
Scientific Programming 22 (2014) 93–108 93
DOI 10.3233/SPR-140380
IOS Press

Coordinated energy management in
heterogeneous processors 1

Indrani Paul a,b,∗, Vignesh Ravi a, Srilatha Manne a, Manish Arora a,c and Sudhakar Yalamanchili b

a Advanced Micro Devices, Inc., USA
E-mails: {indrani.paul, vignesh.ravi, srilatha.manne}@amd.com, marora@eng.ucsd.edu
b Georgia Institute of Technology, Atlanta, GA, USA
E-mail: sudha@gatech.edu
c University of California, San Diego, CA, USA

Abstract. This paper examines energy management in a heterogeneous processor consisting of an integrated CPU–GPU for high-
performance computing (HPC) applications. Energy management for HPC applications is challenged by their uncompromising
performance requirements and complicated by the need for coordinating energy management across distinct core types – a new
and less understood problem.

We examine the intra-node CPU–GPU frequency sensitivity of HPC applications on tightly coupled CPU–GPU architectures
as the first step in understanding power and performance optimization for a heterogeneous multi-node HPC system. The insights
from this analysis form the basis of a coordinated energy management scheme, called DynaCo, for integrated CPU–GPU archi-
tectures. We implement DynaCo on a modern heterogeneous processor and compare its performance to a state-of-the-art power-
and performance-management algorithm. DynaCo improves measured average energy-delay squared (ED2) product by up to
30% with less than 2% average performance loss across several exascale and other HPC workloads.

Keywords: Energy management, high-performance computing

1. Introduction

Efficient energy management is central to the effec-
tive operation of modern processors in platforms from
mobile to data centers and high-performance com-
puting (HPC) machines. However, HPC systems are
unique in their uncompromising emphasis on perfor-
mance. For example, the national roadmap for HPC
now has the goal of establishing systems capable of
sustained exaflop (1018 flops/s) performance. How-
ever, the road to exascale is burdened by significant
challenges in the power and energy costs incurred by
such machines.

Many current HPC systems use general-purpose,
multi-core processors such as Xeon from Intel and
AMD Opteron™ that are equipped with several power-
saving features, including dynamic voltage and fre-
quency scaling (DVFS). More recently, driven in part
by demand for energy efficiency, we have seen the

1This paper received a nomination for the Best Paper Award at the
SC2013 conference and is published here with permission of ACM.

*Corresponding author. E-mail: indrani.paul@amd.com.

emergence of such processors with attached graphics
processing units (GPUs) acting as accelerators. As of
November 2012, four of the top ten and 62 of the top
500 supercomputers on the Top500 list were powered
by accelerators [19,20].

This trend towards heterogeneous processors is con-
tinuing with tightly coupled accelerated processing
unit (APU) designs in which the CPU and the GPU
are integrated on the die and share on-die resources
such as the memory hierarchy and interconnect. The
companion emergence of programming models such as
CUDA, OpenACC and OpenCL is making such pro-
cessors viable for HPC. However, the tighter integra-
tion of CPUs and GPUs results in greater performance
dependencies between the CPU and the GPU. For ex-
ample, CPU and GPU memory accesses interact in the
memory hierarchy, and may interfere, while they share
a chip-level power budget and thermal capacity. There-
fore, effective performance management and energy
management must be coordinated carefully between
the CPU and the GPU [34].

Figure 1 illustrates an HPC application running on
an AMD A-Series APU heterogeneous processor, for-

1058-9244/14/$27.50 © 2014 – IOS Press and the authors. All rights reserved

94 I. Paul et al. / Coordinated energy management in heterogeneous processors

Fig. 1. Example phase behavior in an exascale proxy application (Lulesh). (Colors are visible in the online version of the article; http://dx.doi.org/
10.3233/SPR-140380.)

merly code-named “Trinity”. The figure shows fine-
grain communication between the CPU and the GPU
on an OpenCL variant of Lulesh with 100 node ele-
ments per dimension [24]. The x-axis shows time (in
milliseconds) and the y-axis shows the CPU utiliza-
tion as measured by IPC for the multi-threaded CPU,
and the GPU utilization as measured by active clock
cycles for the data-parallel GPU. The application is in
the start-up phase up to 3200 ms, and the CPU is the
primary active component. Subsequently, the CPU pri-
marily plays an assist role delivering data to the GPU
for computation leading to low CPU activity (IPC) and
high GPU activity. However, there is constant commu-
nication between the CPU and the GPU and the per-
formance required from each is a function of the ker-
nel being run. For instance, the CalcFBHourGlass ker-
nel has a higher GPU utilization than the other 20+
miscellaneous kernels in the application. The compu-
tational demands of the CPU and the GPU vary across
program phases, as does the intensity of their interac-
tions. Power and energy management techniques must
be made cognizant of these interactions to minimize
performance degradation with improvements in energy
efficiency.

While there has been a significant body of work
in dynamic voltage frequency scaling (DVFS) for en-
ergy management in single- and multi-core homoge-
neous architectures, heterogeneous architectures em-
body several characteristics that render direct appli-
cation of these techniques ineffective. Performance-
coupling between the CPU and the GPU produce
dependencies between their respective DVFS states.
However, unlike multi-core homogenous architectures
in which all cores are identical and the majority of
threads are identical, the CPU and GPU differ in
both architecture and execution model. While the for-

mer supports asynchronous execution of (relatively)
coarse-grain threads, the latter implements a model or-
chestrating the synchronous execution of thousands of
thread blocks or wavefronts, comprising tens to hun-
dreds of fine-grain threads. Consequently, their energy
and power behaviors are quite distinct. Further, while
the CPU–GPU behaviors are directly coupled through
the programming model, their executions indirectly in-
teract via interference and competition for shared on-
chip resources. To be effective, algorithms that deter-
mine the DVFS states of the CPU and the GPU must
be cognizant of these effects, their interrelationships,
and their combined effect on performance.

Our ultimate goal is to optimize energy efficiency
and performance in a multi-node HPC system consist-
ing of tightly coupled heterogeneous node architec-
tures. We view the path to this goal as a two-step pro-
cess: The first step analyzes and optimizes intra-node
power and performance, and the second step optimizes
these metrics in a multi-node system. This work fo-
cuses on maximizing energy efficiency for HPC ap-
plications with minimal to no compromise in perfor-
mance in a tightly coupled heterogeneous node archi-
tecture. Specifically, this paper makes the following
contributions:

• We empirically characterize the frequency sensi-
tivity of proxy applications developed to represent
exascale applications. The analysis exposes sev-
eral opportunities for improving energy efficiency
without degrading the performance of the appli-
cation.

• We identify a key set of CPU and GPU run-time
parameters that reflects the frequency sensitivity
of the application and use regression techniques
to construct an analytic model of frequency sensi-
tivity.

I. Paul et al. / Coordinated energy management in heterogeneous processors 95

• We propose DynaCo – a coordinated, dynamic
energy-management algorithm using online fre-
quency-sensitivity analysis to coordinate the
DVFS states of the CPU and the GPU. DynaCo is
implemented on a state-of-the-art heterogeneous
processor.

• Using measurements on real hardware, we
compare DynaCo to a commercial, state-of-the-
practice power- and performance-management al-
gorithm for several OpenCL exascale proxy ap-
plications and other HPC applications, demon-
strating that significant improvements in energy
efficiency are feasible without sacrificing perfor-
mance.

The following section provides background infor-
mation. Section 3 presents an analysis of the frequency
sensitivity of HPC applications. We use the insights
from that analysis to develop a model of frequency sen-
sitivity that forms the basis of the energy-management
algorithm described in Section 4. Sections 5 and 6
describe the implementation and experimental results.
Sections 7 and 8 present related work and our conclu-
sions.

2. Background

Figure 2 shows the floor plan of the AMD A-Series
heterogeneous APU used in the rest of the paper.
It contains two out-of-order dual-core CPU compute
units (CUs, also referred to as Piledriver modules)
and a GPU. The cores in a CU share the front-end
and floating-point units and a 2 MB L2 cache. The

Fig. 2. Die shot of AMD A-Series APU [32]. (Colors are visi-
ble in the online version of the article; http://dx.doi.org/10.3233/
SPR-140380.)

CPUs share a power plane and the GPU is on a sep-
arate power plane. The GPU consists of 384 AMD
Radeon™ cores, each capable of one single-precision
fused multiply-add computation (FMAC) operation
per cycle (the methodology and techniques in this pa-
per are equally applicable to processors that support
double-precision). The GPU is organized as six SIMD
units, each containing 16 processing units that are each
four-way VLIW. The memory controller is shared be-
tween the CPU and the GPU. More details on the AMD
A-Series processor can be found in [32].

Table 1 shows all possible DVFS states for the CPU
cores in the AMD A-Series A10-5800k. Here, DVFS
states can be assigned per CU; however, because the
CUs share a voltage plane, the voltage across all CUs
is set by the maximum-frequency CU. P0 through P5
are software-visible DVFS states that are referred to
as performance states, or P-states, and are managed ei-
ther by the OS through the Advanced Configuration
and Power Interface (ACPI) specification [1] or by the
hardware. Pb0 and Pb1 are called the boost states and
are visible only to, and managed by, the hardware. En-
trance to and exit from the boost states are managed
exclusively by hardware when the CPU is at P0; hence,
P0 is usually called the base state. P1 through P5 are in-
creasingly lower-power P-states. The GPU has an inde-
pendent power plane whose voltage and frequency are
controlled independently. Unlike the CPU, the GPU
does not have architecturally visible P-states. Through-
out the rest of the paper, we will refer to the GPU
DVFS states as GPU-high (highest frequency), GPU-
med (medium frequency) and GPU-low (lowest fre-
quency).

The AMD A-Series APU uses a sophisticated
power-monitoring and -management technology re-
ferred to as AMD Turbo CORE to optimize perfor-
mance for a given power and thermal constraint. This
technology uses approximated power and temperature
values to monitor and guide the power-management

Table 1

CPU DVFS states for AMD A-Series APU

P-state Volt (V) Freq (MHz)

HW-only Pb0 1.475 4200

Pb1 1.45 4000

SW-visible P0 1.363 3800

P1 1.288 3400

P2 1.2 2900

P3 1.075 2400

P4 0.963 1900

P5 0.925 1400

96 I. Paul et al. / Coordinated energy management in heterogeneous processors

algorithms. AMD Turbo CORE uses the bidirectional
application power management (BAPM) algorithm to
control the power allocated to each compute entity in
the processor [32]. Each compute entity interfaces with
BAPM to report its power consumption, and BAPM
determines its power limits based on the available ther-
mal headroom. At regular time intervals, the BAPM
algorithm does the following:

(1) Calculates a digital estimate of power consump-
tion for each CU and GPU.

(2) Converts the power estimates into temperature
estimates for each component.

(3) Assigns new power limits to each entity.

Once BAPM has assigned power limits, each CU
and GPU manages its own frequencies and voltages to
fit in the assigned limit (i.e., local to a unit, the hard-
ware will employ DVFS to keep the power dissipation
in the assigned limit). The BAPM algorithm sets power
limits based on thermal constraints and greedily boosts
the power states to maximize use of the thermal capac-
ity. If the processor never reaches maximum tempera-
ture, then power is allocated to the processor until the
maximum CPU and GPU frequencies are reached.

The BAPM algorithm is optimized to maximize per-
formance with a fair and balanced sharing of power
between on-chip entities. BAPM allocates power to
each entity using a pre-set static distribution weight
that is derived using empirical analysis. Such static al-
location is the best choice in the absence of dynamic
feedback from the application. As a general-purpose
state-of-the-practice controller, BAPM is designed to
provide reasonable performance improvements with-
out any significant outliers.

3. Motivation and opportunities

Figure 3 shows the peak temperature normalized to
the maximum junction temperature allowed for each
CU and the GPU for miniMD as the application runs
on a 100 W TDP processor. Processors with such a
thermal design power package are commonly found in
HPC clusters [17]. Although temperature tracks power
and inversely tracks performance, it never reaches the
peak thermal limits. This means that the performance
of the CUs and the GPU are not constrained by tem-
perature, and therefore they generally run at their max-
imum frequency. However, just because they can run
at their maximum frequency does not mean that they

Fig. 3. Thermal profile of miniMD running on GPU. (Colors are vis-
ible in the online version of the article; http://dx.doi.org/10.3233/
SPR-140380.)

should; there has to be a reasonable return in perfor-
mance for the increase in frequency and higher power.

We characterize this return on performance with the
notion of frequency sensitivity – a measure of the im-
provement in performance for a unit increase in fre-
quency. Frequency sensitivity is a time-varying func-
tion of the workload on a target processor. In gen-
eral, the frequency–performance function is unknown.
Thus, the idea is to measure the frequency sensitivity
of an application periodically and determine whether
it is productive (efficient) to change the frequency.
While Rountree et al. [39] developed a frequency-
sensitivity predictor for homogeneous CPUs, the prob-
lem in APUs is more complex due to shared resources
and subtle CPU–GPU interactions.

The rest of this section identifies and categorizes be-
haviors that have a substantive impact on frequency
sensitivity of the components. All results are based on
hardware measurements on an AMD A-Series APU
(experimental set-up described in Section 5). This un-
derstanding is used in Section 4 to develop a model
of frequency sensitivity for tightly coupled heteroge-
neous processors and to use the model to guide DVFS
decisions.

3.1. Shared resource interference

The memory hierarchy is a key determinant of per-
formance, and the CPU and the GPU share the North-
bridge and memory controllers. The extent of interfer-
ence at these points (which is time-varying) has a sig-
nificant impact on the effectiveness of DVFS for the
CPU or the GPU.

Figure 4 (left bar) breaks down the CPU and GPU
memory access rates, normalized to peak-DDR band-
width with 75% bus efficiency, of one of the main com-
putation kernels (neighbor) in miniMD [8]. The ker-
nel is run iteratively in the application for the entire

I. Paul et al. / Coordinated energy management in heterogeneous processors 97

Fig. 4. Break-down of memory interference between CPU and GPU
and corresponding CPU DVFS residency. (Colors are visible in the
online version of the article; http://dx.doi.org/10.3233/SPR-140380.)

steady-state duration. Figure 4 (right bar) breaks down
the average CPU DVFS state residency for the active
CPU time under BAPM, which shows that the kernel
DVFS residency is entirely in the hardware managed
CPU boost states.

We observe that this kernel saturates the overall
shared-memory bandwidth primarily due to the high
rate of memory references from the GPU. The CPU
portion of memory demand, which is captured by look-
ing at last-level cache L2 miss rates, is relatively in-
significant. Further (not shown), the CPU IPC of this
kernel is higher than a typical memory-bound applica-
tion.

Power- and performance-management schemes that
determine the CPU DVFS state in isolation of shared
resources might conclude that the CPU voltage-
frequency can be boosted within thermal limits to im-
prove performance. This is, in fact, what the BAPM
algorithm does. However, the application performance
is memory bandwidth-limited due to the GPU memory
demands, so scaling up the CPU voltage-frequency has
little performance benefit and will degrade energy ef-
ficiency (discussed in Section 3.3). The lesson here is
that we need online measurements of chip-scale global
interactions to make good decisions regarding the CPU
or the GPU DVFS state.

3.2. Computation and control divergence

GPUs are exceptional execution engines for data-
parallel workloads with little control divergence. How-
ever, performance efficiency degrades significantly
with increasing control divergence. That does not im-
ply that lower-frequency states should be used for
control divergent applications. Consider the Breadth-
first Search (BFS) graph application from the Rodinia

Fig. 5. GPU frequency sensitivity to control divergence. (Colors
are visible in the online version of the article; http://dx.doi.org/
10.3233/SPR-140380.)

benchmark suite [9]. Figure 5 illustrates GPU fre-
quency sensitivity for BFS (left bar). Execution times
are measured at the lowest and highest frequencies. We
compute frequency sensitivity as the ratio of the dif-
ference in execution times to the difference in frequen-
cies. The figure also shows the GPU ALU compute uti-
lization (right bar). While GPU ALU utilization and
computation are fairly low, GPU frequency sensitiv-
ity is quite high. This is due to the high control flow-
divergent behavior of the kernels in BFS, which leads
to low utilization. However, higher-frequency opera-
tion leads to faster re-convergence, and thus shorter ex-
ecution time.

Conventional cores that extract instruction-level par-
allelism from a single thread correctly associate low
IPC with low frequency sensitivity. The converse
is true here due to the bulk-synchronous parallel-
processing nature of GPU kernels. Control flow se-
rializes the execution of threads in a thread block.
The correct analogy with traditional core execution is
the observation that higher-frequency operation will
speed-up the serial sections of code and, therefore, the
application as a whole. In this case, the greater the se-
rial fraction or divergence, the greater the speed-up.
The lesson here is that control flow-divergence mea-
sures should be captured in the compute behavior when
determining frequency sensitivity.

3.3. Performance-coupling and kernel sensitivity

Each application has phases that vary in their fre-
quency sensitivity due to the type of their activity rates
and the degree of performance-coupling between CPU
and GPU. This is true also of HPC applications. While
computations are offloaded to the GPU, there are con-
trol and data dependencies between computations exe-
cuting on the CPU and the GPU cores. For example, for
peak GPU utilization, the CPU must deliver data to the

98 I. Paul et al. / Coordinated energy management in heterogeneous processors

GPU at a certain rate; otherwise, the GPU will starve,
resulting in a reduction in overall performance. Such
performance-coupling between the CPU and the GPU
cores is accentuated by the tighter physical coupling
due to on-die integration and the emergence of applica-
tions that attempt a more balanced use of the CPU and
the GPU. Hence, any cooperative energy-management
technique must balance such interactions against en-
ergy/power savings.

Here we evaluate the opportunities to save energy
of an exascale proxy application from the Mantevo
suite called miniMD [8]. In particular, we character-
ize the frequency and resource sensitivity at the ker-
nel granularity for both the CPU and the GPU. We
have observed this behavior in other HPC applications
as well; however, due to space limitations, we present
only miniMD results here. Figure 6 illustrates the GPU
frequency sensitivity for the main miniMD kernels by
measuring the impact of frequency on the speed-up of
each kernel. The x-axis records the GPU DVFS states
for each kernel. The y-axis shows the increase in run-
time from the baseline BAPM case as GPU frequency
is reduced. Because we are not thermally limited, the
baseline algorithm runs the GPU at the highest fre-
quency.

We can observe many interesting behaviors in the
Fig. 6 graph, with the key insight being that differ-
ent kernels in miniMD have different resource require-
ments and their relative sensitivities to GPU frequency
reflect those needs. One of the main computation ker-
nels, Force, scales very well with GPU frequency and
performs the best at the highest-frequency GPU DVFS
state. This is because of the heavy compute-bound na-
ture of the kernel. The Neighbor kernel shows high
sensitivity to GPU frequency when going from low
to medium frequency; however, Neighbor sees little

Fig. 6. Percent increase in kernel run-time due GPU DVFS changes
relative to the baseline (BAPM). (Colors are visible in the online
version of the article; http://dx.doi.org/10.3233/SPR-140380.)

Fig. 7. Percent increase in kernel run-time due CPU DVFS changes
relative to the baseline (BAPM). (Colors are visible in the online
version of the article; http://dx.doi.org/10.3233/SPR-140380.)

to no performance benefit at the highest GPU fre-
quency because the Neighbor kernel becomes mem-
ory bandwidth-limited at the highest GPU frequency.
Communication and other fine-grained, relatively short
kernels labeled Other seem to be less sensitive to GPU
frequency. There is a 6% increase in total run-time at
the medium GPU DVFS state, with the Force kernel
being the main contributor to the slow-down.

Consider the frequency sensitivity of the CPU for
each of the miniMD kernels (recall the performance-
coupling between the CPU and the GPU) illustrated in
Fig. 7. The Force and Neighbor kernels do not scale
well with CPU frequency. The memory-bounded be-
havior of Neighbor makes it insensitive to CPU fre-
quency with minimal performance loss at the lower
CPU DVFS state of P4. The GPU compute-intensive
nature of Force makes it less dependent on CPU fre-
quency; however, decreasing CPU frequency beyond
P2 starts starving the GPU. On the other hand, fine-
grained, shorter kernels such as Communication and
others have higher data dependencies on the CPU
and are tightly performance-coupled. Launch over-
head, combined with the relatively small kernel tim-
ings compared to the actual execution time, make these
kernels more tightly performance-coupled to CPU fre-
quency and less GPU frequency-sensitive. The lesson
here is that the frequency-sensitivity metric in an APU
needs to account for performance-coupling effects.

3.4. Summary

The preceding analysis shows that HPC applications
exhibit varying degrees of CPU and GPU frequency
sensitivity for a variety of subtle and non-obvious rea-
sons. Overall, the results in this section clearly point to-
wards the need for a set of metrics for energy manage-

I. Paul et al. / Coordinated energy management in heterogeneous processors 99

ment that can predict CPU–GPU frequency sensitiv-
ity in a tightly coupled heterogeneous architecture. Us-
ing these metrics, we envision extending BAPM with
frequency-sensitivity information to augment its func-
tionality. We describe the model, its application, and
results with measurements on real hardware in the fol-
lowing sections.

4. Run-time system for energy management

The first step is to develop a predictor for the fre-
quency sensitivity of an application. Specifically, at
any point in time we need to be able to predict the
performance sensitivities of the application to the fre-
quency of the CPU and the GPU, which may be differ-
ent. As we observed in Section 3, this sensitivity anal-
ysis must account for indirect interactions between the
CPUs and the GPU in the memory system and their
coupled performance.

The second step is to encapsulate this into an energy-
management algorithm that periodically computes the
frequency sensitivity and, in response, adjusts the
DVFS states of the CPU cores and the GPU. In this
section, we derive a frequency-sensitivity predictor in
heterogeneous processors and use it to construct a run-
time energy-management scheme. Our goal is to de-
velop a simple and practical predictor that can be im-
plemented efficiently in a dynamic run-time algorithm
with minimal hardware overhead and complexity.

4.1. Frequency sensitivity correlation

We developed frequency-sensitivity predictors to
capture the dominant behaviors described in Section 3
for the GPU and the CPU.

First, we selected performance counters that are
indicators of frequency sensitivity. Modern proces-
sors provide hundreds of detectable performance coun-
ters, which makes the selection quite challenging [5].
We used three exascale proxy applications (miniMD,
miniFE and Lulesh), consisting of many different ker-
nels [8,14,24]. We also utilized six scientific applica-
tions from the Rodinia benchmark suite: Needleman–
Wunsch, HotSpot, LU Decomposition (LUD),
Speckle-reducing Anisotropic Diffusion (SRAD),
Computational Fluid Dynamics (CFD) and BFS [9,10].
The chosen applications have a wide range of char-
acteristics such as coarse- and fine-grained kernels,
compute- and memory-boundedness, different degrees

of CPU–GPU performance-coupling, and divergent
control flow.

Using an application analysis and profiling tool
called CodeXL, we measured the execution times and
the corresponding values of a set of performance coun-
ters/metrics at kernel boundaries over a range of CPU
and GPU frequencies [18]. We initially attempted to
find correlation across multiple sample points in a sin-
gle application trace but found that minor discrepan-
cies in phase alignment with performance metric traces
can cause large variations in correlation. Hence, we
looked for alignment only at the kernel granularity in
an application. We performed a correlation analysis be-
tween each performance counter/metric and the CPU
or GPU frequency sensitivity, measured as the ratio of
the difference in execution times to the correspond-
ing differences in frequency. We computed the correla-
tion coefficients using linear regression (shown in Ta-
ble 2). These performance counters/metrics were de-
rived from a set of more than 40 hardware performance
counters in the CPU, GPU, and Northbridge selected
based on the insights gained from Section 3. Coeffi-
cient values greater than 0.5 or less than −0.5 are con-
sidered a strong positive or negative correlation, re-
spectively [7]. These values are highlighted in Table 2.

Second, we calculated overall GPU or CPU fre-
quency sensitivity based on the following analysis. As
expected, ClockWeightedUPC shows high correlation
for CPU frequency sensitivity, as does GPU ALU ac-
tivity and ALUBusy for the GPU. This captures the
compute behavior of an application in either type of
core. However, to capture the compute behavior for
normal operations as well as control-divergent appli-
cations, we weighed the ALUBusy metric with GPU-
ClockBusy (note the improvement in correlation be-
tween line 3 and line 1 in Table 2).

As Fig. 5 shows, graph algorithms have a high de-
gree of control-flow divergence; thus, some SIMD en-
gines are idle and waiting for a thread to finish exe-
cuting before all threads can re-converge and proceed.
This produces poor ALU throughput, making it ap-
pear that the GPU is lightly utilized. However, when
ALUBusy is weighted with the actual GPU clock ac-
tivity, we get a higher rate of ALU activity for the ac-
tive period and better correlation. Similar accounting
has been done for CPUs; however, unlike the CPU,
which is latency sensitive, the GPU’s massively par-
allel bulk-synchronous computation creates a com-
plex inter-relationship between control behavior and
power [7].

GPU frequency sensitivity shows a strong negative
correlation to CPU UPC. Similarly, CPU frequency

100 I. Paul et al. / Coordinated energy management in heterogeneous processors

Table 2

Sensitivity analysis of various performance metrics

Metric Description Correlation coefficient Correlation coefficient

to GPU FS (meas) to CPU FS (meas)

WeightedALUBusy ALUBusy weighted by GPUClockBusy 0.85 −0.62

ALUInsts PTI Compute instructions per thousand instructions 0.78 −0.54

ALUBusy The percentage of GPUTime ALU instructions are processed 0.76 −0.54

ALUFetchRatio The ratio of ALU to fetch instructions. If the number of fetch
instructions is 0, then 1 will be used instead

0.57 −0.31

L2 cache miss/cycle Level 2 cache miss rate to main memory for CPU 0.13 −0.41

ALUPacking The ALU vector packing efficiency (in percentage) 0.11 −0.22

GPUClockBusy GPU utilization: Ratio of time when at least one of the SIMD
units in the GPU is active compared to total execution time

0.06 −0.13

FetchUnitBusy The percentage of GPUTime the fetch unit is active −0.28 −0.01

FetchUnitStalled The % of GPUTime main memory fetch/load unit is stalled −0.49 −0.15

WriteUnitStalled The % of GPUTime main memory write/store unit is stalled −0.51 0.12

Writes to memory PTI Main memory writes per thousand instructions −0.60 −0.28

Fetch from memory PTI Main memory reads per thousand instructions −0.62 −0.23

Global_MemUtil Aggregated CPU–GPU memory bandwidth consumed during
theoretical peak bandwidth

−0.63 −0.56

ClockWeightedUPC Retired micro-operations (includes all processor activity) per
cycle weighted by each core’s active clocks

−0.83 0.70

sensitivity shows a strong negative correlation to GPU
ALUBusy. This is because of the data and execution
dependencies between the GPU and CPU. As the com-
putation becomes more balanced and distributed be-
tween the CPU and GPU, we expect the correlation
coefficients to change. However, CPU and GPU per-
formance still will be closely coupled in their interac-
tions and dependencies. Therefore, a GPU frequency-
sensitivity predictor needs to account for CPU UPC as
a way to measure its performance-coupling. Similarly,
CPU frequency sensitivity in a heterogeneous architec-
ture needs to account for GPU ALU activity.

We found a better correlation between frequency
sensitivity and aggregated memory bandwidth (Global
_MemUtil) compared to the localized memory access
metrics such as L2 cache miss in the CPU or memory
fetch/write stalls in the GPU. This is largely because of
the disparity in memory-bandwidth demand between
the CPU and the GPU while accessing a shared re-
source, as shown in Fig. 4.

Based on the preceding analysis, we summarized
a key set of performance metrics below to use in
our run-time energy-management scheme to deter-
mine frequency sensitivities in a performance-coupled
heterogeneous architecture. We determined CPU and
GPU frequency sensitivities as weighted linear re-
gression functions of these combined metrics to cap-
ture performance-coupling, core compute behavior,
and global memory interference. The correlation coef-

ficient using this combination of metrics improved to
0.97:

WeightedALUBusy =
ALUBusy

GPUClockBusy
,

Global_MemUtil =
AggregatedMemBW

TheoreticalPeakMemBW
,

where

TheoreticalPeakMemBW

= (DDRClockSpeed) ∗ (8 bytes per clock)

∗ (Total DDR channels),

ClockWeightedUPC

=
∑(

Total no. of retired uops[i]

∗ UnhaltedCoreClocks[i]
)

/∑
UnhaltedCoreClocks[i].

Although the set of applications analyzed here uses
an offload model for computation, in which kernels run
on the GPU with periodic synchronization points be-
tween CPU and GPU, we do not expect the perfor-
mance metrics (WeightedALUBusy, Global_MemUtil,
and ClockWeightedUPC) to change with more con-
current computation across CPU–GPU; however, the

I. Paul et al. / Coordinated energy management in heterogeneous processors 101

weights associated with the metrics in the linear re-
gression equation may change to reflect even tighter
performance-coupling between CPU and GPU. In fu-
ture we plan on examining the impact of concur-
rent CPU–GPU execution on power-management al-
gorithms.

4.2. DynaCo: Coordinated dynamic energy
management scheme

We propose a run-time energy-management scheme
called DynaCo based on the online measurement of the
frequency sensitivity described in Section 4.1. DynaCo
is implemented as a system software policy layered on
top of the baseline AMD A-Series power-management
system (BAPM).

The energy-management algorithm is partitioned
into a monitoring block that samples the performance
counters every 10 ms to coincide with the operating
system timer tick for minimizing overheads, and a de-
cision block that computes frequency sensitivities us-
ing measurements described at the end of Section 4.1.
The CPU and GPU DVFS states are then configured. In
general, DynaCo periodically determines whether the
CPU and the GPU frequencies are high or low. In each
case, the energy management algorithm embodies the
following logic:

(1) High GPU sensitivity, Low CPU sensitivity: Shift
power to the GPU (i.e., boost the GPU to maxi-
mize performance).

(2) High GPU sensitivity, High CPU sensitivity: Dis-
tribute power proportionally based on their rela-
tive sensitivities.

(3) Low GPU sensitivity, High CPU sensitivity: Shift
power to the CPU (i.e., boost the CPU to maxi-
mize performance).

(4) Low GPU sensitivity, low CPU sensitivity: Re-
duce power of both the CPU and the GPU by us-
ing low-power states.

Because HPC applications are mostly uncompro-
mising with respect to performance loss, we propose
two energy-management algorithms – one more ag-
gressive than the other in attempting to reduce power
but with potentially higher performance degradation.
In the less aggressive variant, DynaCo-1levelTh
(Fig. 8), we limit the lowest-frequency P-state to P2;
the CPU is not permitted to go to a lower-frequency
state. Thus, in this case, there is potential to lose some
power-saving opportunity. In the more aggressive ver-

Algorithm 1. Dynamic scheme (DynaCo-1levelTh)

1: while TRUE do

2: if (Global_MemUtil >= DDR_bus_efficiency) then

3: /∗ Case: Memory is bottleneck ∗/
4: SetGPUFreqState(GPU-med);

5: SetCPUFreqState(CPU-low-power_P2);

6: end if

7: else /∗ Case: Memory is not bottleneck ∗/
8: if(ClockWeightedUPC >= UPC_Threshold) then

9: /∗ CPU frequency sensitive, consider GPU sensitivity ∗/
10: if (WeightedALUBusy >= HIGH) then

11: SetGPUFreqState(GPU-high);

12: SetCPUFreqState(CPU−base);

13: else

14: if (MEDIUM <= WeightedALUBusy < HIGH) then

15: SetGPUFreqState(GPU-med);

16: SetCPUFreqState(CPU-boost);

17: else

18: SetGPUFreqState(GPU-low);

19: SetCPUFreqState(CPU-boost);

20: end if

21: else

22: if(ClockWeightedUPC < IPC_Threshold) then

23: /∗ CPU frequency insensitive, consider GPU sensitivity ∗/
24: SetCPUFreqState(CPU-low-power_P2);

25: if (WeightedALUBusy >= HIGH) then

26: SetGPUFreqState(GPU-high);

27: else

28: if (MEDIUM <= WeightedALUBusy < HIGH) then

20: SetGPUFreqState(GPU-med);

30: else

31: SetGPUFreqState(GPU-low);

32: end if

33: end if

34: end if

35: Sleep.time(SAMPLING_INTERVAL);

36: end while

Fig. 8. DynaCo-1levelTh pseudo-code.

sion, DynaCo-multilevelTh (Fig. 9), the CPU is al-
lowed to use all of the low-power P-states during low-
sensitivity phases by analyzing gradients in memory
access rates. In both versions, the GPU is handled sim-
ilarly and allowed to use all DVFS states. In Fig. 9,
we show DynaCo-multilevelTh for only the portions
in which it is different from DynaCo-11evelTh. For
our analysis, the GPU-high and -med thresholds for
GPU WeightedALUBusy were set to 80% and 30%, re-
spectively, based on GPU utilization and variations in
workload intensity of graphics and HPC benchmarks;

102 I. Paul et al. / Coordinated energy management in heterogeneous processors

Algorithm 2. Dynamic scheme (DynaCo-multilevelTh)

1: while TRUE do

----lines 2 through 21 in Algorithm 1---------------

22: if (ClockWeightedUPC < UPC_Threshold) then

23: /∗ CPU frequency insensitive, consider GPU sensitivity ∗/
24: if (WeightedALUBusy >= HIGH) then

25: SetGPUFreqState(GPU-high);

26: else

27: if (MEDIUM <= WeightedALUBusy < HIGH) then

28: SetGPUFreqState(GPU-med);

29: else

30: SetGPUFreqState(GPU-low);

31: end if

32: SetCPUFreqState(CPU-low-power_Pstate);

33: Compute_ MemAccessRate_gradient();

34: if (gradient>=Mem_threshold) then

35: if (CPU-low-power_Pstate<= Pmin) then

36: CPU-low-power _Pstate++;

37: end if

38: else

39: if (CPU-low-power > CPU − base + 1) then

40: CPU-low-power _Pstate–;

41: end if

42: end if

43: end if

44: end if

45: Sleep.time(SAMPLING_INTERVAL);

46: end while

Fig. 9. DynaCo-multilevelTh pseudo-code.

UPC_threshold was set to 0.4 based on empirical ob-
servations across a wide range of workload character-
istics in this architecture. The CPU and GPU DVFS
settings are described in Section 2. Pmin is the lowest
available CPU P-state.

The key observation is that when there is significant
coupling/interaction between the CPU and the GPU,
having the lowest CPU P-states can lead to signifi-
cant power savings but significant performance degra-
dation. At lower levels of coupling, significant power
savings can occur with little performance degradation.
The choice of algorithm depends on the degree of cou-
pling, which can be time-varying. For example, if an
HPC application has little communication overhead
between the CPU and GPU, such as a compute-offload
application in which the serial fraction of the code is
insignificant compared to the total execution time, both
DynaCo schemes may provide similar performance but
DynaCo-multilevelTh will provide better power and
energy savings.

5. Experimental set-up

We used the AMD2 A10-5800 desktop APU with
100 W TDP as the baseline for all our experiments
and analysis. Base CPU frequency is 3.8 GHz, with
boost frequency up to 4.2 GHz. The GPU frequency
is 800 MHz for the highest DVFS boost state [16].
We used four 2-GB DDR3-1600 DIMMs with two
DIMMs per channel. Hardware performance counters
for CPU and GPU were monitored using CPU and
GPU performance counter libraries running in Red Hat
Linux3 OS. We set specific CPU DVFS states using
model-specific registers as described in [5]; to set a
specific GPU DVFS state, we send memory-mapped
messages through the GPU driver layer to the power-
management firmware.

Although our DynaCo scheme can be implemented
in any layer such as hardware, power-management
firmware, or system software, we implemented it as
a run-time system software policy by layering it on
top of the baseline AMD A-Series power-management
system. For CPU and GPU power and temperature,
we used the digital estimates provided by the power-
management firmware running in the AMD A-Series
processor, the accuracies for which are detailed in
[32]. For all schemes, we ran the applications for sev-
eral iterations to reach a thermally stable steady state.
We took an average across those multiple iterations
to eliminate run-to-run variance in our hardware mea-
surements.

We selected the applications used in our experiments
based on their relevance to future high-performance
scientific computing. We evaluated seven OpenCL ap-
plications in this paper: miniMD, miniFE, Lulesh,
S3D, Sort, Stencil2D and BFS. MiniMD, miniFE and
Lulesh are proxy applications representative of HPC
scientific application characteristics in the exascale
time-frame. We also evaluated a sub-set of benchmarks
(S3D, Sort, Stencil2D, BFS) from the Scalable Het-
erogeneous Computing (SHOC) benchmark suite [13]
that represents a large portion of scientific code found
in HPC applications. We analyzed all applications on a
single node to explore energy-saving opportunities us-
ing our run-time schemes. These applications and the
associated datasets are described in Table 3.

MiniMD is a molecular dynamics code derived from
its parent code, LAMMPS [8]. It has two main compu-

2AMD, the AMD Arrow logo, AMD Opteron, AMD Radeon and
combinations thereof are trademarks of Advanced Micro Devices,
Inc.

3Linux is the registered trademark of Linus Torvalds.

I. Paul et al. / Coordinated energy management in heterogeneous processors 103

Table 3

Application datasets

Application Problem size

miniMD 32 × 32 × 32 elements

miniFE 100 × 100 × 100 elements

Lulesh 100 × 100 × 100 elements

Sort 2,097,152 elements

Stencil2D 4,096 × 4,096 elements

S3D SHOC default for integrated GPU

BFS 1,000,000 nodes

tational kernels. The first is the L–J potential function,
or force kernel, and the second is the neighbor-binning
algorithm, or neighbor kernel. Other kernels include
communication kernel atom_comm and miscellaneous
small kernels to integrate the atom forces and build the
neighbor’s list for each atom based on proximity and
other variables.

MiniFE provides an implementation of a finite-
element method [14]. It provides a conjugate gradient
(CG) linear system solver with Jacobi preconditioning.
The three main kernels in the CG solver are matvec,
which does matrix vector operations; dot, which per-
forms the dot product of two matrices; and waxpy,
which does the weighted sum of two vectors.

Lulesh [24] approaches the hydrodynamics prob-
lem using Lagrangian numerical methods. The two
main computation kernels in Lulesh are CalcHour-
GlassForces and CalcFBHourGlassForces.

SHOC consists of a collection of complex scientific
applications and common kernels encapsulated into
benchmarks that represent a majority of the numerical
operations found in HPC. We use Sort; which sorts an
array of key-value pairs using a radix sort algorithm;
Stencil2D, which uses a nine-point stencil operation
applied to a 2D dataset; S3D, which is a turbulent com-
bustion simulation; and BFS, which is a graph traversal
problem.

We report performance, power, and energy effi-
ciency (energy-delay2 product) for the two variants of
DynaCo algorithm. We picked ED2 because it has been
widely used in HPC analysis [26] and it captures the
importance of both power and performance, the latter
being critical for HPC. The power and energy results
include CPU, GPU, memory controller power, and a
fixed IO-phy power budget. All results were obtained
from real hardware and are normalized to the baseline
BAPM discussed in Section 2. All averages represent
geometric mean across the applications.

6. Results

This section describes the results from the two
DynaCo schemes in the AMD A-Series APU and
compares them with the state-of-the-practice power-
management algorithm BAPM. We also compare our
DynaCo schemes with an ideal static scheme that picks
the best DVFS state for each kernel as determined
through offline profiling and analysis by performing an
entire state-space search. Offline techniques provide a
good basis for comparison to evaluate the effectiveness
of run-time techniques but are impractical as power-
management strategies.

6.1. Performance, power and energy

Figure 10 shows the performance impact of
DynaCo-1levelTh, DynaCo-multilevelTh, and ideal
static schemes compared to the baseline for all six
HPC applications. The y-axis represents the increase
in run-time compared to a baseline value of 1.0, and
lower is better. We see an average run-time increase
of 0.78% across all the applications using DynaCo-
1levelTh, with up to 2.58% maximum slow-down in
the case of miniMD.

DynaCo-multilevelTh sees an average run-time in-
crease of 1.61% across the same set of applications,
with a worst-case slow-down of 4.19%. The ideal static
scheme measures an average slow-down of 1.65%,
with the worst case being 5.2% in miniMD. This il-
lustrates the efficacy of the run-time schemes in op-
timizing energy efficiency under strict performance
constraints. Ideal-static picks the best CPU and GPU
DVFS states at a kernel-level granularity, and it is un-
able to detect fine-grained phase changes in a ker-

Fig. 10. Performance impact of DynaCo. (Colors are visible in the
online version of the article; http://dx.doi.org/10.3233/SPR-140380.)

104 I. Paul et al. / Coordinated energy management in heterogeneous processors

nel. Hence, it penalizes short, high-frequency sensitive
phases in a kernel that overall has low sensitivity.

As expected, we see much tighter performance
control with DynaCo-1levelTh compared to DynaCo-
multilevelTh and ideal static because it does not utilize
the lowest-frequency states of the CPU. Because it al-
ways fixes the low-power P-state for CPU to P2 dur-
ing phases of low CPU frequency sensitivity, it also re-
moves the slight variability in performance over time
when the algorithm is adapting dynamically to find the
best low-power P-state. On the other hand, DynaCo-
multilevelTh provides better energy efficiency gains,
as we will see next, with slightly more performance
degradation but still within reasonable bounds of HPC
constraints [26]. We attribute the relatively higher per-
formance loss in miniMD to the impact of variability in
kernel phases shorter than our 10 ms sampling interval
limitation.

The more aggressive DynaCo-multilevelTh outper-
forms ideal static in miniFE and miniMD because a
run-time adaptive scheme is able to take advantage
of the phase behavior in a kernel, whereas the static
scheme based on profiling makes power-state deci-
sions only at kernel-level granularity. Figure 11 shows
an example phase behavior of the matvec kernel in
miniFE for a single iteration. The y-axis shows GPU
utilization and normalized memory-bandwidth utiliza-
tion compared to the practical peak-DDR bandwidth.
Matvec does sparse matrix-vector product and, in gen-
eral, is heavily memory bandwidth-limited due to the
large number of indirect memory references and regis-
ter spills to global memory in the code. However, about
19% of the time it is compute-intensive without satu-
rating memory bandwidth. This behavior is observed
in every invocation of matvec in miniFE, a signifi-
cant fraction of the application’s total run-time. Dur-
ing this 19% compute-intensive phase, DynaCo boosts

Fig. 11. Phase variation within MATVEC. (Colors are visible in the
online version of the article; http://dx.doi.org/10.3233/SPR-140380.)

the GPU to its highest DVFS state while the profiling-
based ideal static scheme fixes the GPU frequency to
GPU-med due to this kernel’s overall low GPU fre-
quency sensitivity.

In Fig. 12 we evaluate the ED2 gains using DynaCo
during the entire run-time of the application. All data
are normalized to a baseline of 1.0 and lower is bet-
ter. Average energy efficiency improves by 24% using
DynaCo-1levelTh compared to the baseline, with up to
32% savings in Sort and S3D. DynaCo-multilevelTh
sees an average improvement of 30%, with up to
47% savings in S3D. Ideal-static achieves an energy-
efficiency gain of 35%. We observe that 70–80% of
the savings came from CPU scaling and the remainder
came from GPU scaling.

The amount of energy-efficiency gain in S3D is
slightly higher than the rest of the benchmarks. S3D
is a compute-intensive application. However, when we
run multiple iterations of this benchmark from the
SHOC suite, the compute-intensive active phases ap-
pear to last for a small fraction of the total time it
takes to compile and launch the application kernels.
This causes only small periods of activity on the GPU
followed by long idle periods. During this idle pe-
riod, the GPU is power-gated for all three schemes
as well as the baseline. However, the CPU is busy
compiling and preparing the work to launch the ker-
nels. Portions of this phase do not contribute to the
overall performance of the application. Boost algo-
rithms, such as the BAPM algorithm used for the base-
line, allocate the highest CPU frequencies during this
phase when power and thermal headroom is available.
However, in our run-time and ideal-static schemes we
are able to utilize the low frequency P-states dur-
ing the frequency-insensitive phase. We also notice
that DynaCo-multilevelTh provides better energy effi-

Fig. 12. Energy efficiency with DynaCo. (Colors are visible in the
online version of the article; http://dx.doi.org/10.3233/SPR-140380.)

I. Paul et al. / Coordinated energy management in heterogeneous processors 105

Fig. 13. Power savings with DynaCo. (Colors are visible in the online
version of the article; http://dx.doi.org/10.3233/SPR-140380.)

ciency than ideal static for miniMD due to the higher-
performance slow-down observed with the profile-
based scheme.

The power savings achieved with DynaCo are illus-
trated in Fig. 13. The average power savings are 24%
with DynaCo-1levelTh, 31% with DynaCo-
multilevelTh, and 36% with ideal-static. We see that
DynaCo-multilevelTh provides greater power savings
compared to DynaCo-1levelTh due to utilization of
the very-low-frequency CPU P-states. While ideal
static provides greater power savings by picking the
best DVFS state for each kernel, it does not provide
the same tight performance bounds as the other two
schemes, as shown in Fig. 10. In addition, it requires
user intervention and prior offline profiling of all the
kernels in an application across multiple CPU and
GPU frequencies to determine the best state.

6.2. Performance analysis and power shifting

We now analyze the case of power-shifting and
power-reduction scenarios with the two DynaCo
schemes for every application. We present a sub-set
of those results here. Figure 14 shows the percentage
GPU DVFS residency for each of the three main ker-
nels of Lulesh as well as the overall application. Be-
cause the GPU DVFS decision between the two Dy-
naCo schemes is handled similarly from an algorithmic
perspective, we show GPU DVFS residency results for
only DynaCo-1levelTh.

The CalcHourGlass kernel spends 21% less time
in GPU-high, 14% more time in GPU-med, and 8%
more time in GPU-low than the baseline. On further
examination, this kernel is memory-bounded 30% of
its run-time; during those times, power is shifted away
from the GPU. Similarly, the entire Lulesh application
spends 9% less time in GPU-high with DynaCo. For
the CalcFBHourGlass kernel, DynaCo performs simi-

Fig. 14. GPU DVFS residency for DynaCo and baseline. (Colors are
visible in the online version of the article; http://dx.doi.org/10.3233/
SPR-140380.)

Fig. 15. CPU DVFS residency with DynaCo-1levelTh. (Colors are
visible in the online version of the article; http://dx.doi.org/10.3233/
SPR-140380.)

larly to the baseline. This kernel is heavily compute-
bound on GPU with high WeightedALUBusy; hence,
DynaCo boosts performance by selecting the highest-
frequency state.

Further, in Figs 15 and 16, we see that for all three
kernels we are able to shift power away from CPU
significantly due to poor CPU frequency sensitivity,
while the baseline runs the CPU at the high-frequency
boost states due to availability of power and ther-
mal headroom. Specifically, during the more than 20
Other kernel phases, DynaCo correctly boosts CPU
to the high-frequency P-states as needed due to the
high CPU dependency observed for these miscella-
neous fine-grained kernels, as depicted in the phase be-
havior shown in Fig. 1. Further, DynaCo-multilevelTh
is able to utilize the lower-frequency CPU P-states P3
and P4 59% of the time.

We also observe that the fine-grain, relatively small
kernels such as IntegrateStress become performance-

106 I. Paul et al. / Coordinated energy management in heterogeneous processors

Fig. 16. CPU DVFS residency with DynaCo-multilevelTh. (Col-
ors are visible in the online version of the article; http://dx.doi.org/
10.3233/SPR-140380.)

coupled to the CPU more quickly than the main Hour-
glass computation kernels. Hence, IntegrateStress does
not utilize the low-frequency P-states of P3 and P4 that
can cause significant performance loss. Lulesh pro-
vides an example of a case when power can be saved
from both CPU and GPU and boosting to higher fre-
quencies is utilized when the application phase needs
it.

Similarly, for miniMD (figure not shown due to
space constraints), DynaCo correctly estimates the fre-
quency sensitivity of the different kernels. The heav-
ily compute-intensive nature of the force kernel causes
it to boost to the highest GPU frequency 100% of its
run-time, similar to the baseline. On the other hand,
the neighbor kernel has aggregated CPU–GPU mem-
ory bandwidth that is close to the peak bandwidth that
the DDR bus can sustain after accounting for bus ef-
ficiency. Hence, we are able to run the GPU at the
medium DVFS frequency without noticeable perfor-
mance degradation. Moreover, small kernels in min-
iMD such as atom_comm, which rely on the CPU for
data transfer and launch frequently, spend almost 70%
of their time in the medium- and low-frequency GPU
DVFS states using DynaCo. During much of this time,
CPU is closely coupled to the GPU and runs at high-
frequency P-states. Contrary to this, the baseline algo-
rithm runs at maximum CPU and GPU frequencies for
all miniMD kernels due to temperature headroom.

In the graph algorithm BFS, we see that due to con-
trol divergence the GPU has short bursts of computa-
tion followed by phases of low utilization on the GPU.
About 25% of the time, threads are waiting for re-
convergence. DynaCo correctly assigns high GPU fre-
quency to avoid slowing the critical path, but it saves
power from the CPU due to low UPC. The baseline

always runs BFS at the maximum CPU and GPU fre-
quencies due to the available thermal headroom, caus-
ing energy inefficiency.

Due to the lower power consumption, we also see a
reduction in the peak die temperatures using DynaCo.
This is due to a combination of leakage power savings
from reduced voltage operations and dynamic power
savings from reduced frequency. With DynaCo, peak
die temperature is, on average, up to 2°C lower across
all the applications. Lower temperatures result in lower
cooling costs, better energy efficiency, and better heat
management.

In summary, we have shown that DynaCo success-
fully leverages the metrics discussed in Section 4 to
improve the energy efficiency of HPC application on
a heterogeneous processor. DynaCo is able to produce
significant power savings with a small reduction in per-
formance, resulting in energy efficiencies comparable
to an ideal static management scheme without the ad-
ditional overhead of profiling required for the static
scheme.

7. Related work

There is a considerable amount of research in power
and energy management in homogeneous uni- and
multi-core processors using dynamic voltage and fre-
quency scaling. Several research works have pro-
posed analytical models for DVFS [12,21,25,42], com-
piler-driven techniques [43], and control-theoretic
approaches [40]. Li et al. [31] proposed a run-time
voltage/frequency and core-scaling scheduling algo-
rithm that minimizes the power consumption of
general-purpose chip multi-processors within a perfor-
mance constraint. Lee et al. [29] analyzed throughput
improvement of power-constrained multi-core proces-
sors by using power-gating and DVFS techniques.

In the HPC community, Pakin et al. [33] character-
ized power usage on production supercomputers us-
ing production workloads. Laros et al. [27] performed
extensive large-scale analysis of power and perfor-
mance requirements for scientific applications in su-
percomputers based on static tuning of applications
through DVFS, core, and bandwidth scaling. Rountree
et al. [38] explored energy-performance trade-offs for
HPC applications bottlenecked by memory and com-
munication. In [37] and [39], Rountree et al. inves-
tigated speeding up the critical path of an applica-
tion in a multi-processor cluster using slack-prediction
and leading-load techniques, respectively. In [4], Bal-

I. Paul et al. / Coordinated energy management in heterogeneous processors 107

aprakash et al. described exascale workload character-
istics and created a statistical model to extrapolate ap-
plication characteristics as a function of problem size.
All these efforts focused only on CPU architectures;
this paper focuses on the integrated CPU–GPU archi-
tectures that bring new challenges.

There has been a renewed interest in using machine
learning to construct behavior models for use in run-
times, compilers, and even hardware to make schedul-
ing decisions. Techniques to automate the construction
of models of execution time for GPUs using basic ma-
chine learning are described in [23] and [26]. Other
efforts have constructed models for predicting power
and thermal behaviors from measurements made with
performance counters [6,15]. Such techniques focus on
model construction and are distinct from model appli-
cation (e.g., in making power-management decisions).
They certainly could be investigated to improve the
models presented here further with the requirement
that simplicity of implementation be met.

Recently, there has been a significant interest in the
power management of GPUs. Lee et al. [30] proposed
DVFS techniques to maximize performance within a
power budget for discrete GPUs. In [15], Hong et al.
developed a power and performance model for a dis-
crete GPU processor. Recent studies [2,3] have iden-
tified throughput-computing performance-coupled ap-
plications as an emergent class of future applications.
However, none of this work focuses on managing en-
ergy in tightly coupled architectures.

A number of papers have examined CPU–GPU het-
erogeneous architectures. Research in [11,22,35,36]
proposed run-time systems with scheduling schemes
for applications like generalized reductions, irregular
reductions, and MapReduce to improve performance
in CPU–GPU architectures. In [28], Lee et al. pro-
posed thread-level-parallelism-aware cache manage-
ment policies in CPU–GPU processors. Wang et al.
[41] proposed workload-partitioning mechanisms be-
tween the CPU and GPU to utilize the overall chip
power budget to improve throughput. In [34], Paul
et al. characterized thermal coupling effects between
CPU and GPU and proposed a solution to balance ther-
mal and performance-coupling effects dynamically.

Unlike many of the previous studies, our work is to
our knowledge the first to address energy management
in integrated CPU–GPU processors for HPC applica-
tions. Furthermore, unlike much past work in this area,
we have implemented our algorithms on commodity
hardware and show measurable performance, power,
and energy benefits compared to a state-of-the-practice
power-management algorithm.

8. Conclusions

This paper proposed and implemented a set of tech-
niques to improve the energy efficiency of integrated
CPU–GPU processors. To the best of our knowledge,
this is the first such implementation. We described the
unique characteristics of HPC applications and the op-
portunities they present to save energy. We proposed
a model to capture the application’s frequency sensi-
tivity in such architectures and used this model as the
basis for a dynamic, coordinated energy-management
scheme to improve energy efficiency at negligible per-
formance loss. The proposed scheme achieves an aver-
age ED2 benefit of up to 30% compared to the baseline
with less than 2% average performance loss across a
variety of exascale and other HPC applications.

In the future, we plan to expand this work to man-
age memory sub-systems directly, explore techniques
to balance computation on both CPU and GPU effi-
ciently for energy, and extend this node-level analysis
to the level of an HPC cluster.

Acknowledgements

The authors gratefully acknowledge the efforts and
detailed comments of the reviewers, which substan-
tially improved the final manuscript. This research was
supported in part by the Semiconductor Research Cor-
poration under contract 2012-HJ-2318.

References

[1] Advanced Configuration and Power Interface (ACPI), Specifi-
cation, available at: http://www.acpi.info/spec.htm.

[2] M. Arora, S. Nath, S. Mazumdar, S. Baden and D. Tullsen, Re-
defining the role of the CPU in the era of CPU–GPU integra-
tion, in: IEEE Micro, 2012.

[3] K. Asanovic, R. Bodik, B.C. Catanzaro, J.J. Gebis, P. Hus-
bands, K. Keutzer, D.A. Patterson, W.L. Plishker, J. Shalf,
S.W. Williams and K.A. Yelick, The landscape of parallel
computing research: A view from Berkeley, Technical Report
UCB/EECS-183, 2006.

[4] P. Balaprakash, D. Buntinas, A. Chan, A. Guha, R. Gupta,
S. Narayanan, A. Chieny, P. Hovland and B. Norris, An exas-
cale workload study, in: SCC, 2012.

[5] BIOS and Kernel Developer’s Guide: http://support.amd.com/
us/Processor_TechDocs/42300_15h_Mod_10h-1Fh_BKDG.
pdf.

[6] W.L. Bircher and L.K. John, Complete system power estima-
tion: A trickle-down approach based on performance events,
in: ISPASS, 2007.

[7] W.L. Bircher, M. Valluri, J. Law and L.K. John, Runtime iden-
tification of microprocessor energy saving opportunities, in:
ISLPED, 2005.

108 I. Paul et al. / Coordinated energy management in heterogeneous processors

[8] W.M. Brown, P. Wang, S.J. Plimpton and A.N. Tharring-
ton, Implementing molecular dynamics on hybrid high per-
formance computers-short range forces, in: Compute Physics
Communications, 2011.

[9] S. Che, M. Boyer, J. Meng, D. Tarjan, J.W. Sheaffer, S.-H. Lee
and K. Skadron, Rodinia: A benchmark suite for heteroge-
neous computing, in: IISWC, 2009.

[10] S. Che, J.W. Sheaffer, M. Boyer, L. Szafaryn and K. Skadron,
A characterization of the Rodinia benchmark suite with com-
parison to contemporary CMP workloads, in: IISWC, 2010.

[11] L. Chen, X. Huo and G. Agrawal, Accelerating map-reduce on
a coupled CPU–GPU architecture, in: SC, 2012.

[12] M. Curtis-Maury, A. Shah, F. Blagojevic, D. Nikolopoulos,
B.R. de Supinski and M. Schulz, Prediction models for multi-
dimensional power-performance optimization on many cores,
in: PACT, 2008.

[13] A. Danalis, G. Marin, C. McCurdy, J. Meredith, P. Roth,
K. Spafford, V. Tipparaju and J.S. Vetter, The scalable hetero-
geneous computing (SHOC) benchmarking suite, in: GPGPU,
2010.

[14] M. Heroux, D. Doerfler, P. Crozier, J. Willenbring, H.C. Ed-
wards, A. Williams, M. Rajan, E. Keiter, H. Thornquist and
R. Numrich, Improving performance via mini-applications, in:
SAND2009-5574, 2009.

[15] S. Hong and H. Kim, An integrated GPU power and perfor-
mance model, in: ISCA, 2010.

[16] http://www.amd.com/us/products/desktop/processors/a-series/
Pages/a-series-model-number-comparison.aspx.

[17] http://www.xbitlabs.com/news/other/display/20111102214137
_AMD_and_Penguin_Build_World_s_First_HPC_Cluster_
Based_on_Fusion_APUs.html.

[18] http://developer.amd.com/tools-and-sdks/heterogeneous-
computing/codexl/.

[19] http://www.green500.org.
[20] http://www.top500.org.
[21] Z. Hu, D. Brooks, V. Zyuban and P. Bose, Microarchitecture-

level power-performance simulators: modeling, validation and
impact on design, in: MICRO, 2003.

[22] X. Huo, V.T. Ravi and G. Agrawal, Porting irregular reductions
on heterogeneous CPU–GPU configurations, in: HiPC, 2011.

[23] W. Jia, K. Shaw and M. Martonosi, Stargazer: Automated
regression-based GPU design space exploration, in: IEEE
ISPASS, 2012.

[24] I. Karlin, LULESH programming model and performance
ports overview, LLNL-TR-608824, 2012.

[25] S. Kaxiras and M. Martonosi, Computer architecture tech-
niques for power efficiency, in: Synthesis Lectures on Com-
puter Architecture, 2008.

[26] A. Kerr, E. Anger, G. Hendry and S. Yalamanchili, Eiger:
A framework for the automated synthesis of statistical perfor-
mance models, in: 1st Workshop on Performance Engineering
and Applications (WPEA), 2012, held with HiPC.

[27] J.H. Laros, III, K.T. Pedretti, S.M. Kelly, W. Shu and
C.T. Vaughan, Energy based performance tuning for large scale
high performance computing systems, in: HPC, 2012.

[28] J. Lee and H. Kim, TAP: A TLP-aware cache management
policy for a CPU–GPU heterogeneous architecture, in: HPCA,
2012.

[29] J. Lee and N. Kim, Optimizing throughput of power- and
thermal-constrained multicore processors using DVFS and per-
core power-gating, in: DAC, 2009.

[30] J. Lee, V. Sathish, M. Schulte, K. Compton and N. Kim, Im-
proving throughput of power-constrained GPUs using dynamic
voltage/frequency and core scaling, in: PACT, 2011.

[31] J. Li and J. Martinez, Dynamic power-performance adaptation
of parallel computation on chip multiprocessors, in: HPCA,
2006.

[32] S. Nussabaum, AMD, Trinity, APU, in: Hotchips, 2012.
[33] S. Pakin, C. Storlie, M. Lang, R. Fields, III, E. Romero,

C. Idler, S. Michalak, H. Greenberg, J. Loncaric, R. Rhein-
heimer, G. Grider and J. Wendelberger, Power usage of produc-
tion supercomputers and production workloads, in: SC, 2012.

[34] I. Paul, S. Manne, M. Arora, W.L. Bircher and S. Yalaman-
chili, Cooperative boosting: needy versus greedy power man-
agement, in: ISCA, 2013.

[35] V.T. Ravi and G. Agrawal, A dynamic scheduling framework
for emerging heterogeneous systems, in: HiPC, 2011.

[36] V.T. Ravi, W. Ma, D. Chiu and G. Agrawal, Compiler and run-
time support for enabling generalized reduction computations
on heterogeneous parallel configurations, in: ICS, 2010.

[37] B. Rountree, D.K. Lowenthal, B.R. de Supinski, M. Schulz,
V. Freeh and T. Bletsch, Adagio: Making DVS practical for
complex HPC applications, in: ICS, 2009.

[38] B. Rountree, D.K. Lowenthal, S. Funk, V. Freeh, B.R. de
Supinski and M. Schulz, Bounding energy consumption in
large-scale MPI programs, in: SC, 2007.

[39] B. Rountree, D.K. Lowenthal, M. Schulz and B.R. de Supin-
ski, Practical performance prediction under dynamic voltage
frequency scaling, in: IGCC, 2011.

[40] A. Varma, B. Ganesh, M. Sen, S.R. Choudhury, L. Srinivasan
and B.L. Jacob, A control-theoretic approach to dynamic volt-
age, in: International Conference on Compilers, Architectures
and Synthesis for Embedded Systems, 2003.

[41] H. Wang, V. Sathish, R. Singh, M. Schulte and N. Kim, Work-
load and power budget partitioning for single chip heteroge-
neous processors, in: PACT, 2012.

[42] Q. Wu, P. Juang, M. Martonosi and D.W. Clark, Formal on-
line methods for voltage/frequency control in multiple clock
domain microprocessors, in: ASPLOS, 2004.

[43] Q. Wu, M. Martonosi, D. Clark, V. Reddi, D. Connors, Y. Wu,
J. Lee and D. Brooks, Dynamic compiler-driven control for mi-
croprocessor energy and performance, in: IEEE Micro, 2006.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

