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1. Background and introduction

In this study, we understand the meaning of “sci-
entific computing” as using computers to analyze and
solve scientific and engineering problems. We distin-
guish that from pure numerical computations. Study-
ing scientific computing is always a challenging task
for the learner as well as for the educator. Such a study-
ing process deals with plenty of technical and multi-
disciplinary issues and requires a synchronization of
the learner’s mathematical and computer science com-
petencies. To overcome these difficulties, we propose
a set of learning objects and a methodology, which is
based on a constructivist approach to learning and pro-
vides a relevant framework for the educator. Such a
framework enables the learner to conduct a series of
computational experiments with computer models. Us-
ing such an approach, related mathematical and pro-
gramming knowledge is provided on demand and par-
allel to the main curriculum. We consider a compu-
tational statistics section of the introductory scientific
computing course as possible application scope of this
research. Below, we provide the background of the pre-
sented methodology.
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1.1. Scientific computing

Karniadakis and Kirby II define “scientific com-
puting is the heart of simulation science”. The au-
thors offer a “seamless approach to numerical algo-
rithms, modern programming techniques, and parallel
computing. . . . Often times such concepts and tools
are taught serially across different courses and differ-
ent textbooks, and hence the interconnection between
them is not immediately apparent. The necessity of in-
tegrating concepts and tools usually comes after such
courses are concluded, e.g. during a first job or a the-
sis project, thus forcing the student to synthesize what
is perceived to be three independent subfields into one
in order to produce a solution. Although this process
is undoubtedly valuable, it is time consuming and in
many cases it may not lead to an effective combination
of concepts and tools. Moreover, from the pedagogi-
cal point of view, the integrated seamless approach can
stimulate the student simultaneously through the eyes
of multiple disciplines, thus leading to enhanced un-
derstanding of subjects in scientific computing” [16].
Figure 1 presents the definition of scientific computing
as an intersection of numerical mathematics, computer
science and modeling [16].

1.2. Constructivist learning

Caine and Caine in their fundamental research [6]
propose the main principles of constructivist learning.
One of the most important for us is as follows: “The
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Fig. 1. Scientific computing.

brain processes parts and wholes simultaneously”. So,
a well-organized learning process provides details as
well as underlying ideas. Using model-centered learn-
ing, we introduce the goal of the research after con-
structing a model for simulation. That allows us to ob-
serve the results and to draw relevant conclusions.

1.3. Model-centered education: Why models?

Gibbons introduced model-centered instruction in
2001 [9]. The following main principles are important:

• Learner’s experience is obtained by interacting
with models;

• Learner solves scientific and engineering prob-
lems using simulation on models;

• Problems are presented in a constructed sequence;
• Specific instructional goals are specified;
• All necessary information within a solution envi-

ronment is provided.

Millard et al. [30] propose model facilitated learning
using “interactive simulations”. The authors present a
modern computer technology powered by “promising
methodology” based on “system dynamics”. “Support-
able experiences include the construction of interactive
. . . models as well as their use for hypothesis testing
and experimentation”.

Lehrer and Schauble [25] refer to the experiments
with different representations of the model: “Student
learning is enhanced when students have multiple op-
portunities to invent and revise models and then to
compare the explanatory adequacy of different mod-
els”.

1.4. Scientific computing education: Experiments
with models

Xue [40] introduces “teaching reform ideas in the
“scientific computing” education by means of model-
ing and simulation”. He suggests “. . . the use of the

modeling and simulation to deal with the actual prob-
lem of programming, simulating, data analyzing . . .”.
Model-centered learning is used in mathematics edu-
cation. Plenty of models are constructed using “Geoge-
bra” software [33]. Models play a central role in Sci-
ence Education [7,18].

1.5. Stochastic simulations of queueing systems

We propose queueing systems due to the simplic-
ity of primary definitions and due to wide possibilities
for modeling and simulation. The Queueing Systems
Theory is well established and simulations of queueing
systems are widely used in science [4,19] and educa-
tion [13,36]. The multiphase queueing system is a good
platform for learner experiments using parallel calcula-
tions. Also there is a number of interesting theoretical
results to study and to investigate [12].

1.6. Python in scientific computing education

Python is one of the most popular programming lan-
guages for scientists as well as for educators [21–23].
Python is widely used in industrial scientific comput-
ing [14]. Langtangen reports on the long term expe-
rience of using Python as the primary language for
teaching Scientific Computing in the University of
Oslo [24]. Python is promoted as the first language to
study programming [38] as well as for advanced stud-
ies of computational methods [3,20,34].

2. The basics

Below we present a brief on the key topics of an in-
troductory curriculum in Scientific Computing. These
topics include randomness with random numbers and
distributions, stochastic simulations and multiprocess-
ing. We use a simple model of throwing a die or a
number of dice. The main task of these experiments
is to provide an experimental proof of the Central
Limit Theorem. These models and experiments with
such models also enhance the learner’s understanding
of pseudo- and quasi-random number generators and
the exponential distribution. That could provide basic
ideas for more advanced experiments with the model
of queueing systems.

2.1. Random numbers and distributions

All probability topics could be traditionally con-
sidered difficult to understand and are always within
the scope of interests of international education schol-
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ars [15]. At the same time such topics are very impor-
tant in scientific research [10]. The model-centered ap-
proach makes it easier to understand the material. The
model we are studying is a simple model of throwing a
die or a specific number of dice. We start from one die
and continue experimenting with more dice.

The aim of these introductory experiments is rather
complex. We not only introduce probability and distri-
butions, but also we simultaneously introduce stochas-
tic simulations and parallel computing. We also take
one step towards a scientific research as we introduce
the experimental proof of the Central Limit Theorem.

We begin with the introduction of random number
generators leaving distributions behind the scene. We
then explain uniform random numbers. Discussions
about true randomness or quasi randomness [26,35]
could follow. For advanced learners, the task to carry
out a number of experiments with pseudo-randomness
and the Python pseudo-random module could be pre-
sented. As an introductory step, the assignment for the
learner is to increase the number of trials and supervise
the results of simulations. In the next steps, we proceed
to more sophisticated experiments and parallel calcu-
lations. We use the Python random module for simu-
lations and the mpi4py for parallel programming. The
Python random module implements pseudo-random
number generators for various distributions. For exam-
ple random.randint(a, b) returns a random integer N
such that a � N � b and random.expovariate(lambd)
returns exponentially distributed random numbers with
the parameter ‘lambd’. One should refer to Python
documentation for specific details. The programming
model for a single die is presented in Fig. 2.

The results of a simulation in the case of a single die
are presented in Fig. 3.

Next, we proceed to the case of two dice. The main
idea at this point is to explain the Central Limit Theo-
rem by experimenting with different numbers of dice.
Figure 4 represents this idea.

The learner proceeds by modifying the two-dice
code that enables him to start a multi dice case. The
code is analogical to the one die code except for the
two instructions presented below:

. . .

list_of_values.append
(
random.randint(1, 6)

+ random.randint(1, 6)
)

. . .

pylab.hist
(
list_of_values, pylab.arange(1.5, 13.5, 1.0)

)
. . .

Fig. 2. Python single die model.

Fig. 3. Simulation results for a single die.

The results of a simulation in the two dice case are
presented in Fig. 5.

We can now go on to the normal distribution. The
task here is to show how the above multi-dice case
correlates with the normal distribution. Another task
would be to introduce the mean and deviation. The
code is similar to the one-die case except for the in-
struction used below:

. . .

list_of_values.append
(
random.normalvariate(7, 2.4)

)
. . .

The results of a simulation for the normal distribu-
tion are presented in Fig. 6.

The final step is to introduce the exponential distri-
bution. One always uses the exponential distribution
for simulating interarrival times of customers in queue-
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Fig. 4. Comparison of the probability density functions (from http://en.wikipedia.org/wiki/Central_limit_theorem).

Fig. 5. Two-dice case.

ing systems of various types. The model of the expo-
nential distribution and the results of a simulation are
presented in Figs 7 and 8.

Fig. 6. Simulation results for the normal distribution.

2.2. Stochastic simulation

Stochastic simulation is of primary importance in
the field of scientific computing. We focus on Monte
Carlo methods [10,11,27]. After the model has been
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Fig. 7. Python model for the exponential distribution.

Fig. 8. Simulation results for the exponential distribution.

constructed, we could generate random variables and
experiment with different parameters of the system. In
the scope of this paper the point of the Monte Carlo
experiments is to repeat the trials of our model many
times with a view to accumulate and integrate the over-
all results. The simplest application was described in
the previous subsection. If we increase the number of
trials, we increase the preciseness of simulation results.
Here the learner should carry out a certain number of
experiments using this simple model by increasing the
number of trials. By increasing the number of dice and
the number of trials, the learner will face relatively
long calculation times. It could be a good motivation to
use parallel calculations. The Python model for multi-
ple dice is presented in Fig. 9 and the result of a simu-
lation is presented in Fig. 10.

Fig. 9. Python model for the advanced normal distribution.

Fig. 10. Simulation results for the advanced normal distribution.

As a next step, a set of more comprehensive prob-
lems like modeling of various queueing systems could
be introduced for the learner. The brief introduction
to classification of queueing systems is presented in
the next section of this paper. The learner begins from
modeling of M/M/1 system or more complex queue-
ing system. The basic meanings of stochastic processes
might be introduced at this step as well. As a possi-
ble example, the problem of investigation of the out-
put process could be offered. One can prove that for
M/M/1 system the output is again the Poisson process.
So the problem of gathering data and plotting the out-
put empirical histogram might be presented.
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3. Multiphase queueing systems and stochastic
simulation

Below we provide an introductory description of
queueing systems that consider modeling and stochas-
tic simulation positions.

3.1. Queueing systems

A simple queueing system consists of one server that
provides service for arriving customers. The general
scheme of the simple queueing system is presented in
Fig. 11.

In general, the queueing system consists of one
or more servers that provide service to arriving cus-
tomers. This could also include one or more servicing
phases with one or more servers in each phase. Arriv-
ing customers who find all the servers busy join one
or more queues in front of the servers. There are many
applications that can be modeled as queueing sys-
tems, such as manufacturing systems, communication
systems, maintenance systems, and so on. An overall
queueing system could be characterized by three main
components: the arrival process, the service mecha-
nism and the queue discipline. Arrivals may come from
one or several limited or unlimited sources.

The arrival process describes how customers arrive
to the system. We denote by αi the interarrival time
between the arrivals of the (i−1) and ith customer, the
expected inter-arrival time (or mean) by E(α) and the
arrival frequency by λ = 1

E(α) .
We denote by s the number of servers in the queue-

ing system. The service mechanism is specified by that
number. Each server has its’ own queue as well as
the probability distribution of customer service time.

Fig. 11. The simple queueing system.

We denote by si the service time of the ith customer,
by E(s) the mean service time of a customer and by
μ = 1

E(s) the service rate of a server.
The rule that any server uses to choose the next cus-

tomer from the queue is called the queue discipline of a
queueing system. The most used queue disciplines are:
Priority – customers are served in the order of their im-
portance; FIFO – customers are served on the first-in
first-out basis; LIFO – customers are served on the last-
in first-out basis. The extended Kendall classification
of queuing systems uses 6 symbols: A/B/s/q/c/p where
A is the distribution of intervals between arrivals, B is
the distribution of service duration, s is the number of
servers, q is the queuing discipline (omitted for FIFO),
c is the system capacity (omitted for unlimited queues),
p is the number of possible customers (omitted for
open systems) [17,37]. For example M/M/1 states for
Poisson input, one exponential server, one unlimited
FIFO queue, and unlimited customers.

Queueing systems are used for modeling and re-
search in various fields of engineering and science. For
example, we could model and study manufacturing or
transport systems using the queueing theory. Here the
requests for service are considered as customers and
the maintenance procedure as a service mechanism.
The other examples are: computer systems (terminal
requests and server response accordingly), a computer
multi-disk memory system (data writing/reading re-
quests, shared disk controller), a trunked radio system
(telephone signals, repeaters), local area computer net-
work (requests, channel) [39]. In biology, one could
employ a queueing theory to model an enzymatic sys-
tem (proteins, common enzyme) [8]. In biochemistry
one could implement a queueing network model to
study the regulatory circuit of the lac operon [1].

3.2. Why multiphase?

We consider a queueing system as multiphase – it
consists of more than one server which are joined
consequentially, and as unlimited – with unlimited
calling population. The interarrival time and the ser-
vice time are both independent and exponentially dis-
tributed variables. The Queue discipline is endless
FIFO. A multiphase queueing system naturally maps
to a multicore computer topology. As we see in later
sections of this report, such a model could be easily
programmed, studied and modified. The model also al-
lows a comparative study of different approaches to
multiprocessing. The model of the multiphase queue-
ing system is presented in Fig. 12.
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Fig. 12. Multiphase queueing system.

3.3. Theoretical framework

In the case of statistical modeling, we always face
with the problem of the computer code verification. So
it is always an open question if there are any errors in
our program or algorithm. The model is not fully ana-
lytical and each time we run the program we have dif-
ferent inputs and outputs. So, to verify the correctness
of the code or algorithm, a different (from that one we
use in the case of fully deterministic input data) ap-
proach is needed. To solve this question, we could ap-
ply some theoretical results which could be found in
the scientific literature. Such results give us a basement
for output data analysis and verification as well as for
solving the problem of correctness of the modeling re-
sults [31,32].

We will investigate the sojourn time of the customer
in the multiphase queueing system. We denote by Tj,n

the sojourn time and by S
(j)
n – the service time of the

nth customer in the jth phase. We consider αk as E(α)
for the phase number k. We assume that the following
conditions are fulfilled:

There exists a constant γ > 0 such that

supn�1 E
∣∣S(j)

n

∣∣4+γ
< ∞, j = 0, 1, 2, . . . , k

(1)

and

αk > αk−1 > · · · > α1 > 0. (2)

Theorem. If conditions (1) and (2) are fulfilled, then

P

(
lim

n→∞
Tj,n − αj · n

σ̃ · α(n)
= 1

)

= P

(
lim

n→∞
Tj,n − αj · n

σ̃ · α(n)
= −1

)
= 1,

j = 1, 2, . . . , k and α(n) =
√

2n ln lnn.

3.4. Statistical modeling

After the model has been constructed, we could ar-
range a number of experiments with that model. This
allows us to investigate certain parameters of the sys-
tem we study. We could simulate random variables
with an expected mean and calculate (using the re-
current equation presented below) the values needed
to study. These values will be random as well (we
have randomness in the input data of our model –
interarrival times and serving times). Afterwards, we
can calculate some parameters of such random values
(variables) as mean or probability distribution. We call
this method as statistical modeling due to the random-
ness presented in the model. If more reliable results
are needed, we must repeat the experiments with our
model and then integrate the results i.e. calculate in-
tegral characteristics like a mean or a standard devia-
tion. This is called the Monte Carlo method and it was
described earlier in this paper.

3.5. Recurrent equation

In order to design the modeling algorithm of the pre-
viously described queueing system, some additional
mathematical constructions should be introduced. Our
goal is to calculate and investigate the sojourn time
of the customer number n in the multiphase queue-
ing system of k phases. We can prove the next recur-
rent equation [12]: Let us denote by tn the time of ar-
rival of the nth customer; by S(j)

n the service time of
the nth customer in the jth phase; αn = tn − tn−1;
j = 1, 2, . . . , k; n = 1, 2, . . . ,N . The next recurrence
equation is valid for the sojourn time Tj,n of the nth
customer in the jth phase:

Tj,n = Tj−1,n + S(j)
n

+ max(Tj,n−1 − Tj−1,n − αn, 0);

j = 1, 2, . . . , k; n = 1, 2, . . . ,N ;

Tj,0 = 0,∀j; T0,n = 0,∀n.

Proposition. The recurrence equation for calculating
of the sojourn time of a customer in a multiphase
queueing system.

Proof. It is true that, if the time αn+Tj−1,n � Tj,n−1,
the waiting time in the jth phase of the nth customer is
0. In the case αn + Tj−1,n < Tj,n−1, the waiting time
in the jth phase of the nth customer is ωn

j = Tj,n−1 −
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Tj−1,n − αn and Tj,n = Tj−1,n + ωn
j + S(j)

n . Taking
into account the above two cases, we finally have the
proposition results. �

Now we can start the implementation of the neces-
sary algorithms since all the basic theoretical results
have been introduced.

4. Python for multiprocessing

Python as a programming language is very popu-
lar among scientists and educators and could be an
attractive solution for solving scientifically oriented
tasks [3]. Python provides a powerful platform for
modeling and simulations including graphical options,
a wide amount of mathematical and statistical pack-
ages as well as packages for multiprocessing. For time
consumable solutions, Python and C code could be
combined. All that allows us to implement a pow-
erful modeling platform for statistical modeling and
processing of the results of the data. The key Python
concepts which are important for modeling are: dec-
orators, coroutines, yield expressions, multiprocessing
and queues. A good description of the above is pro-
vided by Beazley in his book [2]. Although there are
several ways of organizing the inter-process communi-
cation, we start from using queues as it is very natural
in the context of the queueing systems.

The simple example of the advantage of using
multiprocessing in order to increase the efficiency
of the programming code is provided below. The
learner could proceed with improvements of the pro-
vided model by using parallel calculations on super-
computers or computer clusters [28,29]. On the one
hand, multiprocessing will allow us to map a multi-
phase model to the resources of a multicore computer
and on the other hand, we could use multiprocessing
to perform a number of Monte Carlo trials in parallel.
We present these two approaches in the next sections.
For motivated learners, a brief introduction to multi-
processing with Python presented below could be pro-
vided.

We start from using the mpi4py module. It is impor-
tant to show to the learner the general idea of how MPI
works. It simply copies the provided program to a num-
ber of the processor kernels, specified by the user, and
integrates the results after using the gather() method.
The sample Python code (see Fig. 13) and the results
of a simulation (see Fig. 14) are presented.

Fig. 13. Python model for the advanced normal distribution with
MPI.

Fig. 14. Normal distribution with MPI.
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5. Model-centered educational framework

Multiphase queueing systems provide us a kernel
for the development of the relevant model-centered
framework. Such a framework includes basic mean-
ings, described in the previous sections, as well as
more complex theoretical results and methods. The ba-
sic meanings include randomness: random numbers,
random number distributions, random numbers gen-
erators, Central Limit Theorem; Python programming
constructions: decorators, coroutines and yield expres-
sions. More complex results include theoretical facts
such as the sojourn time of the customer, the recurrent
equation for calculating the sojourn time, stochastic
simulation methods and multiprocessing techniques. In
Fig. 15, we provide a general scheme of the described
educational framework.

All these theoretical and programming structures al-
low the learner to carry out experiments with different
models of multiphase queueing systems. The aim for
such experimentations is twofold. First of all, it enables
the learner to understand the next sequence, which is
important in any scientific research: theoretical facts
to be studied, mathematical model, programming con-
structions, computer model, stochastic simulation and
observation of simulation results. That will give the
whole picture of the scope of the general scientific re-
search to the learner (see Fig. 16).

Then it forces a deep understanding of stochastic
simulations and basic programming constructions like
multiprocessing and parallel programming. Such com-
petences are of primary importance in the field of sci-
entific computing.

5.1. Experiments with models

In this section, we provide three computer models of
the multiphase queueing system. Each of these mod-
els is rather different by its philosophy and key fea-
tures. Although the aim of each of these models is to
statistically model and investigate the main parameters
of the multiphase system, the ideas which stay behind
the scene of these models, are completely different.
A comparison of these basic ideas will help the learner
to understand the main fundamentals that lie behind the
parallel calculations, multiprocessing statistical mod-
eling and simulation.

The first model presented by us is based on the real
time recordings and we call it an imitative model. It
uses the Python multiprocessing module. The preci-
sion of this model depends on the precision and reso-
lution of the time() method. It could be rather low in
the case of various general-purpose operation systems

Fig. 15. Model centered educational framework.

Fig. 16. The scope of scientific research.

and rather high in the case of the real time operation
systems (RTOS). The learner could modify this model
using the earlier presented recurrent equation (for the
sojourn time calculations) and compare the results in
both cases.

The next model calculates the sojourn time of the
customer and is based on stochastic simulations. The
model does not use multiprocessing directly. It em-
ulates multiprocessing by using Python yield expres-
sions.

The last model presented here uses the Python MPI
mpi4py module. Now we use real MPI techniques for
statistical modeling and could enhance Monte Carlo
simulations by additional trials.

In general, the task for the learner is to provide a
series of experiments with the presented models and to
obtain the experimental proof of the law of the iterated
logarithm for the sojourn time of the customer in the
case of the multiphase queueing system.

5.2. The imitative model based on multiprocessing of
services

Below we present the imitative model. The main is-
sue to study is the difference between the imitative and
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Fig. 17. The imitative model.

statistical models. Another important question is the
correctness or precision of the imitative model. It is
also important to solve the question of verification of
the presented model. The learner could study and com-
pare modeling results depending on various modeling
parameters such as interarrival and servicing frequen-
cies, number of customers and number of services. The
general schema of the model is presented in Fig. 17.

The programming code consists of two main parts.
The first one is directly intended for calculations and
the next one is for plotting of the results. The mod-
ule for calculations contains three main functions: pro-
ducer() – for producing customers and putting them to
the first queue; server() – for serving the customers;
consumer() – for finalizing the results. This program-
ming model is based on real simulations and uses no
mathematical equations for calculations. Its precision
depends on the precision of the Python timing module
and generally varies depending on the operating sys-
tem. Servers are distributed between various processes
inside the multiprocessing system. The computer code
for implementing of the above model is presented in
Fig. 18.

Questions to be studied:

• How global variables are shared between pro-
cesses?

• How the processes, associated with different
servers, will terminate?

• How the informational flow between various pro-
cesses is transferred?

• What about the correctness of the model?
• What about the efficiency of the model. How long

does it takes for different processes to exchange
information?

Now we can print the results using the Python mat-
plotlib module and we can visually analyze the results

after the plot is prepared. We can see (see Fig. 19) that
the model needs further improvements. So we can pro-
ceed with a more powerful model.

5.3. The single process statistical model

The main features of the statistical model are as fol-
lows next: now we use the recurrent equation for exact
calculations of the customer’s sojourn time; we process
all the data in a single process using Python specific
coroutine functions; we proceed with a definite number
of Monte Carlo simulations for a better validity of the
calculations. This model gives us “exact” calculations
of the sojourn time. The general schema of the model
is presented in Fig. 20. The learner could study the dif-
ferences between the imitative and statistical models.

The computer code for implementing of the above
model is presented in Fig. 21. Simulation results are
presented in Fig. 22.

5.4. Statistical model strengthened by MPI

The next step is to strengthen our model using the
Python MPI module – mpi4py. It allows us to proceed
with more Monte Carlo simulations and to a use com-
puter cluster for running and testing the model. The
next step could be a further improvement of the model
by using the C programming language, “real” MPI or
SWIG (Simplified Wrapper and Interface Generator)
technology for Python. This model is almost identical
to the previous model with the only difference that it
uses mpi4py for multiprocessing and integrating the re-
sults (see Fig. 23).

In addition to the previous model, several additional
modules need to be imported. The print_results() func-
tion also needs to be rewritten, because we now have
more trials. We should also rewrite the main part of
the program. In Fig. 24 we present only that part of
the computer code which differs from the code of the
previous model. Simulation results are presented in
Fig. 25.

6. Conclusions

In this paper, a number of models for model-
centered learning are provided. These models enable
the learner to conduct a series of experiments and en-
hance the understanding of the Scientific Computing
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Fig. 18. Python code for the imitative model based on multiprocessing of services.

Fig. 19. Simulation results for the imitative model.
Fig. 20. The single-process statistical model.
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Fig. 21. Python code for the single process statistical model.

discipline. There are several difficulty levels of the pre-
sented models and experiments with such models. The
first level is the basic one. It provides an introduction
to randomness and also enables primary understanding
of the scope of the scientific research. The next one is
more sophisticated and enables a deep understanding
of parallel programming and stochastic simulations.
The relevant theoretical knowledge is provided on de-
mand and as a supporting material for the learner’s ac-
tivities. All that provides a constructivist framework
for the model-centered introduction to the Scientific
Computing. Finally, we would like to provide recom-
mendations for further study and improvements of the
models.

6.1. Linearity of the model and statistical parameters
of the queueing system

The model of the multiphase queueing system, pro-
vided in this paper, is not linear [12]. It is obvious
from the recurrent equation since it contains a nonlin-
ear mathematical function max. If we want to obtain
correct modeling results, especially in the case of cal-
culating the statistical parameters of the queueing sys-
tem, we must use a partially linear model for calcula-
tions. This is particularly important for non-heavy traf-
fic systems, as in this case we could make rather great
mistakes in calculations.
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Fig. 22. Simulation results for the single process statistical model.

Fig. 23. The MPI statistical model.

6.2. Extensions of Python modules and parallel
programming with C

For the skillful learners, it could be interesting to
proceed with improvements of the efficiency of the
programming code. That could be done by extend-
ing Python modules with C implemented functions us-

Fig. 24. Python code for statistical model strengthened by MPI.

ing the SWIG technology. Learners could improve the
code and speed-up calculations using Cython or C pro-
gramming languages, “real” MPI technology and HTC
(High Throughput Computing) cluster possibilities [5,
28,29].

6.3. Efficiency of the programming solutions and
further work

In this section, the learner could study the efficiency
of various programming solutions. This topic is par-
ticularly important for any programming model, which
is based on parallel calculations. In this case, learn-
ers could study the effectiveness of different program-
ming models and could try to improve algorithms step
by step. The key point here is to investigate the ratio
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Fig. 25. Simulation results for the MPI statistical model.

of the amount of information flow and calculations for
different programming processes. Such a ratio is im-
portant when constructing the most effective program-
ming model for parallel calculations. Another interest-
ing topic is to study possible mappings of the algorithm
structure to the HTC cluster structure.

As a further task for investigations, the authors con-
sider studies of queueing networks to be introduced
to the learner, modeled, and analyzed. The compara-
tively complex nature of queueing networks and vari-
ety of applications requires more comprehensive pro-
gramming techniques to be involved. This provides
a good basic platform for introduction of such gen-
eral programming concepts like inheritance, encapsu-
lation, and polymorphism. On the other hand, the ba-
sic theoretical computer science constructions needed
to be introduced as well. Besides all these, the mod-
eling and statistics simulation of queueing networks
requires more advanced probability topics to be pre-
sented, more computational resources to be occupied
and provide a real scientific computing environment
and good motivation for the advanced learner.
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