 148.886 148.813 0.049
1,024 148.891 148.820 0.048
2,304 148.918 148.826 0.062
4,096 148.931 148.831 0.067
9,216 148.957 148.853 0.070
16,384 148.952 148.851 0.068

current operation of the EBE on the same core as the
task that it controls.

Additional overhead may be introduced by user code
required by the tuning process, such as the migration of
work units between tasks in the synthetic application.
This overhead does not come from ELASTIC, but from
the specific tuning strategy being employed.

To measure the intrusion caused by ELASTIC when
tuning the synthetic application, we have used the
single localised hotspot scenario. For each applica-
tion size, the synthetic application was executed with
ELASTIC performing all analysis and tuning func-
tions, but without the migration process. In this way,
the application remained imbalanced, and the differ-
ence between this execution time and the execution
time of the synthetic application without ELASTIC
gives a measurement of the overhead introduced.

Table 2 shows the execution times for each appli-
cation size executed with and without ELASTIC. The
overhead is given as a percentage of the execution time
without ELASTIC.

It can be seen that the overhead introduced by
ELASTIC is only a fraction of a second, which repre-
sents less than 0.1% of the execution time for all appli-
cation sizes.

We have shown that ELASTIC’s strategy of per-
forming all costly operations in a distributed manner
without using application resources ensures that the in-
trusion required to perform dynamic tuning is kept to a
minimum.

6. Related work

In the performance analysis area, there are a number
of tools that perform dynamic tuning of parallel appli-
cations.

MATE [10] offers dynamic analysis and tuning of
MPI parallel applications through three basic and con-
tinuous phases: monitoring, performance analysis and

modification. All these steps are performed automat-
ically, dynamically, and continuously throughout the
application execution. MATE uses dynamic instrumen-
tation to modify the application at runtime and its anal-
ysis process is based on performance models.

Autopilot [11] is an online tuning toolkit that allows
for the adaptive control of applications and resource
management policies on a wide area distributed sys-
tems. The Autopilot infrastructure includes distributed
sensors for performance data acquisition, distributed
actuators for implementing performance optimisation
decisions, and a decision-making mechanism, based on
fuzzy logic, for assimilation of sensor inputs and con-
trol of actuator outputs.

Active Harmony [14] allows dynamic adaptation
of an application to the network and resource capac-
ities of the execution environment. In this tool, the
monitoring process gathers measurements from vari-
ous libraries with the same functionality. Then, it uses
heuristic techniques to explore the application optimi-
sation space and finally chooses the best implementa-
tion among the libraries or the best combination of tun-
ing parameters.

PerCo [7] is a framework for performance moni-
toring in heterogeneous environments. It is capable of
monitoring the progress of the application’s execution
and redeploying it to optimise performance through
process migration. To allow for the redeployment, the
controlled application could be interrupted in one plat-
form and restarted in another from the point of the
interruption, using, for example, check-pointing files.
The performance analysis and tuning process is per-
formed using historical data, and combining time se-
ries and data adjustment methods.

Each of the previous tools employs different tech-
niques to gather and analyse performance data, and use
these data to make decisions in order to improve the
performance of a parallel application. However, they
all share a common trait, which is the existence of a
centralised analysis component in their design. It is due
to this fundamentally centralised scheme that none of
these tools are able to scale to operate on large-scale
parallel applications.

Currently, there are several automatic performance
analysis tools that work on large-scale systems, such
as Scalasca [9], TAU [13] and Periscope [1]. All of
them implement some sort of decentralised mecha-
nism. However, none of them, except for latest efforts
in Periscope under the AutoTune Project [8], consider
application tuning.

Having these facts in mind, in this work we address
the lack of large-scale dynamic tuning in the current
performance analysis area.
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7. Conclusion

The principal objective of this work is to face the
challenges posed by performing dynamic tuning on
parallel applications composed of many thousands of
tasks. This objective has been met in the form of
ELASTIC. The scalability of ELASTIC arises from its
architecture, structured as a hierarchal tree of nodes
(the tuning network) whose topology can be adapted to
accommodate the size of the parallel application.

ELASTIC operates following the closed tuning loop
of automatic and continuous monitoring, analysis and
tuning of a parallel application without stopping, re-
compiling or re-running it. In the monitoring phase,
ELASTIC uses event tracing to collect information
about the application at the task level. This information
is sent to the nodes of the tuning network where auto-
matic performance analysis is conducted. After detect-
ing a performance problem, tuning orders are inserted
into the application tasks at runtime with the aim of
improving its performance.

The knowledge required to guide the performance
analysis and tuning process is integrated into
ELASTIC in the form of ELASTIC packages. The au-
thors of ELASTIC packages have access to a rich array
of features via the Tuning and Abstraction API, which
also defines the structure of the packages themselves.
The resolution of different kinds of performance prob-
lems using ELASTIC is completely viable, owing to
the plugin architecture granted by these ELASTIC
packages.

ELASTIC was used to balance the load in a syn-
thetic parallel application. In all the cases tested up to
16,384 tasks, ELASTIC improves the application ex-
ecution time for 22%. These results highlight the vi-
ability of using ELASTIC for dynamic tuning in the
large-scale computing area.

The most direct extension of this work is the creation
of a library of generalised ELASTIC packages which
model different performance issues. These ELASTIC
packages would only need small modifications to be
applied to specific parallel applications with the same
performance problem.
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