
Scientific Programming 22 (2014) 299–307 299
DOI 10.3233/SPR-140395
IOS Press

Implementation of d-Spline-based
incremental performance parameter
estimation method with ppOpen-AT

Teruo Tanaka a,∗, Ryo Otsuka a, Akihiro Fujii a, Takahiro Katagiri b and Toshiyuki Imamura c

a Faculty of Information, Kogakuin University, Tokyo, Japan
E-mails: {teru, fujii}@cc.kogakuin.ac.jp
b Information Technology Center, The University of Tokyo, Tokyo, Japan
E-mail: katagiri@kata-lab.itc.u-tokyo.ac.jp
c RIKEN Advanced Institute for Computational Science, Kobe, Japan
E-mail: imamura.toshiyuki@riken.jp

Abstract. In automatic performance tuning (AT), a primary aim is to optimize performance parameters that are suitable for
certain computational environments in ordinary mathematical libraries. For AT, an important issue is to reduce the estimation
time required for optimizing performance parameters. To reduce the estimation time, we previously proposed the Incremental
Performance Parameter Estimation method (IPPE method). This method estimates optimal performance parameters by inserting
suitable sampling points that are based on computational results for a fitting function. As the fitting function, we introduced
d-Spline, which is highly adaptable and requires little estimation time. In this paper, we report the implementation of the IPPE
method with ppOpen-AT, which is a scripting language (set of directives) with features that reduce the workload of the developers
of mathematical libraries that have AT features. To confirm the effectiveness of the IPPE method for the runtime phase AT,
we applied the method to sparse matrix–vector multiplication (SpMV), in which the block size of the sparse matrix structure
blocked compressed row storage (BCRS) was used for the performance parameter. The results from the experiment show that the
cost was negligibly small for AT using the IPPE method in the runtime phase. Moreover, using the obtained optimal value, the
execution time for the mathematical library SpMV was reduced by 44% on comparing the compressed row storage and BCRS
(block size 8).

Keywords: Automatic performance tuning, fitting function, SpMV, performance parameter estimation, mathematical library

1. Introduction

One of the main aims of automatic performance tun-
ing (AT) is to optimize performance parameters that
are suitable for certain computational environments in
ordinary mathematical libraries [2,3,6–8,11,12]. In this
study, we discuss the optimization of a single perfor-
mance parameter. In a conventional estimation of per-
formance parameters, the following procedure is ap-
plied to obtain the optimal value in a mathematical li-
brary:

Step 1. Choose static sampling points from the val-
ues of the performance parameter.

*Corresponding author. E-mail: teru@cc.kogakuin.ac.jp.

Step 2. Run the target mathematical library to ob-
tain the execution time (executed value) at
each sampling point.

Step 3. Define a fitting function and fit it to the exe-
cuted values.

Step 4. Search for a minimum value of the fitting
function that corresponds to the optimal
value of the performance parameter.

In general, this approach to conventional estimation of
performance parameters has been used in AT.

The accuracy of the estimated value of the cost func-
tion depends on the number of sampling points, al-
though fixed-point sampling is generally used in AT.
The target mathematical library can also be executed at

1058-9244/14/$27.50 © 2014 – IOS Press and the authors. All rights reserved

300 T. Tanaka et al. / Implementation of d-Spline-based incremental performance parameter estimation method with ppOpen-AT

any sampling point. Moreover, sampling points can be
incremented dynamically. Because the sampling cost
is proportional to the number of sampled points, we
should consider alternative approaches, such as a dy-
namic incremental method, in which adequate points
are inserted successively.

For performance parameter estimation, we have pro-
posed the Incremental Performance Parameter Esti-
mation method (IPPE method). In this method, opti-
mal performance parameters are estimated by inserting
suitable sampling points that refer to the computational
results for a fitting function, d-Spline, which is highly
adaptable and requires little estimation time [9,10].

When designing the IPPE method, we considered
two major issues. The first was the selection of a fitting
function under the following conditions: (1) It should
be calculated using a small number of sampling points
because the estimation begins from the least number
of sampling points. (2) The calculation cost should be
small because it is necessary to calculate a fitting func-
tion for every sampling point, which is incremented
dynamically. The second issue was the criteria for in-
crementing sampling points; i.e., (1) terminating and
(2) selecting sampling points.

We have now applied the IPPE method to ppOpen-
AT, a scripting language for AT [4,5]. In particular,
ppOpen-AT is a scripting language (set of directives)
with the purpose of automatically generating the code
required for AT by placing annotations in the source
program to reduce the workload of library developers.
We applied the IPPE method to ppOpen-AT for both
the install-time and runtime phases. For the runtime
phase, the IPPE method was implemented in a mathe-
matical library, such as BLAS, which is within the loop
structure of the user program. The IPPE method is ex-
ecuted to improve performance every time the math-
ematical library in the loop structure is executed. To
confirm the effectiveness of AT for the runtime phase
using the IPPE method, we have applied it to sparse
matrix–vector multiplication (SpMV).

This paper is organized as follows. Section 2 of
this paper introduces the d-Spline-based IPPE method.
Section 3 describes the procedure used in the IPPE
method. Section 4 provides an outline of ppOpen-AT.
Section 5 describes the implementation of the IPPE
method with ppOpen-AT. Section 6 presents an exam-
ple of the application of the IPPE method to ppOpen-
AT for SpMV. Finally, Section 7 provides a summary,
conclusions and planned future work.

2. Incremental performance parameter estimation
based on d-Spline

2.1. Fitting function d-Spline

Figure 1 illustrates the fitting function d-Spline with
sampling points and executed values. Regarding the
first issue of the IPPE method, we define a fitting func-
tion d-Spline (discrete spline function), which has the
high flexibility required to adapt to data sets and can
be easily computed. The function d-Spline is repre-
sented by the values of the discrete points fj = f (xj),
1 � j � n, i.e., f = (f1, f2, f3, . . . , fj , . . . , fn)t,
where t means transposition (Fig. 1). Each xj has the
same interval. Parameter values are a portion of x. For
smoothness, the number of xj(n) must be sufficiently
greater than the number of parameter values (N). The
executed value yi (1 � i � k, k � N) for k sam-
pling points out of N is the execution time of the tar-
get mathematical program. The executed values are for
sampling points y = (y1, y2, y3, . . . , yi, . . . , yn)t. The
smoothness of f is achieved by |fj−1 − 2fj + fj+1|,
2 � j � n − 1, and f is selected to minimize the fol-
lowing expression (1):

min
f

(
‖y − Ef‖2 + α2‖Df‖2), (1)

where α is sufficiently small to adapt well to the exe-
cuted values y. Figure 2 illustrates matrices E and D of
sizes k×n and (n− 2)×n, respectively. The function
d-Spline is not a spline function because the continuity
of the derivatives is not guaranteed; thus, it is named as
d-Spline for discrete spline.

Fig. 1. Example of the fitting function d-Spline.

Fig. 2. Structure of matrices E and D in (1).

T. Tanaka et al. / Implementation of d-Spline-based incremental performance parameter estimation method with ppOpen-AT 301

2.2. Analysis of d-Spline using the Givens method

To solve (1), we first solve the following least-
squares problem:

min
f

(
‖b − Zf‖2). (2)

Figure 3 shows the structures of the matrix Z and
vector b. To suppress fill-ins, which change zero ele-
ments to nonzero elements, ‖y − Ef‖ is transformed
to ‖Ety − EtEf‖. The matrix EtE has nonzero val-
ues on some diagonal elements, while all values on off-
diagonal elements are zero. To solve the least-squares
problem, the Householder method is generally used;
however, for a sparse matrix, the Givens method is bet-
ter. Moreover, in our parameter estimation method, the
Givens method is better for suppressing fill-ins because
of the special structure of the matrix Z.

When we apply the Givens method, Z is trans-
formed to R, which is a tridiagonal matrix (half band-
width is 3) with a computational complexity of O(n),
where n is the number of parameter values. In compar-
ison, the computational complexity of the mathemat-
ical program is O(L2) or O(L3), where L is the ma-
trix size. Therefore, the computational complexity for
solving a d-Spline can be ignored. Figure 4 illustrates
the addition of a new row at the incrementing sampling
point. When a new sampling point xs is incremented, a
Givens transformation is performed to remake R (ob-

Fig. 3. Structure of the matrix Z and vector b in (2).

Fig. 4. Addition of a new row at the incrementing sampling point.

tained from existing points; see Fig. 4) by adding a
new row. However, a Givens transformation need not
be applied for Z. Therefore, the same O(n) requires
less computation (approximately 1/5) in the increment
phase. This shows that the method of adding sampling
points together with the fitting function d-Spline makes
an efficient combination.

3. Procedure for incremental performance
parameter estimation method

This section describes the procedure for estimating
the optimal parameter value by applying d-Spline. The
second issue in using IPPE method is the criteria for
incrementing sampling points, i.e., (1) terminating and
(2) selecting sampling points. This issue is consid-
ered here. Figure 5 shows the procedure for the IPPE
method:

Step 1. Select four initial sampling points from x,
including both end points.

Step 2. Execute the target mathematical library for
each point xj to obtain y.

Step 3. Compute d-Spline f, which is adaptable to
executed values y, and estimate xs, which
corresponds to fs, the smallest of f.

Step 4. If xs is the same for successive t times (t =
2, 3, 4, 5), exit (criterion 1); otherwise, go
to Step 5.

Step 5. If the estimated xs is not among the sam-
pling points, add xs as a new sampling
point; otherwise, select another xs to make
fs such that maxj |fj−1 − 2fj − fj+1|, 1 �
j � n (criterion 2), and return to Step 2.

In Step 4, the number of successive t values is se-
lected by balancing the accuracy required for estima-
tion against computational efficiency.

Fig. 5. Procedure for the IPPE method.

302 T. Tanaka et al. / Implementation of d-Spline-based incremental performance parameter estimation method with ppOpen-AT

4. Outline of ppOpen-AT

The software ppOpen-AT is a scripting language
(set of directives) designed to efficiently develop math-
ematical libraries for parallel computations. In par-
ticular, ppOpen-AT automatically generates the code
required for AT by placing annotations in the source
program, thereby reducing the workload of library de-
velopers. Moreover, ppOpen-AT provides a code gen-
erator, in the manner of a preprocessor, which is based
on its defined directives.

4.1. Timing of automatic performance tuning (AT)

There are two optimization phases in AT: the install-
time and runtime phases (see Fig. 6). AT for the install-
time phase occurs when mathematical libraries are in-
stalled on the computer.

The runtime phase occurs when the mathematical li-
brary is run via the user program. Note that AT must be
executed in the loop structure of the user program. Be-
cause AT information is updated in the loop structure,
it is called dynamic AT. AT must be executed quickly
so it does not affect the user program. In the runtime
phase, information is obtained about characteristics of
the user program, such as the size or structure of ma-
trices or both.

4.2. Major functions of ppOpen-AT

ppOpen-AT provides the following three types of AT
functions:

Unroll: loop unrolling depth adjustment to loop
unrolled code.

Variable: blocking of length adjustment to blocked
algorithms.

Select: algorithm selection based on user’s
knowledge.

Fig. 6. Install-time and runtime optimization phases for AT.

4.3. Example of ppOpen-AT

An example of the input and output of ppOpen-AT
is shown in Fig. 7. The input is a user program. The an-
notations of ppOpen-AT (#pragma OAT) are placed in
the user program. The output is the user program with
AT features, and ppOpen-AT provides a code generator
in the manner of a preprocessor.

The user program, as shown in Fig. 7, performs
matrix–matrix multiplication, which is applied in the
adjustment function for the unrolling depth in the
install-time phase optimization. In this program, the
variable n specifies the matrix dimension.

Because this example uses the pragma operator un-
roll and specifies the loop variable i, the loop unrolling
depth of the outer loop i is selected as the performance
parameter. Because the pragma cooperator varied is
used, the range for the depth is selected from 1 to 16.
The fitting function for the execution time of the tar-
get AT region for optimization is a fifth-order linear
polynomial, which, in this example, is selected by the
pragma co-operator fitting.

In the AT system, the best values for the perfor-
mance parameter are estimated by fixing n. For the per-
formance parameter in this example, sampling points,
which are equal to the depth of unrolling to fix n, are
selected by the pragma cooperator sampled. In this ex-

Fig. 7. Input and output codes of ppOpen-AT.

T. Tanaka et al. / Implementation of d-Spline-based incremental performance parameter estimation method with ppOpen-AT 303

ample, the execution time from the first to the fifth,
eighth, and sixteenth unrolling depths were measured.
Subsequently, based on the measured data, the coeffi-
cients of the fifth-order linear polynomial were deter-
mined to estimate the values for the performance pa-
rameter. The least-squares method was used in this es-
timation.

5. Implementation of IPPE method with
ppOpen-AT

We implemented the IPPE method with ppOpen-AT
for the install-time and runtime phases. In ppOpen-AT,
sampling points are selected by the pragma cooperator
sampled. For each sampling point, the execution time
for the mathematical library is measured. In contrast,
in the IPPE method, sampling points are automatically
selected.

To implement the IPPE method with ppOpen-AT, we
entered two new pragmas:

OAT fitting dspline and

OAT fitting dynamicdspline.

The first pragma is used for the install-time phase
AT, while the second is used for the runtime phase AT.

As illustrated in Fig. 8, we replaced the pragma

OAT fitting least-squares 5 sampled (1–5, 8, 16)

with the pragma OAT fitting dspline.
For AT in the install-time phase, we used the proce-

dure for the IPPE method described in Section 3. The
AT for the runtime phase is described as follows. The
left side of Fig. 9 shows the loop structure of the user
program. Several pragmas are placed in the user’s tar-
get mathematical library for AT. To add the function-
ality of the IPPE method to ppOpen-AT, the pragma
that was added is as follows: OAT fitting dynamicd-
spline. By executing ppOpen-AT as a preprocessor, a
user program with AT features is generated. The right
side of Fig. 9 shows the pseudo-code of the generated
user program.

In the sentence do mathematical library(P),
P refers to the value of the performance parameter.
To calculate the execution time (t3), the function wall
clock() is executed at the beginning and at the end
of the mathematical library. The function dynamicd-
spline() is executed in two phases: P is selected in the
first phase and then a new P , which is used in the next
iteration, is selected based on the result for t3 in the
second phase.

Fig. 8. New pragma OAT fitting dspline for d-Spline in AT.

Fig. 9. Pseudo-code generated by ppOpenAT for the runtime phase.

304 T. Tanaka et al. / Implementation of d-Spline-based incremental performance parameter estimation method with ppOpen-AT

Fig. 10. Implementation of IPPE method for the runtime phase.

Figure 10 illustrates the procedure of the IPPE
method for the runtime phase AT. In the first phase, flag
is checked, which indicates whether the optimal value
has been determined. If the optimal value has been de-
termined, the optimal value is set to P ; otherwise, it
is set to the value of the sampling point. In the sec-
ond phase, d-Spline is recalculated by adding the exe-
cution time t3 to select a next sampling point. Accord-
ing to the IPPE procedure described in Section 3, if the
optimal value is determined, flag is set: otherwise, the
value of the sampling point is selected and used in the
mathematical library in the next iteration.

The first and second phases are called in each itera-
tion. Consequently, the following data should be regis-
tered:

• d-Spline f = (f1, f2, f3, . . . , fj , . . . , fn)t,
• flag: determination of optimal value,
• value of the sampling point for the next iteration,
• estimated optimal value,
• t times: number of successions for the identical

optimal value,
• list of sampling points not yet measured.

6. Application to sparse matrix–vector
multiplication

To confirm the effectiveness of the IPPE method
for the runtime phase AT, we applied the method
to sparse matrix–vector multiplication (SpMV). For a
sparse matrix structure, compressed row storage (CRS)
is usually used; however, in some cases, depending on
the structure of the sparse matrix, blocked compressed
row storage (BCRS) is used rather than CRS to ob-
tain better performance. Figure 11 shows the structures

Fig. 11. Structures of CRS and BCRS for compressing sparse
matrices.

of CRS and BCRS. CRS keeps only nonzero data el-
ements; in contrast, BCRS comprises square blocks,
where each block is a dense matrix, which may have
some zeroes.

For our experiment, the range of the performance
parameter was in block sizes from 1 to 14. For CRS,
a block size of 1 was used, and for BCRS, block sizes
from 2 to 14 were used. We used the sparse matrix raef-
sky3 obtained from the University of Florida Sparse
Matrix Collection [1].

Figure 12(a)–(d) show the changes in the shape of
d-Spline. The x-axis is the value of the performance
parameter (block size), and the y-axis is the execu-
tion time for the target mathematical library. The dot-
ted lines represent execution times for all values of the
performance parameter. The dotted lines show various
tops and bottoms, where data fitting was not easy.

Figure 12(a) shows the shape of d-Spline at the
fourth iteration of the user program. To obtain these
initial four sampling points, the loop structure was it-
erated four times. In each iteration, the mathematical
library was executed. The initial four sampling points
were at regular intervals, including both ends. The
numbers in the squares on d-Spline indicate the num-
ber of iteration times. The minimum point of d-Spline
was found to be 5, which was already included among
the sampling points. The next value selected for the
sampling point was 6, where the difference equation
of second order has the largest value (Section 3, cri-
terion 2). The selected sampling point 6 was used for
the calculation of the mathematical library in the next
iteration.

Figure 12(b) shows the shape of d-Spline at the fifth
iteration of the user program. The d-Spline was re-
shaped to add the execution time for sampling point 6.
The minimum sampling point of the reshaped d-Spline
was found to be 6, which was already among the sam-
pling points. Following the same procedure described

T. Tanaka et al. / Implementation of d-Spline-based incremental performance parameter estimation method with ppOpen-AT 305

(a) (b)

(c) (d)

Fig. 12. Changes in the shape of d-Spline as optimization develops.

for Fig. 12(a), the next value selected for the sampling
point was 7, where the difference equation of second
order has the largest value (Section 3, criterion 2).

Figure 12(c) shows the shape of d-Spline at the sev-
enth iteration of the user program, after the addition
of execution times for sampling points 7 and 8. The
minimum sampling point of the reshaped d-Spline was
found to be 8. According to the same procedure de-
scribed above, the next sampling point that was found
by d-Spline was 9.

Figure 12(d) shows the shape of d-Spline at the ninth
iteration of the user program. The minimum point of
d-Spline was found to be 8; the value of sampling point
8 has now been selected for three successive times,
which is considered to be a sufficient number of suc-
cessions. Therefore, 8 was determined to be the opti-
mal value, and flag, as shown in Fig. 10, was set.

Figure 12(a)–(d) illustrate the non-smooth behavior
of the performance, which has been reported previ-
ously [7,8]. These figures also show that d-Spline de-
fined by the expression (1) in Section 2, adapts well to
the execution time (executed values).

Figure 13 shows the execution time for the mathe-
matical library for each iteration. A mathematical li-

Fig. 13. Execution time for each iteration.

brary that uses different values of sampling points is
calculated once in each iteration until the optimal value
is determined. The broken line in the figure indicates
the execution time for the mathematical library, includ-
ing the estimation time using the IPPE method. This
shows that the cost of AT for the runtime phase us-
ing the IPPE method was negligibly small. Moreover,
the execution time for the mathematical library was re-
duced by 44% on comparing CRS and BCRS (block
size 8) using the obtained optimal value. After the tenth
iteration of the user program, the mathematical library
will use 8 as the determined optimal value.

306 T. Tanaka et al. / Implementation of d-Spline-based incremental performance parameter estimation method with ppOpen-AT

7. Related work

Reference [11] introduces Active Harmony, which
is incorporated into system software and optimizes the
runtime phase. Enhancement of Active Harmony has
been discussed in [2,3] for obtaining two-dimensional
performance parameters using the simplex method.
Active Harmony generates a tuned code and executes
just-in-time compilation multiple times during the run-
time phase.

In contrast, AT with IPPE method is applied at the
user level. The code to be tune is already complied,
which is executed only for searching performance pa-
rameter. The function d-Spline is efficient because its
overhead for runtime performance tuning is negligible
(computational complexity of d-Spline is O(n)), while
Active Harmony requires generating tuned code and
executes just-in-time compilation at the system level
with considerable overhead.

Reference [8] discusses multidimensional perfor-
mance parameters. Comparisons have been reported
among various search techniques, such as simplex,
genetic algorithms, simulated annealing, and particle
swarm optimization. These comparisons were applied
only to install-time AT, and the target for AT was only
matrix multiplication. These search techniques are to-
tally different in viewpoint from the mathematics used
in the IPPE method.

The target for AT in references [2,3] is kernels from
explicit solvers, and in reference [8] the target is only
matrix multiplication, while in this paper, we treat
SpMV.

In the above references, two-dimensional and mul-
tiple dimensional performance parameters are exam-
ined. One of our future goals is to enhance d-Spline to
handle multidimensional tuning parameter space. The
smoothness of d-Spline in one-dimensional parame-
ter space is represented by |fi−1 − 2fi,j + fi+1|. In
two-dimensional parameter space, the smoothness of
d-Spline can be represented by |fi−1,j+fi,j−1−4fi,j+
fi+1,j +fi,j+1|. The structure of the half bandwidth of
the matrix Z in Fig. 4 can be reshaped from 3 to 2n−1.
Therefore, the computational complexity of d-Spline
will increase to O(n3), which will reduce the efficiency
of d-Spline. We are now considering some new ap-
proaches to reduce the computational complexity.

8. Conclusions

In this study, we proposed the IPPE method for esti-
mating performance parameters. The IPPE method es-

timates optimal performance parameters by automat-
ically inserting suitable sampling points that refer to
computational results for a fitting function d-Spline.

The IPPE method based on d-Spline improved the
two major problems in parameter search: (1) non-
smooth behavior of the performance with respect to the
tuning parameters and (2) a lack of efficient runtime of
performance tuning.

We have integrated the methodology in the ppOpen-
AT framework. Using the IPPE method with ppOpen-
AT is effective for both the install-time and runtime
phases because sampling points are selected automat-
ically, i.e., the user does not have to specify the sam-
pling points. Especially for the runtime phase AT, the
cost in terms of execution time is low because the IPPE
method does not have to perform additional executions
of the mathematical library to measure the execution
time for AT. The mathematical library is executed us-
ing different performance parameter values that are au-
tomatically selected in each iteration until the optimal
value is determined.

Figure 12(a)–(d) show that d-Spline adapts well to
the non-smooth behavior of the value of the perfor-
mance parameter. The results from our experiment in
Fig. 13 show that the cost of AT for the runtime phase
using the IPPE method was negligibly small. More-
over, the execution time for the mathematical library
SpMV was reduced by 44% on comparing CRS and
BCRS (block size 8) using the obtained optimal value.

In future, we plan to enhance the IPPE method and
d-Spline for simultaneous evaluation of multiple per-
formance parameters. In the long run we aim to ap-
ply this methodology in a larger scope, such as more
kinds of performance parameters, more matrices/data
sets and parallelization.

Acknowledgement

This work was partially supported by JSPS KAK-
ENHI, Grant-in-Aid for Scientific Research (B), “Exa-
scale Adaptation to Sparse Iterative Library with Run-
time Auto-tuning Facility”, Grant Number 24300004.

References

[1] T. Davis, UF sparse matrix collection, www.cisu.ufi.e.,du/
research/sparse/matrices.

[2] J.K. Hollingsworth, M. Hall, J. Chame, C. Chen and A. Tiwari,
A scalable autotuning framework for compiler optimization,
in: IPDPS 2009, May 2009, Rome.

T. Tanaka et al. / Implementation of d-Spline-based incremental performance parameter estimation method with ppOpen-AT 307

[3] J.K. Hollingsworth and A. Tiwari, Online adaptive code gen-
eration and tuning, in: IPDPS, May 2011.

[4] T. Karagiri, S. Itoh and S. Ohshima, Adaptation of ppOpen-
AT to numerical kernels on explicit method, in: SIAM Annual
Meeting (SIAM AN12), 2012.

[5] T. Katagiri, S. Ito and S. Ohshima, Early experiences for adap-
tation of ppOpen-AT to numerical kernels on explicit method,
in: Special Session: Auto-Tuning for Multicore and GPU
(ATMG), in conjunction with the IEEE 7th International Sym-
posium on Embedded Multicore/Manycore System-on-Chip
(MCSoC-13), National Institute of Informatics, Tokyo, Japan,
September, 2013, Proceedings of MCSoC2013, pp. 153–158,
DOI: 10.1109/MCSoC.2013.15 2013.

[6] T. Katagiri, K. Kise, H. Honda and T. Yuba, ABCLibScript:
A directive to support specification of an auto-tuning facility
for numerical software, Parallel Computing 32(1) (2006), 92–
112.

[7] T. Katagiri, K. Kise, H. Honda and T. Yuba, ABCLib_
DRSSED: A parallel eigensolver with an auto-tuning facility,
Parallel Computing 32(3) (2006), 231–250.

[8] K. Seymour, H. You and J.J. Dongarra, A comparison of search
heuristics for empirical code optimization, in: The 3rd Interna-
tional Workshop on Automatic Performance Tuning, Tsukuba,
Japan, October 1st, 2008.

[9] T. Tanaka, T. Katagiri and T. Yuba, d-Spline based incremen-
tal parameter estimation in automatic performance tuning, in:
Proceedings of the 8th International Conference on Applied
Parallel Computing: State of the Art in Scientific Computing,
LNCS, Vol. 4699, Springer, 2007, pp. 986–995.

[10] T. Tanaka, R. Otsuka, A. Fujii and T. Katagiri, An incremental
parameter estimation method applying d-Spline for software
automatic tuning, in: The 8th East Asia Section of SIAM Con-
ference (EASIAM2012).

[11] C. Tapus, I.-H. Chung and J.K. Hollingsworth, Active har-
mony: Towards automated performance tuning, in: Supercom-
puting 02, Proceedings of the 2002 ACM/IEEE Conference on
Supercomputing, 2002, pp. 1–11.

[12] R.C. Whaley, A. Petitet and J.J. Dongarra, Automated empiri-
cal optimizations of software and the ATLAS project, Parallel
Computing 27 (2001), 3–35.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

