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Abstract. Domain decomposition methods are, alongside multigrid methods, one of the dominant paradigms in contemporary
large-scale partial differential equation simulation. In this paper, a lightweight implementation of a theoretically and numerically
scalable preconditioner is presented in the context of overlapping methods. The performance of this work is assessed by numerical
simulations executed on thousands of cores, for solving various highly heterogeneous elliptic problems in both 2D and 3D with
billions of degrees of freedom. Such problems arise in computational science and engineering, in solid and fluid mechanics.

While focusing on overlapping domain decomposition methods might seem too restrictive, it will be shown how this work
can be applied to a variety of other methods, such as non-overlapping methods and abstract deflation based preconditioners. It is
also presented how multilevel preconditioners can be used to avoid communication during an iterative process such as a Krylov
method.
Keywords: Linear solvers, divide and conquer, scalability

1. Introduction

Discretizations of partial differential equations used
to model physical phenomena typically lead to larger
and larger systems that cannot be solved directly and
require advanced preconditioning techniques to ensure
a fast convergence of iterative methods. As the cur-
rent trend in high performance computing evolve to-
wards more and more concurrency, recent results using
domain decomposition preconditioners [20] and multi-
grid methods [3,31] clearly show why these are the
methods of choice for achieving high-throughput fi-
nite element simulations. Both are examples of the di-
vide and conquer paradigm. On the one hand, for scalar
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equations such as the simulation of flows through
porous media, multigrid methods are often the pre-
ferred methods. One the other hand, domain decompo-
sition methods are widely used in solid mechanics, in
multiphysics or for code coupling. While these meth-
ods can offer high efficiency for solving PDE in paral-
lel, special care must be taken when solving highly het-
erogeneous and complex systems for ensuring conver-
gence rates independent of the number of computing
nodes and heterogeneities involved in the simulation:
as it will be shown in this paper with a simple com-
parison between two preconditioners, the difference in
number of iterations can be an order of magnitude.
The novelty of this paper is two-fold: first, a local re-
formulation of the one-level Schwarz method, quickly
presented in [17], is extended to efficiently assemble
a two-level preconditioner by avoiding the need of
global operators. Second, the parallel distribution of a
coarse grid operator is presented, it can for example be
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used to fuse communications. Altogether, large-scale
experiments are performed for two different PDE, with
various high-order finite elements, using highly vary-
ing coefficients on unstructured meshes, where sim-
ple methods are obsolete. There are two main fami-
lies of domain decomposition algorithms: overlapping
Schwarz methods and iterative substructuring meth-
ods. While this work is more focused towards the for-
mer, the key idea is the same for both methods: to ob-
tain convergence rates which are independent of the
number of subdomains, also referred to as substruc-
tures, an additional component to provide global trans-
fer of numerical information across all subproblems is
needed. In this work, the construction of a so-called
coarse operator is presented. In Section 2, some impor-
tant notions about domain decomposition methods are
recalled, in Section 3, the construction of the coarse
operator is presented. Numerical results are gathered
in Section 3.4, where problems of up to 22 billions
unknowns in 2D, and 2 billions unknowns in 3D are
solved on more than 16 K threads.

2. Domain decomposition preconditioners

Let Ω ⊂ R
d (d = 2 or 3) be a domain whose asso-

ciated mesh can be partitioned into N non-overlapping
meshes {Ti}1�i�N using graph partitioners such as
METIS [18] or SCOTCH [8]. Let V be the finite ele-
ment space spanned by the finite set of n basis func-
tions {φi}1�i�n defined on Ω. Typical finite element
discretizations of a symmetric, coercive bilinear form
a :V × V → R yield the following system to solve:

Ax = b, (1)

where (Aij)1�i,j�n = a(φj ,φi), (bi)1�i�n = (f ,φi),
f being in the dual space V ∗. Now let {Vi}1�i�N be
the local finite element spaces defined on the domains
associated to each {Ωi}1�i�N where Ωi is the subdo-
main defined as the union of all mesh elements in Ti,
for all 1 � i � N . If δ is a positive integer, the over-
lapping decomposition {T δ

i }1�i�N is defined recur-
sively as follow: T δ

i is obtained by including all ele-

ments of T δ−1
i plus all adjacent elements of T δ−1

i . For
δ = 0, T δ

i = Ti. An example of such a construction is
given Fig. 1, for δ = 2. Now consider the restrictions
{Ri}1�i�N from V to {V δ

i }1�i�N , the local finite el-
ement spaces on {Ωδ

i }1�i�N , and a local partition of

unity {Di}1�i�N such that

N∑
j=1

RT
j DjRj = In×n. (2)

Algebraically speaking, if {ni}1�i�N denotes the
number of degrees of freedom in each local finite ele-
ment spaces, then Ri is a boolean matrix of size ni×n,
and Di is a diagonal matrix of size ni × ni for all
1 � i � N . In our experiments, we use a pretty simple
partition of unity, already used for example in [19]. Let
χ̃i be a continuous piecewise linear function (hence
mesh elements vertices and degrees of freedom coin-
cide) defined on Ωδ

i as such:

χ̃i =

⎧⎪⎨
⎪⎩

1, on all nodes of T 0
i ,

1 − m

δ
, on all nodes of T m

i \ T m−1
i

∀m ∈ [1; δ].

The local partition of unity is defined as:

χi =
χ̃i∑N

j=1 χ̃j |V δ
i ∩V δ

j

,

so that the support of the non-negative function χi is
V δ
i and

N∑
i=1

χi = 1.

Using a linear interpolant from the finite element space
of continuous piecewise linear function from Ωδ

i to V δ
i

(which is typically of higher order), Di can be obtained
from χi for all 1 � i � N . For more complex par-
titions of unity, see for example [6]. Using the parti-
tion of unity, a common one-level preconditioner for
system (1) introduced in [7] is:

P−1
RAS =

N∑
i=1

RT
i Di

(
RiAR

T
i

)−1
Ri. (3)

Equation (3) clearly shows the need of the globally
assembled matrix, or to be more precise, the need of
N assembled submatrices (commonly referred to as
“Dirichlet” matrices). These are typically hard to as-
semble directly and independently with classical finite
element packages, in comparison with unassembled
matrices (or “Neumann” matrices). Two approaches
can be considered to build each “Dirichlet” matrix.
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(1) Build A, then extract each assembled subprob-
lem. While this is the natural approach, it usually
require some communications to build a parallel
structure capable of handling distributed degrees
of freedom, with ghost elements.

(2) Build the stiffness matrices Aδ+1
i yielded by the

discretization of a on V δ+1
i , then, remove the

columns and rows associated to degrees of free-
dom lying on elements of T δ+1

i \T δ
i . This yields

Ai := RiAR
T
i , the global assembled matrix A is

never assembled.

The second approach does not require any additional
parallel information or communication: there is no
need for a global ordering, associated to a global par-
tition of the degrees of freedom. Local matrices Ai are
symmetric positive definite, as A is.

Usually, one subdomain is mapped to a single MPI
process. For that reason, a given MPI process has a nat-
ural access to ui := Riu for any function u ∈ V . In
all the following, we will assume that a finite element
function in V δ

i (resp. V ) can be interpreted as vector of
R
ni (resp. Rn) for all 1 � i � N . In order to compute

a global sparse matrix-vector product Ax, one has to
notice that, thanks to the partition of unity and the du-
plication of unknowns on the overlap, it can be proven
that:

RiAR
T
j Djxj = RiR

T
j RjAR

T
j Djxj , (4)

so that

(Ax)i = RiAx = RiA

N∑
j=1

RT
j DjRjx

= Ri

N∑
j=1

RT
j RjAR

T
j DjRjx

=

N∑
j=1

RiR
T
j AjDjxj . (5)

Applying RiR
T
j to a vector xj of V δ

j for all 1 �
i �= j � N is equivalent to restricting xj to the
degrees of freedom in V δ

j that are duplicated within

V δ
i , sending the resulting vector to subdomain i, which

then prolongates by 0 the received vector outside of
the overlap V δ

j ∩ V δ
i . In the following, Oi will be the

set of neighboring subdomains to i, i.e. {j: j �= i,
V δ
j ∩V δ

i �= ∅} and Oi = Oi ∪ {i}. There is no need to
assemble each Ri, one only needs to know the action
of {RiR

T
j }1�i�N ,j∈Oi

.

Fig. 1. Decomposition of the SC conference logo (no copyrights in-
fringement intended) into three color-coded subdomains. On the left,
the decomposition is non-overlapping, δ = 0. On the right, two con-
secutive extensions are performed, δ = 2, and represented in black
overlay, to yield {Ω2

i}1�i�3. (Colors are visible in the online ver-
sion of the article; http://dx.doi.org/10.3233/SPR-140381.)

2.1. Problem specification

It is well known that one-level domain decomposi-
tion methods as depicted in the introduction of this sec-
tion, see (3), do suffer from poor conditioning when
used with many subdomains [26,29,33]. Indeed, if the
subdomains are assumed to be of size O(H), then the
condition number of the preconditioner grows as 1/H
for overlapping methods. For a given global mesh,
increasing the number of subdomains leads to de-
creasing H , hence increasing the number of iterations
needed for the preconditioned iterative method to con-
verge. To overcome this recurrent problem in overlap-
ping and non-overlapping methods, one must introduce
a so-called coarse operator. In this work, an already
established coarse operator whose theoretical founda-
tions are presented in [30] is used. From a practical
point of view, after building each local solver Ai, three
dependent operators are needed:

(1) a deflation matrix Z of size n×m, with m 
 n,
(2) a coarse operator E = ZTAZ of size m×m,
(3) the actual preconditioner

P−1
A-DEF1 = P−1

RAS

(
I −AZE−1ZT )

+ ZE−1ZT , (6)

thoroughly studied in [32].

The choice of using P−1
A-DEF1 instead of, for example,

P−1
A-DEF2 =

(
I − ZE−1ZTA

)
P−1

RAS

+ ZE−1ZT , (7)

which is also studied in [32] is pretty simple. While
both preconditioners have similar numerical proper-
ties, applying P−1

A-DEF1 to a vector u requires only one
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coarse problem solution (used in two different opera-
tions afterwards):

ZE−1ZTu.

On the other hand, applying P−1
A-DEF2 requires two

coarse problem solutions:

ZE−1ZTu and ZE−1ZTP−1
RASu.

Because applying a coarse correction is the most
communication-intensive operation when precondi-
tioning an iterative method, as shown in Section 3.2, it
is best to compute only one correction per iteration for
scalability purposes.

In overlapping and non-overlapping decomposition
methods, the deflation matrix is usually defined as:

Z =
[
RT

1 W1 RT
2 W2 · · · RT

NWN

]
∈ R

n × R

∑N
i=1 νi .

The question is then, how to choose all those Wi, for
all 1 � i � N , to build a numerically scalable precon-
ditioner? In [30], they are built as:

{
Wi =

[
DiΛi1 DiΛi2 · · · DiΛiνi

]
∈ R

ni × R
νi
}

1�i�N . (8)

A threshold criterion is used to select the νi eigenvec-
tors {Λij}1�j�νi associated to the smallest eigenval-
ues in magnitude of the following local generalized
eigenvalue problems:

Aδ
i Λi = λiDiR

T
i,0Ri,0A

δ
iDiΛi, (9)

where Aδ
i is the matrix yielded by the discretiza-

tion of a on V δ
i (unassembled submatrix), and Ri,0

is the restriction operator from V δ
i to the overlap

V δ
i ∩ (

⋃
j∈Oi

V δ
j ). If Ωδ

i ∩ ∂Ω = ∅, Ωδ
i is commonly

referred to as a floating subdomain. Hence, the bilin-
ear form a lacks essential boundary conditions on V δ

i ,
so that Aδ

i is now symmetric positive indefinite (com-
pared to Ai, the assembled submatrix, which is always
symmetric positive definite under the assumption that
A is). These independent and local eigenproblems are
solved concurrently in order to find low eigenvalues
that are in some sense close the lowest eigenvalues of
the preconditioned system. It is well known that those
are hurting the convergence rate of traditional Krylov

methods, see [9,23] for further details. With this con-
struction of the coarse operator, it can be proven that
the condition number of the preconditioned system is
now independent of the size of the subdomains, of the
number of subdomains, and of the heterogeneities in
the physical coefficients. Once again, interested read-
ers are referred to [30].

3. Design of the coarse operator

The goal of this section is to explain how a coarse
operator built using deflation vectors can be efficiently
assembled for large-scale simulations. This work is im-
plemented in a light and versatile C++ framework that
is not directly linked to domain decomposition meth-
ods, meaning that it is possible to use it to assemble
coarse operator with other abstract deflation vectors,
for example as defined in [12] for simulations in cos-
mology. When applicable, the MPI calls and operations
related to linear algebra (either from dense BLAS [5]
or sparse BLAS such as Intel Math Kernel Library or
cuSPARSE [24]) are provided in typewriter font.

3.1. Assembling the coarse operator

Looking at the general formulation of E introduced
in the previous section, two global sparse matrix-
matrix products must be computed to assemble the
coarse operator:

AZ then ZT (AZ).

However, it is possible to exploit the sparsity pattern
of Z to build E more efficiently than with these two
consecutive computations. By construction, the defla-
tion matrix Z is made of blocks of dense matrices of
size ni×νi as displayed in Fig. 2. If there is more than
one block for which there are non-zeros in a given row
of Z, it means that one is dealing with a duplicated un-
known (those which are in the overlap). From the sim-
ple example in Fig. 2 with 4 subdomains, one can in-
fer that O1 = {2}, O2 = {1, 3}, O3 = {2, 4} and

Fig. 2. Sparsity pattern of the deflation matrix Z (grey blocks repre-
sent nonzero entries) with 4 subdomains.
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O4 = {3}. Just like the globally assembled matrix A,
the global deflation matrix Z is never assembled, but
its representation above is useful to understand the as-
sembly of E. Instead, each subdomain has access to
its local dense matrix Wi. The block (i, j) of E of size
νi × νj is then equal to WT

i RiAR
T
j Wj . From that al-

gebraic definition, one can see that the sparsity pattern
of E is linked to the connectivity between subdomains,
because:

RiAR
T
j = 0ni×nj ⇐⇒ V δ

i ∩ V δ
j = ∅.

In the context of overlapping domain decomposition
methods, using Eqs (4)–(8), the block (i, j) of E can
be computed as

WT
i RiAR

T
j Wj =WT

i RiR
T
j RjAR

T
j Wj

=WiRiR
T
j AjWj . (10)

As in Eq. (5), the previous equation shows how it is
possible to take advantage of the duplicated unknowns
on the overlap to compute a global product with only
local computations and peer-to-peer transfers: the as-
sembled matrices A and Z are not needed. Noticing
that RiR

T
i = Ini×ni , the subdomain i needs to per-

form three tasks so that all blocks of E can be com-
puted:

(1) compute locally Ti = AiWi (csrmm) and
Ei,i = WT

i Ti (gemm),
(2) send to each neighboring subdomain j ∈ Oi,

Sj = RjR
T
i Ti, and receive from each neighbor-

ing subdomain Uj = RiR
T
j Tj ,

(3) compute locally Ei,j = WT
i Uj (gemm).

The cost, in terms of peer-to-peer messages, of step 2
is approximately the same as one global sparse matrix-
vector product. Using the same toy problem as in
Fig. 2, the following figure is a representation of the
sparsity pattern of E. Two colors are used to differen-
tiate blocks that can be computed without any commu-
nication and those that cannot. The three tasks to as-
semble all blocks of E can be customized to suit one’s
needs using C++ polymorphism. For example, in the
context of non-overlapping methods, the sparsity pat-
tern of E is typically more dense: a block (i, j) of E is
not null if and only if j ∈ Oj , but also if there exists
k ∈ Oj such that k ∈ Oi. This can be handled by our
framework. Likewise, each local computation Ti as in-
troduced in the first step, can be modified to involve
more complex operations and communication patterns.

Stopping at that point in the construction of E, solv-
ing systems involving the coarse operator would re-
quire either to factorize a relatively small matrix on
a large number of MPI processes, or to call an itera-
tive method with once again, a distribution of data that
would lead to a too fine-grained granularity (blocks of
rows of E are typically of size νi ranging from 1 to 30).
In both cases, the increased communication overhead
would lead to bad performances when solving multi-
ple systems involving the coarse operator. Another ap-
proach would consist in replicating E over all sub-
domains, and then performing independent factoriza-
tions, but that is simply not feasible for large decompo-
sitions, with arbitrary numbers of deflation vectors. In
the following subsections, a more efficient data distri-
bution is explained. While it will imply more commu-
nications during the setup of the coarse operator, it will
cover all possible issues stated in this paragraph, re-
garding communication overhead, memory consump-
tion and fast computation of coarse solutions.

3.1.1. Master-slave approach
The idea is to use only a “small” group of processes

that will be in charge of factorizing the coarse oper-
ator and that will afterwards be called for computing
solutions of systems involving E−1 using a distributed
sparse direct solver. This is inspired by the famous
master-slave approach. For the rest of the paper, the
following notations will be thoroughly used (for the
sake of completeness, we provide their type in our im-
plementation):

• unsigned short P: the number of masters,
chosen at runtime by the user,

• MPI_Comm masterComm: a communicator be-
tween all masters, set to MPI_COMM_NULL on
slaves, on which will be instantiated the dis-
tributed solver,

• MPI_Comm splitComm: a communicator be-
tween a master and its slaves in which the rank of
the master is always 0, and the ranks of the slave
follow the same order as in MPI_COMM_WORLD.

A representation of such communicators is given
Fig. 4. Prior to factorizing E, the first step is to as-
semble it in a distributed matrix on the masters. Each
master will be in charge of assembling all the values
of its slaves. It is assumed that the format in which
the distributed matrix is stored is a simple global CSR
or global COO – the standard format for most linear
solvers available nowadays, meaning that for each non-
zero value, one must know the absolute row and col-
umn indices of the given value in the global matrix E.
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For a process i, the global row indices IEi
of all the

blocks {Ei,j}j∈Oi
range from ri to ri + νi, where

ri =
∑i−1

j=1 νj , and the global column indices JEj
of

all the blocks {Ej,i}j∈Oi
range from ri to ri+ νi. The

simplest approach would then be to:

(1) call MPI_Allgather(νi) on MPI_COMM_
WORLD to be able to compute the cumulative
sums {rj}j∈Oi

and to allocate the buffers Sj and
Uj for all j ∈ Oi,

(2) assemble locally {Ei,j}j∈Oi
as previously and

store the values in CSR (or COO): (IEi
,JEi

,
valEi

),
(3) call MPI_Gatherv(IEi

), MPI_
Gatherv(JEi

), and MPI_Gatherv(valEi
) on

splitComm with rank 0 as root.

The number of non-zero values for a process i is:

size(valEi
) = νi × νi︸ ︷︷ ︸

Diagonal values in Fig. 3

+ νi ×
∑
j∈Oi

νj

︸ ︷︷ ︸
Off-diagonal values in Fig. 3

,

(11)

meaning that prior to the three MPI_Gatherv in
step 3, a call to MPI_Gatherv(Oi) on splitComm
with rank 0 as root must be made to allocate the right
buffers for the distributed format IE , JE and valE on
each master. While this approach is somehow natural
for assembling the distributed matrix on the masters –
because of the ordering of the rank of the slaves, call-
ing MPI_Gatherv is similar to concatenating all lo-
cal chunks of E – it implies a lot of (unnecessary) com-
munications. In particular, why should slaves send to
masters the global row and column indices? Indeed, at
the end of assembly, only the masters have access to
the distributed coarse operator, so it is their responsibil-

Fig. 3. Sparsity pattern of E. Diagonal blocks involve only local
computations (step 1) while off-diagonal blocks also involve peer–
to-peer transfers (steps 2 and 3).

ity to compute the indices. The slaves should not have
to store or compute anything related to the distributed
format. The following approach has the advantage of
transferring only what is needed from one slave i to its
master: the array of scalar valEi

. The indices will be
computed after reception by each master, meaning that
the memory overhead on the slaves is null (no integers
are allocated for storing any index). The new workflow
is now:

(1) perform a neighborhood collective operation
MPI_Ineighbor_alltoall(νi)2 on the
communicator to which the distributed graph
topology information of the connectivity be-
tween subdomains is attached (MPI_Dist_
graph_create_adjacent). Then allocate
accordingly the buffers Sj and Uj for all j ∈ Oi

(2) call MPI_Gather([νi, |Oi|]) (array of 2 inte-
gers) on splitComm with rank 0 as root so
that masters can preallocate the distributed CSR
(IE ,JE , valE),

(3) assemble locally {Ei,j}j∈Oi
as previously and

send the values to the master. Prepend to the be-
ginning of the message, the values of Oi, i.e. the
final size of the message is |Oi|+ (11).

Additionally, the masters must concatenate all νi gath-
ered in step 2, using MPI_Allgatherv on comm-
Master to be able to compute all cumulative sums
ri, for all i ∈ splitComm. This call is equivalent to
the MPI_Allgather in step 1 of the “natural” algo-
rithm, but this time it does not involve any slave. When
a master receives a message from a slave i, it knows
that the global row index ranges from ri to ri+νi, and
because the first values of the received message are a
copy of Oi, it can compute the correct global column
indices for the neighbors of this slave. The complete
algorithm for assembling the coarse operator is sum-
marized in Algorithms 1 (construction of all blocks of
E) and 2 (distributed assembly on the masters).

3.1.2. Electing the masters
In the previous paragraph, the masters are defined

in a rather abstract way, as the processes that have a
rank equal to 0 in splitComm. We have two ways
to define the aforementioned MPI communicator. The
first is the natural distribution: the process are spread
uniformly and contiguously into P groups, the mas-
ters are of rank i · N/P , for all 0 � i � P − 1. The
second distribution is a little more advanced and better
suited for assembling symmetric coarse operators. In

2New to the MPI-3 standard.
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Fig. 4. Distribution of E when built with 16 subdomains using
4 masters. Each color represents a different splitComm, each num-
ber represents the rank of the master (in MPI_COMM_WORLD) of a
given splitComm. On the right, the number of values per split-
Comm is roughly the same if the values below the diagonal are
dropped (symmetric coarse operator). (Colors are visible in the on-
line version of the article; http://dx.doi.org/10.3233/SPR-140381.)

that case, one only needs to assemble the upper part of
the distributed CSR or COO, so that only the following
blocks are computed and assembled:

Ei,j , ∀1 � i � N , ∀j ∈ Oi: j � i.

Moreover, only the upper parts of the dense diagonal
blocks Ei,i for all 1 � i � N are needed. To ensure
load balancing between masters, the processes are now
spread contiguously but non-uniformly, with masters
of rank pi, where pi is defined by the following se-
quence to ensure heuristically that the number of val-
ues within each quadrilateral in Fig. 4 is the same:

p0 = 0,

pi =
⌊
N −

√
(pi−1 −N )2 −N2/P + 0.5

⌋
,

1 � i � P − 1.

The procedure compute in Algorithm 1 is in charge
of returning a dense array of values corresponding to
the block of E given in argument, while the procedure
assemble in Algorithm 2 is in charge of computing
the indices of the values of the block of E given in ar-
gument and store them in the distributed matrix repre-
sentation.

3.2. Applying a coarse operator correction

Once E has been assembled, it is involved in the
solution of the following problem for a given vector u:
ZE−1ZTu. It is assumed that the right-hand side ZTu
and the solution E−1ZTu of the coarse problem are
kept distributed on masterComm at all time, as input

and output of the distributed solver. The computation
of the correction can obviously be broken down into
three basic operations:

(1) compute ZTu = w ∈ R

∑N
i=1 νi . Once again, the

structure of Z makes it possible to compute this
sparse matrix-vector product without any explicit
global representation of Z. Indeed,

ZTu =

N∑
i=1

WT
i Riu.

This is evaluated by having all subdomains i
compute locally wi = WT

i ui (gemv), and call-
ing MPI_Gather(v) on each splitComm
with rank 0 as root to assemble w with all local
contributions of size νi, for all i in splitComm,
on the masters.

(2) compute E−1w = y ∈ R

∑N
i=1 νi . This operation

must be as fast and reliable as possible, since it is
carried out by only few masters. The numerical
factorization of E as computed in the previous
paragraph during the assembly phase is reused
for each forward elimination and back substitu-
tion.

(3) compute Zy = z ∈ R

∑N
i=1 ni . This is the exact

dual of step 1. This operation reads:

Zy =

N∑
i=1

RT
i Wiyi.

First, a call to MPI_Scatter(v) is made
on each splitComm with rank 0 as root so
that each subdomain i can retrieve its yi of
size νi from its master. Then they all compute
zi = Wiyi (gemv). Finally,

(Zy)i =
N∑
j=1

RiR
T
j zj (12)

is computed using the same communication pro-
cedure as for the sparse matrix-vector product,
see (5).

Using this construction, it is clear that using a
non-uniform criterion νi for each subdomain leads to
using MPI communications with varying counts of
data from each process (hence the v in parentheses).
Because these communications scale as O(N ), it is
preferable to call prior to assembling the coarse opera-
tor MPI_Allreduce(νi,MPI_MAX). That way, it is
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Algorithm 1. Schematic construction of Ei,j , for all 1 � i � N and j ∈ Oi

MPI_Ineighbor_alltoall(νi)
2: MPI_Gather([νi, |Oi|], splitComm, 0)
compute(Ti) � Ti = AiWi

4: for j ∈ Oi do � After completion of line 1
MPI_Isend(Sj , j,MPI_COMM_WORLD) � Sj = RjR

T
i Ti

6: MPI_Irecv(Uj , j,MPI_COMM_WORLD, rq[j])
end for

8: compute(Ei,i) � Diagonal block
for j ∈ Oi do

10: MPI_Waitany(rq, &index)
compute(Ei,index) � Off-diagonal block

12: end for

Algorithm 2. Schematic assembly of E on the masters

buildComm(P, splitComm, masterComm)
14: if masterComm != MPI_COMM_NULL then � Master

MPI_Allgatherv(νi)
16: � Now receive all messages from the slaves

for j = 1, . . . , MPI_Comm_size(splitComm) do
18: MPI_Irecv(msgFromSlave[j], j − 1, splitComm, rq[j])

end for
20: assemble(Ei,i)

for k = 1, . . . , |Oi| do
22: assemble(Ei,k)

end for
24: � Blocks local to the masters have been assembled

for j = 1, . . . , MPI_Comm_size(splitComm) do
26: MPI_Waitany(rq, &index)

assemble(Eindex,index);
28: for k = 1, . . . , |Oindex| do

assemble(Eindex,msgFromSlave[index][k])
30: end for

end for
32: � Blocks from the slaves have been assembled

numericalFactorization(E)
34: else � Slave

msgToMaster = Oi

36: concatenate(msgToMaster, Ei,i)
for k ∈ Oi do

38: concatenate(msgToMaster, Ei,k)
end for

40: MPI_Isend(msgToMaster, 0, splitComm)
� Send the index of the neighbors as well as the local rows of

E computed in Algorithm 1
42: end if
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possible to use MPI communications with equal counts
of data, which typically scale as O(log(N )). Moreover,
the theoretical estimate on the condition number of the
preconditioner system remains valid. There are also
multiple simplifications possible during the assembly
of E, because using a uniform criterion means that any
process i already knows the value of νj , for all j ∈
Oi without needing the call to MPI_Ineighbor_
alltoall and such.

3.2.1. Fusing global reductions
The workflow presented in the previous paragraph

can be extended to provide a way to compute global
reductions without making any call on MPI_COMM_
WORLD. Without loss of generality, let us assume
the following in-place reduction is performed: MPI_
Allreduce(α, MPI_SUM, MPI_COMM_WORLD),
where α is a scalar. Then,

(1) each process appends α to the send buffer wi de-
fined in step 1 of Section 3.2,

(2) each master computes locally α = MPI_
SUMi∈splitComm(αi) and performs an in-
place reduction MPI_Allreduce(α,
MPI_SUM, masterComm).

(3) each master process appends α to the scattered
vector y defined in step 3 of Section 3.2 so that
each slave can receive the globally reduced value.

Classical Krylov methods require global synchroniza-
tions, e.g. dot product, during the orthogonalization
and the normalization of the basis vectors at each iter-
ation, fusing those synchronizations inside, for exam-
ple, a pipelined GMRES [11] yields an algorithm that
does not require any global communication, yet data
dependencies induced by the coarse solve introduce a
“virtual” global synchronization.

3.3. Cost analysis

As a consequence of the observation made in the
previous paragraph, it is assumed in this section that
the number of deflation vectors per subdomain is cho-
sen uniformly and set to ν. This will also be the case
in Section 3.4 for our scaling experiments, and we now
propose a comprehensive summary of the cost of our
two-level preconditioner, compared to a simple one-
level method. As a quick reminder, the cost of apply-
ing a one-level preconditioner such as P−1

RAS in (3) is
the same as computing N independent solutions on
each subdomain – application of (RiAR

T
i )−1, then

performing one global matrix-vector product.

Memory footprint. Because it is clear that no global
structure is needed for the construction and the use of

Z and E in our implementation, the memory footprint
is straightforward to evaluate. For slaves, a dense ar-
ray of size ν × ni is needed to store Wi. For masters,
the same array must be stored, plus the factors of E−1

(whose size depends on the distributed solver used),
quantitative results are presented in Fig. 1 where the
amount of memory needed to store the factors of E−1

is displayed.

Messages. During the construction of E, each pro-
cess i must send and receive a single message from
each neighboring subdomains j ∈ Oi. The size of the-
ses messages are

ν × size of overlap between

V δ
i and V δ

j ,

see Sj and Uj in Algorithm 1. Then each slave i must
send a single message of double, of size |Oi| +
|Oi| × ν × ν to its master, see msgToMaster in Al-
gorithm 2, and each master must reciprocally receive
these message for all slaves in splitComm. During
the solution, at each iteration, a MPI_Gather and a
MPI_Scatter are called on each splitComm. The
messages passed at the end of the correction step in
Eq. (12) are of the exact same sizes as for the global
matrix-vector product for the one-level method, cf. (5).

Computational intensity. The major contribution is
the solution of each local and independent eigenvalue
problem. Afterwards, for the setup of E, the BLAS
computations stated in Section 3.1 are negligible with
respect to the time spent transferring messages, and at
each iteration the costly operation in Section 3.2 is the
solution of the coarse correction – application of E−1

using a distributed direct solver. Note that for big sub-
domains, this cost is negligible compared to the one
of computing each local solution for the one-level pre-
conditioner P−1

RAS, cf. (3).

3.4. Numerical results

Results in this section were obtained on Curie,
a Tier-0 system for PRACE3 composed of 5040 nodes
made of 2 eight-core Intel Sandy Bridge processors
clocked at 2.7 GHz. The interconnect is an InfiniBand
QDR full fat tree and the MPI implementation used
was BullxMPI version 1.1.16.5. Intel compilers and
Math Kernel Library in their version 13.1.0.146 were

3Partnership for Advanced Computing in Europe.
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used for all binaries and shared libraries, and as the
linear algebra backend for both dense and sparse com-
putations in our framework. LU or LDLT decom-
position of the local problems are computed with ei-
ther instances of MUMPS [1,2] or PaStiX [16] on
MPI_COMM_SELF, or preferably using Intel MKL
PARDISO, University of Lugano PARDISO [27,28],
or WSMP [13,14] which are by design more suited
for multithreaded computations. LU or LDLT de-
composition of the coarse operator is computed us-
ing MUMPS, PaStiX, or PWSMP. Eigenvalue prob-
lems to compute the deflation vectors as defined
in (9) are solved using ARPACK [21] (procedure
dsaupd). Finite element matrices are obtained from
FreeFem++ [15], but the design of our domain de-
composition framework makes it simple to port to
other Domain-Specific (Embedded) Language such as
Feel++ [25], FEniCS [22] or finite element libraries
like deal.II [4], GetFem++ and such. We display the
speedup and efficiency in terms of number of MPI
processes. In these experiments, each MPI process is
assigned a single subdomain, and 2 OpenMP threads
using the following bindings: --bind-to-socket
--bycore. The GMRES is stopped when a relative
10−6 decrease of the residual is reached.

First, the system of linear elasticity with highly het-
erogeneous elastic moduli is solved with a minimal ge-
ometric overlap of one mesh element. Its variational
formulation reads:

a(u, v) =
∫

Ω

Eν

(1 + ν)(1 − 2ν)
∇ · u∇ · v

+
E

1 + ν
ε(u): ε(v)

+

∫
Ω
f · v +

∫
∂Ω

g · v,

where

• Young’s modulus E and Poisson’s ratio ν vary be-
tween two sets of values, (E1, ν1) = (2 · 1011,
0.25) and (E2, ν2) = (107, 0.45).

• ε is the linearized strain tensor, f are the body
forces (in this case, only the gravity), and g are
the surface force (in this case, a vertical loading is
imposed on some parts of the geometries).

Such an equation typically arises in computational
solid mechanics, for modeling small deformations of
bodies. For less compressible materials (ν closer to
0.5), it is more natural to switch to non-overlapping
preconditioners. In 2D, we use piecewise cubic basis
functions (∼33 nnz per row). The system is of con-

Fig. 5. Tripod used for our 3D and cantilever used for our 2D strong
scaling experiments. Black and light grey are used to represent the
variations of the Young’s modulus (200 GPa and 0.01 GPa) and Pois-
son’s ratio (0.25 and 0.45). (Colors are visible in the online version
of the article; http://dx.doi.org/10.3233/SPR-140381.)

stant size equal to approximately 2 billions unknowns.
In 3D, piecewise quadratic basis functions are used
(∼83 nnz per row). The system is of constant size
equal to approximately 300 million unknowns. Both
geometries are displayed in Fig. 5 and were meshed by
Gmsh [10] and partitioned with METIS.

After the partitioning step, each local mesh is re-
fined concurrently by splitting each triangle or tetrahe-
dron into multiple smaller elements. This means that
we start the simulation with a relatively “coarse” global
mesh (26 million triangles in 2D, 10 million tetra-
hedra in 3D), which is then refined in parallel (thrice
in 2D, twice in 3D). We get a nice speedup from
1024 × 2 = 2048 to 8192 × 2 = 16,384 threads as
shown in Fig. 7. According to the table in that fig-
ure, the costly operations in the construction of the
preconditioner are the solution of each local eigen-
value problem (9) (column deflation), and the factor-
ization of each local solver Ai (column factorization).
In 3D, the complexity of such operations typically
grows superlinearly with respect to the number of un-
knowns. That explains why we can achieve superlinear
speedup. At peak performance, on 16,384 threads, the
speedup relative to the runtime on 2048 threads equals
530.56
51.76 ≈ 10. In 2D, the computation costs are lower,

and tend to scale better with the number of unknowns,
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which makes it harder to achieve high speedup for
larger number of subdomains. At peak performance,
on 16,384 threads, the speedup relative to the runtime
on 2048 threads equals 213.20

34.54 ≈ 6. In both cases,
the solution of the eigenproblem is the limiting factor
for achieving better speedups. This can be explained
by the fact that the Arnoli method, which ARPACK
is based on, tends to perform better for larger ratios
ni
νi

, but these values decrease as the subdomains get
smaller. The number of deflation vectors per subdo-
main is constant and ranges from 20 to 15. For larger
but fewer subdomains, the time to compute the solu-
tion (column solution), i.e. the time for the GMRES
to converge, is almost equal to the forward elimina-
tions and back substitutions in the subdomains times
the number of iterations. When the decompositions be-
come bigger, subdomains are smaller, hence each lo-
cal solution is computed faster and global communica-
tions have to be taken into account. To assess the need
for such a sophisticated preconditioner, we display in
Fig. 6 the convergence histogram of a simple one-level
method versus this two-level method. One can easily
understand that, while the cost of building the precon-
ditioner cannot be neglected, it is necessary to ensure
the convergence of the Krylov method: after more than
10 min, the one-level barely decreases the relative er-
ror to 2 ·10−5, while it takes 213.20 s for the two-level
method, cf. Fig. 7 row #5, to converge to the desired
tolerance. That is at least a threefold speedup. Because
one-level method are not numerically scalable, it is ex-
pected to get an even better speedup for larger decom-
positions.

Fig. 6. Convergence of the GMRES(40) preconditioned by P−1
RAS

and P−1
A-DEF1 for the problem of linear elasticity in 2D using

1024 subdomains. Timings for the setup and solution phases using
P−1

A-DEF1 are available in Fig. 7. Using P−1
RAS, the convergence is

not reached after 600 s. (Colors are visible in the online version of
the article; http://dx.doi.org/10.3233/SPR-140381.)

Moving on to the weak scaling properties of our
framework, the problem we now solve is a scalar equa-
tion of diffusivity with highly heterogeneous coeffi-
cients (varying from 1 to 3 · 106 as displayed in Fig. 8)
on [0; 1]d (d = 2 or 3) with piecewise quartic ba-
sis functions in 2D (∼23 nnz per row), and piecewise
quadratic basis functions in 3D (∼27 nnz per row). Its
variational formulation reads:

a(u, v) =
∫

Ω
κ∇u · ∇v +

∫
Ω
f · v,

where f is a source term. Such an equation typically
arises for modeling flows in porous media, or in com-
putational fluid dynamics. No change is needed in our
framework, since all operations are algebraic. The only
work needed outside of our framework is changing the
mesh used for computations, as well as the variational
formulation of the problem in the FreeFem++ DSL.

On average, there is a constant number of degrees
of freedom per subdomain equal to 280 K in 3D,
and near 2.7 millions in 2D. As for the strong scal-
ing experiment, after building and partitioning a global
“coarse” mesh (with few millions of elements), each
local mesh is refined independently to ensure a con-
stant size system per subdomain as the decomposition
becomes bigger. The efficiency remains near the 90%
mark, thanks to almost no variability in the factoriza-
tion of the local problems and the construction of the
deflation vectors. In 3D, the initial problem of 74 mil-
lion unknowns is solved in 200 s on 512 threads. Using
16,384 threads, the problem is now made of approxi-
mately 2.3 billions unknowns, and it is solved in 215 s,
which yields an efficiency of ∼90%. In 2D, the initial
problem of 695 million unknowns is solved in 175 s on
512 threads. Using 16,384 threads, the problem is now
made of approximately 22.3 billions unknowns, and it
is solved in 187 s, which yields an efficiency of ∼96%.
At such scales, the most penalizing step in the algo-
rithm is the construction of the coarse operator, spe-
cially in 3D, with a nonnegligible increase in the time
spent to assemble E.

Finally, we present in this last paragraph the perfor-
mances of our framework to assemble and factorize the
coarse operator E for all the previous simulations. Ta-
bles in Figs 7 and 9 already included these timings in
their last column total(> factorization + deflation +
solution), but for more in depth analysis, they are re-
ported next separately.

Table 1 includes all timings relative to Algorithms 1
and 2 described in Section 3.1.1: the construction of the
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N Factorization (s) Deflation (s) Solution (s) #it. Total (s) #d.o.f.
3D 1024 177.86 264.03 77.41 28 530.56 293.98 · 106

2048 62.69 97.29 20.39 23 186.04
4096 19.64 35.70 9.73 20 73.12
8192 6.33 22.08 6.05 27 51.76

2D 1024 37.01 131.76 34.29 28 213.20 2.14 · 109

2048 17.55 53.83 17.52 28 95.10
4096 6.90 27.07 8.64 23 47.71
8192 2.01 20.78 4.79 23 34.54

Fig. 7. Strong scaling experiments. (Colors are visible in the online version of the article; http://dx.doi.org/10.3233/SPR-140381.)

Fig. 8. Diffusivity κ used for our 2D weak scaling experiment with
channels and inclusions. Black and light grey are used to represent
the variations of κ from 1 to 3 · 106.

communicators, the assembly of E, and its numerical
factorization. The constant number of deflation vectors
computed per subdomain and assembled in the coarse
operator is nothing else than dim(E)

N . The most con-
suming part of the algorithm is the actual transfer and
the assembly by the masters. Especially in 3D, when
the coarse operator is becoming less and less sparse
(directly linked with the average value of |Oi|), it is
likely to become a problem for even larger decomposi-
tion. Note that the MPI implementation used for these
experiments is not thread compliant (and in particu-
lar, does not support a level of thread support equal
to MPI_ THREAD_MULTIPLE), meaning that some
“unnecessary” #pragma omp critical had to be

used during the assembly by the masters. At these
scales, another problem is the factorization of E. In-
deed, increasing the number of masters P does not
always have a beneficial effect for this concern, be-
cause distributed solvers have difficulties scaling be-
yond ∼128 processes.

4. Conclusion and outlook

In this paper, we assess the efficiency of our im-
plementation of a new adaptive two-level precondi-
tioner suited for various problems such as linear elas-
ticity or Darcy’s law with high-contrast coefficients.
The preconditioner was recently theoretically intro-
duced in [30] and it provides a sound background
for evaluating the performance of our portable frame-
work. Using state of the art multithreaded direct linear
solvers and eigensolvers and distributed direct linear
solvers, we show experimentally that our approach is
well suited for large-scale simulations in both 2D and
3D with high-order finite element methods, on up to
16,384 threads, enabling simulations for two classes of
elliptic problems of more than 22 billion unknowns in
2D and 2 billion unknowns in 3D.

For building such a preconditioner, the deflation vec-
tors used in our coarse operator are currently deter-
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N Factorization (s) Deflation (s) Solution (s) #it. Total (s) #d.o.f.
3D 256 64.24 117.74 15.81 13 200.57 74.62 · 106

512 63.97 112.17 19.93 18 199.41 144.70 · 106

1024 63.22 118.58 16.18 14 202.40 288.80 · 106

2048 59.43 117.59 21.34 17 205.26 578.01 · 106

4096 58.14 110.68 27.89 20 207.47 1.15 · 109

8192 54.96 116.64 23.64 17 215.15 2.31 · 109

2D 256 29.40 111.35 25.71 29 175.85 695.96 · 106

512 29.60 111.52 27.99 28 179.07 1.39 · 109

1024 29.43 112.18 33.63 28 185.16 2.79 · 109

2048 29.18 112.23 33.74 28 185.20 5.58 · 109

4096 29.80 113.69 31.02 26 185.38 11.19 · 109

8192 29.83 113.81 30.67 25 187.57 22.31 · 109

Fig. 9. Weak scaling experiments. (Colors are visible in the online version of the article; http://dx.doi.org/10.3233/SPR-140381.)

Table 1

Timings for assembling the coarse operator

N P dim(E) |Oi|(average) Memory cost of Time (s)

“E−1” (MB)

3D 256 4 5120 11.5 38 2.78

512 6 10,240 12.4 78 3.35

1024 8 8 20,480 22,528 13.0 12.0 156 93 4.42 11.25

2048 12 12 40,960 40,960 13.8 12.9 332 138 6.91 5.68

4096 18 22 73,728 73,728 14.2 13.7 434 172 10.75 8.04

8192 64 48 131,072 131,072 14.7 14.6 420 241 19.92 17.30

2D 256 2 5376 5.5 21 9.39

512 4 10,240 5.6 32 9.96

1024 10 8 20,480 24,576 5.7 5.5 65 57 9.92 10.14

2048 14 12 38,912 40,960 5.8 5.7 94 83 10.05 6.20

4096 22 18 81,920 73,728 5.9 5.8 99 73 10.87 5.10

8192 36 36 163,840 122,880 5.9 5.8 152 118 13.27 6.96

Note: Results are gathered two-by-two, the first column is for the diffusivity problem, the second is for the elasticity problem.

mined a priori by solving independently local eigen-
value problems. It is also possible to retrieve them
a posteriori during the convergence of the iterative
method, using for example approximations of the Ritz
vectors. Using new theoretical results, we are currently
evaluating a new a posteriori construction that does

not require the solution of the aforementioned eigen-
value problems. This will hopefully improve our re-
sults for more fine-grained granularity in our strong
scaling experiments. Finally, we are currently investing
other types of systems for which domain decomposi-
tion methods have been proven to be efficient, namely
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nonlinear problems in computational solid mechanics,
using non-overlapping methods. Thanks to the versa-
tile design of our framework, and the flexibility of cur-
rent finite element Domain-Specific (Embedded) Lan-
guages such as FreeFem++, new experiments should
be soon possible.
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