
Scientific Programming 21 (2013) 123–136 123
DOI 10.3233/SPR-130369
IOS Press

Characterizing and mitigating work time
inflation in task parallel programs 1

Stephen L. Olivier a,∗, Bronis R. de Supinski b, Martin Schulz b and Jan F. Prins a

a Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
E-mails: {olivier, prins}@cs.unc.edu
b Lawrence Livermore National Laboratory, Livermore, CA, USA
E-mails: {bronis, schulzm}@llnl.gov

Abstract. Task parallelism raises the level of abstraction in shared memory parallel programming to simplify the development
of complex applications. However, task parallel applications can exhibit poor performance due to thread idleness, scheduling
overheads, and work time inflation – additional time spent by threads in a multithreaded computation beyond the time required
to perform the same work in a sequential computation. We identify the contributions of each factor to lost efficiency in various
task parallel OpenMP applications and diagnose the causes of work time inflation in those applications.

Increased data access latency can cause significant work time inflation in NUMA systems. Our locality framework for task
parallel OpenMP programs mitigates this cause of work time inflation. Our extensions to the Qthreads library demonstrate that
locality-aware scheduling can improve performance up to 3X compared to the Intel OpenMP task scheduler.

Keywords: Task parallel programming, locality, task scheduling, affinity, NUMA, OpenMP

1. Introduction

Multicore computing has led to a renaissance for
shared memory parallel programming models. The
task parallel model shows particular promise due
to its problem-centric expression of parallelism, in-
cluding deeply nested and irregular computations.
Many parallel programming languages and libraries
allow programmers to express explicit tasks that are
scheduled on available threads for execution, e.g.,
OpenMP 3.0 [4], Intel Threading Building Blocks [31]
and Microsoft Task Parallel Library [20]. However, in-
teractions between the application, the run time sys-
tem, and the architecture complicate the performance
and scalability of those applications [14,28].

Recent work has made significant progress towards
identifying and mitigating the causes of the observed
performance gap. Tallent and Mellor-Crummey [34]
divide the total execution time spent by all threads into

1This paper received a nomination for the Best Paper Award at
the SC2012 conference and is published here with permission from
IEEE.

*Corresponding author: Stephen L. Olivier, Department of Com-
puter Science, University of North Carolina at Chapel Hill, Chapel
Hill, NC 27599–3175, USA. E-mail: olivier@cs.unc.edu.

three categories: work time, idle time and (paralleliza-
tion) overhead time. During work time, tasks perform
useful computation, while idle time results from load
imbalance and overhead time includes task creation,
scheduling and synchronization. They show that coars-
ening the granularity of tasks can decrease overhead
time and, conversely, using finer-grained tasks can de-
crease idle time. However, load imbalance and over-
head do not account for all observed performance loss.
This paper explores another major cause, work time in-
flation – additional time spent by threads in a multi-
threaded computation beyond the time required to per-
form the same work sequentially – that can dominate
performance loss in some applications.

We make the following contributions:

• The characterization of lost efficiency in the exe-
cution of task parallel computations due to thread
idleness, overhead costs in the scheduler and work
time inflation, along with the sources of work time
inflation.

• A framework that enables locality-based task
scheduling to minimize non-local memory ac-
cesses on NUMA architectures, featuring a con-
cise mechanism for the programmer to specify the
placement of tasks on locality domains, and a run
time scheduler to support that mechanism.

1058-9244/13/$27.50 © 2013 – IOS Press and the authors. All rights reserved

124 S.L. Olivier et al. / Characterizing and mitigating work time inflation in task parallel programs

• An empirical evaluation that demonstrates the ef-
fectiveness of our framework as implemented in
extensions to the scheduler of an open-source
OpenMP run time system on a modern multi-
socket multicore NUMA architecture.

Our results demonstrate that locality-aware task sched-
uling significantly improves the performance of task
parallel programming on NUMA systems: up to 2X
over locality-oblivious scheduling within the same
OpenMP implementation and up to a 3X over Intel’s
commercial implementation.

2. Diagnosing sources of lost efficiency

Our diagnosis of lost efficiency focuses on the dif-
ferences between sequential and multithreaded com-
putations. Sequential computation uses a single thread
that is never idle. Multithreaded execution can have
idle threads at any particular time. The idle time oc-
curs when no tasks are available to execute, for ex-
ample due to load imbalance or dependencies between
tasks. Sequential execution comprises a flow of exe-
cution without the distinct tasks that characterize task
parallel multithreaded execution. The run time system
manages activities that contribute to scheduling over-
head: task creation, scheduling, synchronization, and
retirement.

Apart from idle time and overhead, work time,
which is the time to complete instructions of the com-
putational work, accounts for the remaining time. Se-
quential equivalent time is the execution work time of
a sequential equivalent of a task parallel program. The
work time in a multithreaded execution often exceeds
the sequential equivalent time. This work time infla-
tion can have various causes, as discussed in the next
section. Alternatively, negative work time inflation can
also occur, for example, due to caching effects.

We use HPCToolkit [3] to measure the time spent by
all threads in executions of task parallel programs from
the Barcelona OpenMP Tasks Suite (BOTS) [13]:

• Alignment: Uses dynamic programming to align
proteins (100 sequences);

• Fib: Computes the nth Fibonacci number (n =
50);

• Health: Simulates a national health system
(144 cities);

• NQueens: Solves the n-queens problem (n = 14);
• Sort: Uses parallel mergesort, transitioning to se-

quential quicksort and insertion sort (128M inte-
gers);

• SparseLU: Computes the LU factorization of a
sparse matrix (10,000 × 10,000 matrix, 100 ×
100 blocks);

• Strassen: Multiplies dense matrices (8192 ×
8192 matrix).

We execute with each thread pinned to one core of
a 32-core Intel Nehalem-EX shared memory system.
Figure 1 shows the speedup of the BOTS applications,
which ranges from near-linear to poor. Figure 2 di-
vides the time in 32-thread executions into four cate-
gories: sequential equivalent time, work time inflation,
overhead time and idle time. In efficient executions,
such as Alignment, the sum of the total time across all
threads is close to the sequential equivalent time. Over-
head, idle time, and work time inflation contribute sig-
nificantly to the total time of less efficient executions.
However, overhead and idle time contribute less than
10% to the total time (except for Strassen). Our exper-

Fig. 1. BOTS speedups using the Intel OpenMP run time.

Fig. 2. Intel OpenMP 32-thread execution time breakdown. (Col-
ors are visible in the online version of the article; http://dx.doi.org/
10.3233/SPR-130369.)

S.L. Olivier et al. / Characterizing and mitigating work time inflation in task parallel programs 125

iments use cutoffs designed to control the granularity
of the tasks for adequate load balance and limited over-
head [14]. Nonetheless, all applications except Align-
ment have non-negligible work time inflation.

3. Work time inflation and the impact of NUMA

Work time inflation has hardware and software fac-
tors. Software factors can occur in the application (al-
gorithms and their implementation), the compiler (op-
timizations), and the run time system (task schedul-
ing). Hardware factors include instruction scheduling
and memory-related issues (caches, on-chip and off-
chip latencies, contention).

Compiler-related issues cause work time inflation
(almost half of the overall time) in SparseLU. Using
ICC with the -ipo flag (interprocedural optimization)
improves sequential performance nearly 3X. It also im-
proves parallel performance, but by only 60%, so the
optimizations do not scale linearly. This difference in
work time inflation is evident even in single-threaded
OpenMP executions.

Increasing memory system demands lead to work
time inflation in other benchmarks. Non-uniform
memory access times reflect physical reality: some
memory devices are closer to some processors. Besides
physical latency differences, memory device and pro-
cessor to memory bandwidth constrain the number of
sustained concurrent references [22]. Coherence main-
tenance also incurs additional overhead and latency.
Acar et al. [2] characterize cache misses that follow
load balancing operations. These cache misses con-
tribute to work time inflation, an important effect even
in some programs with small working sets, e.g., Fib
and NQueens.

Strassen uses an algorithm that has lower asymp-
totic time complexity (O(N2.807)) than standard matrix
multiplication (O(N3)). It recursively decomposes the
matrices into submatrices and only uses seven multi-
plication operations on the submatrices for each sub-
matrix result (compared to eight). However, Strassen’s
algorithm reduces locality, which leads to less effective
cache use and high-latency remote memory accesses.
Proposed techniques to improve locality include using
to standard matrix multiplication at the base of the re-
cursion and using the more cache-friendly Morton or-
dering data layout, which also incurs some costs [36].

Sort permutes the elements of a vector, which in-
herently leads to remote accesses. Tasks compare val-
ues in two sublists of the vector, which lacks computa-

Fig. 3. Bandwidth per thread on the 32-core Intel system. (Colors are
visible in the online version of the article; http://dx.doi.org/10.3233/
SPR-130369.)

tional intensity. Efficient execution requires low mem-
ory access times as the thread count increases. Figure 3
shows the memory bandwidth available per thread as a
function of the number of threads that generate mem-
ory reference streams on a 32-core Intel Nehalem ma-
chine [22]. Bandwidth per thread is nearly constant for
up to 12 threads but decreases with more threads. En-
suring adequate memory concurrency for bandwidth-
limited applications like Sort is critical, especially with
increased cores per chip.

Health runs at only 27% efficiency on 32 threads.
This time-dependent simulation uses a divide-and-
conquer approach to simulate disease-related events
(infected population, patients, hospitals) in small vil-
lages and to propagate the effects across geographic ar-
eas over time. The geographic areas are organized hier-
archically so the communication is often localized. In
fact, only 2% of patients are transferred between hos-
pitals in different regions. Thus the algorithmic design
of Health can exploit locality. Poor performance arises
from scheduling tasks in a locality-oblivious way. Re-
mote memory accesses and coherence misses occur
more often than necessary, a pathology that is magni-
fied with increasing thread counts.

The left bars of Fig. 4 sum the time across all threads
for parallel executions of Health. This time would be
constant with perfect scaling and equal to the sequen-
tial equivalent time, as the number of threads increases.
Instead, work time inflation increases substantially as
we use more threads despite using the same input prob-
lem size (i.e., strong scaling).

The right bars of Fig. 4 show the execution time
break-down for Heat, a two-dimensional heat diffu-
sion simulation from the Cilk [15] example set that
we ported to OpenMP. The simulation uses five-point
stencil computations and, like Health, generates tasks
in a divide-and-conquer decomposition with a cutoff

126 S.L. Olivier et al. / Characterizing and mitigating work time inflation in task parallel programs

Fig. 4. Execution time break-down (total time over all threads). (Col-
ors are visible in the online version of the article; http://dx.doi.org/
10.3233/SPR-130369.)

threshold for granularity control. Similarly to Health,
Heat achieves speedup (11.2X) and parallel efficiency
(35%) on a 32 thread execution that are well short
of ideal. Work time inflation even contributes 29%
of the total time in a single-threaded execution us-
ing OpenMP. This inflation is an artifact of parallel
code limiting the efficacy of compiler optimization, as
seen in SparseLU. The remaining work time inflation,
which increases as we use more threads, is again due
to NUMA effects and memory performance.

We collect hardware performance counter measure-
ments during a sequential execution and a 32-thread
parallel execution of the 2D heat simulation. Both read
13.6 GB from memory. However, the parallel execu-
tion generates 31 GB of interconnect traffic between
the processor chips, over 400 times the traffic of the
sequential execution. This interconnect traffic repre-
sents remote loads and cache invalidations that cause
work time inflation. Our quad-socket Intel platform,
which uses the Quick Path Interconnect (QPI), exhibits
significant Non-Uniform Memory Access (NUMA)
times. Systems from AMD and IBM exhibit similar la-
tency differences to local and remote memory [1,16].

Work time inflation limits application speedup. Let r
be the ratio of the total work time of a p-processor par-
allel execution to the sequential work time. The low-
est potential execution time is r/p and the highest po-
tential parallel speedup is p/r. With 32 threads, Health
yields r > 3 and Heat yields r > 2.5. Figure 5 shows
the maximum potential speedup for various levels of
work time inflation (r = 1.25–3.0). Even with a rela-
tively small NUMA impact of r = 1.25, the maximum
speedup is less than 26 with 32 threads. Non-zero over-
head and idle times can lead to even lower speedup.

Fig. 5. Speedup limitations due to work time inflation.

4. First touch and scheduling

OpenMP offers no inherent means to express local-
ity for data to threads or tasks. Thus, performance-
oriented users must rely on non-portable solutions such
as operating system tools (e.g., libnuma in Linux),
third party libraries (e.g., hwloc [9]), or heuristics. In-
tegrated OpenMP locality support would overcome the
inconvenience of these methods. However, a common
programming idiom in NUMA systems is the first-
touch page placement policy [7,26]. We now examine
how this heuristic is used with parallel loops and how
current task schedulers fail to support an equivalent id-
iom for task parallel programs, a role that our locality
framework fills.

This idiom assumes an identical schedule of loop it-
erations in the initialization and computational loops.
The first-touch policy places a memory page in mem-
ory attached to the socket of the processor that exe-
cutes the thread that first accesses the page. If the data
use in the computational loop iterations mirrors the
data use in the initialization loop iterations and if we
bind threads to processors with the OMP_PROC_BIND
environment variable, memory accesses are local. We
show an example of this pattern in Fig. 6 in which each
thread initializes n/p elements of data and computes
on those elements during each simulation step, making
most data accesses local on NUMA systems with the
first-touch policy.

Figure 7 shows the analogous code for an OpenMP
task parallel divide-and-conquer program with tree-
structured data, which uses barriers to ensure the com-
pletion of all tasks during initialization and within
each step of the simulation loop. Task parallelism in
recursive_init() spreads the data across mem-
ory banks. However, we have no mechanism (not

S.L. Olivier et al. / Characterizing and mitigating work time inflation in task parallel programs 127

#pragma omp parallel
{

#pragma omp for schedule(static)
for (i = 0; i < n; i++)
init(data[i]);

for (step = 0; step < nsteps; step++)
#pragma omp for schedule(static)
for (i = 0; i < n; i++)

compute(data[i]);
}

Fig. 6. Simple first-touch initialization under OpenMP.

void recursive_init(data_t *data) {
init(data);
if (!is_leaf(data)) {
#pragma omp task

recursive_init(data->left);
#pragma omp task

recursive_init(data->right);
#pragma omp taskwait

}
}

void recursive_compute(data_t *data) {
if (!is_leaf(data)) {
#pragma omp task

recursive_compute(data->left);
#pragma omp task

recursive_compute(data->right);
#pragma omp taskwait

}
compute(data, data->left, data->right);

}

#pragma omp parallel
{

#pragma omp single
#pragma omp task

recursive_init(top);
#pragma omp barrier

for (step = 0; step < nsteps; step++) {
#pragma omp single

#pragma omp task
recursive_compute(top);

#pragma omp barrier
}

}

Fig. 7. Analogous initialization for OpenMP tasks.

even a non-portable one) to guarantee that recur-
sive_compute() task placement mirrors that of
recursive_init(). Thus, a corresponding re-
cursive_compute() task may be scheduled on a
different thread that runs on a different socket, in which
case we incur non-local accesses and, thus, work time

inflation. The lack of a task scheduling analog is un-
fortunate, since task parallel computations allow easy
expression of key computation patterns, such as octree
decompositions, for which a flat 1-D loop distribution
is not well suited.

5. A framework for locality-based scheduling

Our framework for locality-based scheduling builds
on the notion of a locality domain, which consists of:

• Logically, one or more threads and associated
storage;

• Physically, one or more cores and physical mem-
ory close to them (e.g., a multicore chip and its
directly attached memory) to which the system
maps the threads;

• An associated (set of) task queue(s) that are dis-
tinct from the queues associated with other local-
ity domains;

• A unique integer identifier, its locality domain
identifier.

We next describe our OpenMP extensions to support
locality domains and a prototype implementation of
those extensions.

5.1. A concise API for programmer-specified
scheduling

We add the following API calls to OpenMP to allow
the programmer to access information about locality
domains and to specify placement of tasks on them.

• omp_child_task_affinity(locality_
domain_id) sets an internal control variable
(ICV) that indicates the locality domain on which
the run time should place tasks that the cur-
rently executing task generates. The locality_
domain_id identifier specifies the locality do-
main. This call overrides default placement of
child tasks, which is the parent task’s locality do-
main.

• omp_get_num_locality_domains()
returns the total number of locality domains in the
system.

• omp_get_locality_domain_num()
returns the locality domain identifier on which the
task is executing.

128 S.L. Olivier et al. / Characterizing and mitigating work time inflation in task parallel programs

void recursive_init(data_t *data, int nsplits)
{

init(data);
if (!is_leaf(data)) {
#pragma omp task

recursive_init(data->left, nsplits-1));
if(nsplits > 0) {

int dom, nextDom;
dom = omp_get_locality_domain_num();
nextDom = dom + (int)pow(2, nsplits-1);
omp_child_task_affinity(nextDom);

}
#pragma omp task

recursive_init(data->right, nsplits-1);
#pragma omp taskwait

}
}

int ndomains, nsplitsTotal;
ndomains = omp_get_num_locality_domains();
nsplitsTotal = (int)log2(ndomains);

#pragma omp parallel
{

#pragma omp single
{
omp_child_task_affinity(0);
#pragma omp task

recursive_init(top, nsplitsTotal);
}
#pragma omp barrier

for (step = 0; step < nsteps; step++) {
#pragma omp single
{

omp_child_task_affinity(0);
#pragma omp task

recursive_compute(top, nsplitsTotal);
}
#pragma omp barrier

}
}

Fig. 8. Code that uses our OpenMP task affinity mechanism.

Figure 8 shows how these calls can distribute tasks and
data according to a predictable locality-based sched-
ule. We omit recursive_compute(), which is
similar to recursive_init(). If the run time
presents four locality domains, each iteration places
the top task on locality domain 0, and the first split
places tasks on locality domains 0 and 2. Secondary
splits place tasks on locality domains 0, 1, 2 and 3. We
place all other tasks on the locality domain of the task
that generates them. Thus, a thread in the same domain
during initialization and during each simulation time
step executes the subtree of tasks that each second split
task generates. Our run time calls can also schedule

more irregular and dynamic task layouts, such as those
generated by adaptive methods.

5.2. Run time scheduling policy and implementation

The OpenMP specification [29] places few restric-
tions on task scheduling, allowing flexibility in sched-
uler design and implementation. Our extensions natu-
rally suit a scheduler that has a logical queue per local-
ity domain. Our implementation uses separate queues
for each locality domain. An alternative scheme could
use a central queue for all locality domains and then
dispatch each task to the appropriate locality but is un-
likely to scale well.

We need a scheduling policy between and within lo-
cality domains. omp_child_task_affinity()
specifies initial task placement, but load balancing
could migrate the task to another locality domain. Such
migrations may lead to non-local data accesses and,
thus, work time inflation. Thus, we provide a strict
mode that disallows migrations between locality do-
mains but allows load balancing within each locality
domain.

We extend the Qthreads hierarchical task sched-
uler [27]. We use the OpenMP 3.0 support in
ROSE [21] to parse OpenMP application code, to per-
form appropriate semantic analysis, and to generate
outlined functions that are mapped to their OpenMP
extensions in the Qthreads library [38]. We compile
the transformed code with the GNU C/C++ compiler
and execute the compiled program with the Qthreads
library.

Qthreads determines the system’s hardware topol-
ogy through one of several portable or architecture-
specific libraries. We use hwloc [9], which supports
x86 NUMA machines well. In the Qthreads hierarchi-
cal scheduler, all threads that run on cores on the same
chip share a task queue scheduled in a LIFO disci-
pline, which promotes constructive L3 cache sharing
and provides natural load balance among those threads.
Work stealing [6] balances load between chips.

We map locality domains to the Qthreads repre-
sentation of the NUMA topology and use per-socket
shared queues, as Fig. 9 shows. By default, when a
task is generated, it is queued on the shared queue that
the thread executing the parent task is using. How-
ever, if the parent task’s task affinity ICV has been
set to another locality domain, we place the new task
on that domain’s queue. If the strict mode is set, we
disable work stealing between the task queues. Other-
wise, tasks may migrate between queues. The run time

S.L. Olivier et al. / Characterizing and mitigating work time inflation in task parallel programs 129

Fig. 9. Mapping locality domains to a two-socket system. (Colors are
visible in the online version of the article; http://dx.doi.org/10.3233/
SPR-130369.)

calls to return the total number of locality domains and
the current locality domain map directly to existing
Qthreads functions.

6. Evaluation

We apply our task locality techniques to Health and
Heat. We add API calls to distribute the top level tasks
among the available locality domains, but we do not
change the number or contents of the tasks in the two
applications.

Our test system is a Dell PowerEdge M910 quad-
socket blade with four Intel x7550 2.0 GHz 8-core
Nehalem-EX processors. Each processor has an 18 MB
shared L3 cache and each core has a private 256 KB
L2 cache and 32 KB L1 data and instruction caches.
The blade has 64 dual-rank 2 GB DDR3 memory sticks
(16 per processor chip) for a total of 128 GB. It runs
CentOS Linux with a 2.6.35 kernel. We turn off Intel’s
HyperThreading feature in the BIOS (as is common
with HPC environments) and pin one thread to each
physical core.

We use the GNU C/C++ 4.4.4 compiler with −O2
optimization to obtain sequential times and as the
native compiler for the code transformed by ROSE
0.9.5a. We compare to the Intel 11.1 compiler with
−O2−xHost−ipo optimization and the Intel OpenMP
run time system. The difference in sequential time
between the two compilers is negligible on Health
and more pronounced on Heat. For a comparison of
parallel executions on absolute terms, we show the
elapsed execution time for each application. Timing
and speedups represent the best of ten trials for each
configuration.

Fig. 10. Health execution time summed over all threads. (Colors are
visible in the online version of the article; http://dx.doi.org/10.3233/
SPR-130369.)

Figure 10 shows the execution time break-down for
Health using several different configurations. The first
set of bars shows results for executions that use the
locality-oblivious Intel run time, as we showed pre-
viously in Fig. 4. The second set, labeled Qthreads,
shows results obtained using our base locality-obliv-
ious hierarchical scheduler [27]. The sequential times
for Intel and GCC are close (14.9 and 15.2 s). The tim-
ing results for the parallel executions show more non-
work time spent, i.e., combined idle and overhead time,
compared to the Intel run time. However, work time
inflation is much lower for Qthreads (12 s), due to the
hierarchical scheduler, than for Intel (33 s). The third
set, Q Spread-init, shows that we achieve further im-
provement by using our framework to spread the ini-
tialization of the program data across locality domains
but without the use of locality-based scheduling in the
simulation. This change further reduces work time in-
flation through better use of memory concurrency. The
fourth set, Q Locality, uses the spread initialization and
also locality-based scheduling in the strict mode to en-
sure that each task executes on a thread in the locality
domain to which the data that the task uses is associ-
ated. The full and contention-free use of all available
cache and memory bandwidth without undue L3 cache
invalidations results in work time equivalent to roughly
half of the sequential time. The tradeoff is increased
non-work time due to a lack of load balancing between
locality domains.

Figure 10 presents the sum of the total times spent by
all threads in an execution. Alternatively, Fig. 11 shows
the parallel speedup achieved, using ICC and GCC se-
quential times for the Intel and Qthreads schedulers,
and the elapsed times for the parallel executions. Intel
speedup flattens at 16 threads. Qthreads speedup is bet-
ter, but still flattens at 24 threads. The use of spread ini-

130 S.L. Olivier et al. / Characterizing and mitigating work time inflation in task parallel programs

Fig. 11. Speedup on Health.

Table 1

Run times (elapsed) on Health

Threads 8 16 24 32

Intel 2.46 1.71 1.64 1.69

Q Locality 1.83 0.890 0.646 0.540

% Decrease 25.6 48.0 60.6 68.0

tialization in Qthreads results in further improvement,
but even it reaches only 18X speedup on 32 threads.
Only the Qthreads locality-based scheduling achieves
near-linear speedup, even exhibiting slightly super-
linear speedup at 16 threads. Table 1 compares the
elapsed times for the Intel and locality-based sched-
ulers.

Figure 12 shows a time breakdown for Heat. ICC
sequential execution (6.9 s) is significantly faster than
GCC (9.7 s). Despite this gap, Intel and Qthreads work
times for parallel executions that use the same num-
ber of threads are close. Work time inflation on 32
threads is near 100% using Qthreads and 170% us-
ing Intel’s run time. Again, Qthreads non-work time
is higher. Heat uses parallel initialization to spread the
data, so the vehicle for further improved performance
must be locality-based scheduling during the simula-
tion so tasks execute near the data that they access. We
observe from the Q Locality results that this schedul-
ing eliminates some but not all work time inflation,
with similar non-work times. On 32 threads, it reduces
work time inflation by more than half compared to
the locality-oblivious scheduler. Since Heat uses sten-
cils that require exchanges of data at the boundaries of
the grid, some non-local data accesses are inevitable.
Thus, even with locality-based scheduling some work
time inflation remains. Despite the difference in se-
quential times using GCC and ICC, the total execu-

Fig. 12. Heat execution time summed over all threads. (Colors are
visible in the online version of the article; http://dx.doi.org/10.3233/
SPR-130369.)

Table 2

Run times (elapsed) on Heat

Threads 8 16 24 32

Intel 1.36 0.799 0.654 0.617

Q Locality 1.30 0.763 0.566 0.520

% Decrease 4.4 4.5 13.5 15.7

Fig. 13. Speedup on Heat.

tion times using locality-based scheduling are lower
across the board, as Table 2 shows. The speedup im-
provements (Fig. 13) are significant although none of
the schedulers achieve ideal speedup.

6.1. Detailed performance measurement

To obtain a more complete understanding of run
time behavior, we measure performance characteristics
of executions that use locality-oblivious and locality-
based scheduling. Since we posit that memory latency
incurred on non-local accesses causes the observed

S.L. Olivier et al. / Characterizing and mitigating work time inflation in task parallel programs 131

Fig. 14. CDF of Health data access latencies. (Colors are visi-
ble in the online version of the article; http://dx.doi.org/10.3233/
SPR-130369.)

work time inflation, we measure load latency during
the execution of our two examples with Intel’s Precise
Event Based Sampling (PEBS). Figure 14 plots a cu-
mulative distribution function (CDF) for latency with
Health using each scheduler with 32 threads, along
with results from a sequential execution. For a point
(x, y) on the graph, y is the cumulative fraction of loads
that have completed in x cycles or less. We observe
that for all schedulers, at least 85% of loads complete
in 16 cycles or less. Microbenchmarking studies of the
Nehalem cache hierarchy and memory subsystem [25]
indicate that latencies in this range are hits in the core’s
L1 and L2 caches. As we proceed across the x-axis, we
note the regimes in which accesses represent on-chip
L3 cache hits (and hits in L2 caches of cores on the
same chip), accesses to memory on the same socket,
and finally, accesses to remote L3 caches and memory
on other sockets.

Starting from the graph’s left, the first difference be-
tween the results for the different schedulers is that
the sequential execution best uses the per-core L1
and L2 caches, which we expect since multithreaded
executions introduce coherence misses. Also, threads
on the same chip in the Qthreads schedulers share
a queue, and shared queues are cache-friendly for
shared caches, e.g., the Nehalem L3, but not individ-
ual caches, e.g., L1 and L2. Although we cannot exam-
ine its run time source code, we suspect that Intel uses
per-core work stealing, which is cache-friendly for in-
dividual caches. The benefit of the per-chip shared
queues to exploit the shared L3 caches manifests in
the sharp increase in accesses completed by 64 cycles
using Qthreads. The locality-aware scheduler achieves

more cumulative completions in this range than even
the sequential execution, as it effectively exploits the
full L3 cache of the machine with minimal coherence
misses between sockets. This scheduler also outper-
forms Intel and sequential executions in the range of
local memory accesses by engaging the full memory
bandwidth of the machine with minimal accesses to
memory on remote sockets. The data points at 256 cy-
cles and beyond represent remote memory accesses.
The sequential execution, since it only uses a single
core on a single socket, shows a negligible number
of remote memory accesses that can be attributed to
I/O or system processes. The completion rates of the
Qthreads and Intel schedulers line up in the same order
as the speedup graphs, led by Q Locality.

The relative impact of accesses in each range is a
function of not only the number of accesses in the
range, but also the number of cycles per access in that
range. For example, one access that requires 256 cy-
cles to complete contributes the same number of cy-
cles to the total as 16 accesses of 16 cycles. Figure 15
shows the relative contribution of the different ranges
of access times, using a conservative estimate: number
of accesses times the low end of the range, e.g., assume
all accesses in the range of 33–64 cycles take 33 cy-
cles. The vast majority of access time in the sequen-
tial execution is spent on loads in the local memory
regime (129–256). For the locality-oblivious sched-
ulers, accesses of greater than 256 cycles in duration
account for almost half of the total Qthreads latency
and 60% with Intel. In addition to low contributions
to total latency from high latency loads, locality-based
scheduling also shows a much higher contribution of
L3 regime loads (about 40%) than any of the other
schedulers, and again improves upon the sequential ex-
ecution in that range.

Figure 16 shows a CDF of load latency sampled
during Heat executions. The sequential execution ex-
periences the lowest latency in all regimes. While
the latencies incurred with locality-based scheduling
are much higher, they are still significantly lower
than those incurred with the locality-oblivious sched-
ulers (Qthreads and Intel). This observation is consis-
tent with our speedup results: locality-based schedul-
ing outperforms locality-oblivious scheduling but falls
short of ideal speedup. Figure 17 shows the relative
contribution of the different latency ranges. A marked
difference between Health and Heat is evident just
from comparing the sequential results: Contributions
from L1 and L2 accesses are less than 10% in execu-
tions of Health but 70% in executions of Heat. Q Lo-

132 S.L. Olivier et al. / Characterizing and mitigating work time inflation in task parallel programs

Fig. 15. Health percent time spent on various access latencies. (Col-
ors are visible in the online version of the article; http://dx.doi.org/
10.3233/SPR-130369.)

Fig. 16. CDF of Heat data access latencies. (Colors are visible in the
online version of the article; http://dx.doi.org/10.3233/SPR-130369.)

Fig. 17. Heat percent time spent on various access latencies. (Col-
ors are visible in the online version of the article; http://dx.doi.org/
10.3233/SPR-130369.)

cality sees a lower contribution of high latency loads
than the locality-oblivious schedulers.

Another interesting metric is QPI traffic, i.e., the
amount of data transferred between sockets during ex-
ecution. Table 3 shows the measured volumes in giga-
bytes. The interconnect is quiet during sequential exe-
cution, as we might expect. The significant observation

Table 3

Data Transferred (GB) over QPI between sockets

Seq. (gcc) Intel Qthreads Q Locality

Health 0.067 34 26 1.0

Heat 0.077 31 31 0.34

is the order of magnitude reduction in QPI traffic from
the locality-oblivious schedulers of Intel and Qthreads
to the locality-based Qthreads scheduler.

6.2. Visualizing observed task schedules

Instrumentation to log actual schedules gives a
micro-level view of scheduler behavior to allow a de-
tailed evaluation of the impact of scheduler decisions.
We use the Jedule tool [19] to generate visualizations
of task schedules, as Fig. 18 shows. The three recorded
partial schedules are taken from 32 core executions of
the health simulation using three different schedulers,
with a uniform time axis spanning about 3.1 ms. In
each execution, we record the start and end times of
each leaf task in the 100th iteration of the simulation
loop, the thread number on which the task executes
and the locality domain in which the data it uses is lo-
cated. The vertical axis represents the threads (for the
first eight of 32 threads) and the horizontal axis repre-
sents time. The threads shown (threads 0–7) are pinned
to socket 0. Each box is a task. The numbers and col-
ors on each task indicate the number of the socket that
is directly linked to the memory bank that contains
the data that task uses: yellow, blue, green, and red
for sockets 0, 1, 2 and 3. Thus, the tasks numbered 0
and colored yellow use data that resides in memory
attached to socket 0 and perform only local memory
and cache accesses when executed on threads 0–7. The
tasks with other numbers and colors use data local to
the other sockets (not shown in the diagram) and the
other threads (8–15, 16–23 and 24–31).

Figure 18(a) illustrates locality-oblivious schedul-
ing. In the early part of the execution, the threads in
this locality domain work on tasks that access data that
is local to locality domain 3. Later in the execution,
tasks that access local data are stolen. These tasks gen-
erally execute more quickly, as indicated by the smaller
boxes. Eventually, the threads steal more tasks that ac-
cess data in locality domains 1, 2 and 3.

Figure 18(b) shows a schedule from locality-based
scheduling in non-strict mode, i.e., with work stealing
allowed between locality domains. This schedule com-
pletes in slightly less time than the locality-oblivious
schedule. Initially, the threads execute tasks that access

S.L. Olivier et al. / Characterizing and mitigating work time inflation in task parallel programs 133

(a)

(b)

(c)

Fig. 18. Observed schedules of tasks over time during Health execution (time step 100, first 8 of 32 threads). (a) Locality-oblivious schedul-
ing. (b) Non-strict locality-based scheduling. (c) Strict locality-based scheduling. (Colors are visible in the online version of the article;
http://dx.doi.org/10.3233/SPR-130369.)

134 S.L. Olivier et al. / Characterizing and mitigating work time inflation in task parallel programs

data local to the locality domain. Just more than half
way through, a thread on another locality domain steals
the remaining work, and in turn thread 4 steals tasks
from locality domains 3 and 2, and a couple from 1.
This behavior occurs due to instantaneous work im-
balances that occur even in computations that are on
the whole balanced, especially in the later stages of
execution. Near the end of the computation, thread 3
reacquires some tasks that access local data, but they
require more time now, because their data has been
cached in the L3 caches in the other locality domains
and must now be invalidated.

Strict locality-based scheduling results in much
faster execution, as Fig. 18(c) shows. Threads 0–7 only
execute tasks that access local data. When a thread
goes idle and no tasks are on the queue, the thread
is forbidden to steal from other locality domains and
must wait for one of the other threads in its own lo-
cality domain to generate more work. The short tasks
near the beginning and end of the execution indicate
another benefit of executing only local tasks: better lo-
cality between the simulation steps. Local caches are
not polluted by non-local data, and, conversely, local
data does not end up in remote caches. In contrast,
with locality-oblivious scheduling, and even non-strict
locality-based scheduling, each simulation step can be-
gin with a significant amount of interconnect cross-
traffic and cache invalidations.

7. Related work

We build on the work of Tallent and Mellor-
Crummey [34] that attributes performance loss in task
parallel programs to categories. In their work, the
sources are (parallelization) overheads and load imbal-
ance; non-local data accesses lead to the decrease in
performance that we target. McCurdy and Vetter [24]
describe effective strategies to diagnose NUMA is-
sues in the general class of shared memory parallel
programs using hardware performance counter mea-
surements. Terboven et al. [35] study the performance
of OpenMP task parallel applications on NUMA ma-
chines and the impact of task generation patterns using
the Intel, Oracle and GNU OpenMP run time systems.

Seminal work in scheduling of task parallelism fo-
cused on the exploitation of cache locality without
explicit programmer annotations. The Cilk [15] run
time exploits individual per-processor caches when
using work stealing [6], while the near-serial-order
PDF scheduler of Blelloch et al. [5] exploits shared

caches better [12]. Acar et al. [2] derive bounds on
cache misses based on the number of steals in pro-
grams scheduled using work stealing. Chapel [10]
and X10 [11] target clusters comprised of intercon-
nected multicore nodes, and they incorporate no-
tions of locality (locales and places, respectively) into
the languages, primarily to distinguish on-node ver-
sus off-node data and computation. In X10, compu-
tations on objects that reside in remote places are
launched as asynchronous activities in those places.
The SLAW scheduler [17] demonstrates the possible
use of “places” within a cluster node in Habanero Java
(an offshoot of X10) and Hierarchical Place Trees [39]
map multiple levels of places to levels of the cache hi-
erarchy. However, their empirical evaluations focus on
loop-level parallelism, not the divide-and-conquer task
parallel programs that we target. Similarly, Thread-
ing Building Blocks (TBB) includes an affinity sched-
uler [37] for loops but does not consider any such
mechanism for task parallelism. Pilla et al. propose
NUMA-aware load balancing for the Charm++ run
time system [30].

Proposals in many directions provide locality sup-
port for OpenMP. Schmidl et al. create a distance ma-
trix [32] to represent distances between cores and use
topology-aware thread binding [33] of parallel loop
nests. Maranthe and Mueller automate profiling to
guide page placement [23]. ForestGOMP [8] cosched-
ules threads that share data on cores on the same
socket and migrates pages with migrating threads.
They schedule nested loop parallelism but not task
parallelism. Huang et al. [18] propose locality-based
scheduling in their OpenUH compiler and run time
based on new OpenMP directives and clauses for
data, loops and tasks. Their evaluation uses bench-
marks based on parallel loops and demonstrates the
importance of data distribution on NUMA machines.
We have implemented our framework using run time
API calls that could be converted to compiler direc-
tives. Most importantly, we evaluate and analyze per-
formance using locality-oblivious and locality-based
scheduling for divide-and-conquer task parallel appli-
cations.

8. Conclusions and future work

We demonstrate that lost efficiency in task paral-
lel applications can be attributed to overhead costs,
thread idleness, and work time inflation. The sources
of work time inflation include issues in compiler op-

S.L. Olivier et al. / Characterizing and mitigating work time inflation in task parallel programs 135

timization, algorithmic design, the memory hierarchy
and task scheduling.

For some applications, our locality-based task
scheduling framework reduces work time inflation at-
tributable to non-local data accesses. The example ap-
plications to which we apply the framework in our
evaluation are time-dependent simulations that have
significant data reuse across iterations of the outer sim-
ulation loop. For both applications, global dynamic
load imbalance is a much smaller contributor to perfor-
mance loss than work time inflation, enabling effective
use of the strict scheduling mode. In the Health sim-
ulation, data accesses are almost completely confined
to the bounds of the locality domain, which enables
near-linear speedup using locality-based scheduling. In
the Heat simulation, some data must be shared be-
tween the locality domains when the stencil is applied
to points near the boundary of the subspaces assigned
to two locality domains. Accordingly, we observe a
smaller performance improvement on Heat than on
Health.

Our Locality-based framework does not improve
performance of all task parallel applications. The
BOTS Sort benchmark is memory-bandwidth bound
and performs unavoidable data exchanges on the whole
input. For such applications, essentially no scheduling
strategy can improve performance beyond the limits of
memory concurrency on the target machine [22]. Our
future work will expand the reach of locality-based
scheduling to applications that have a changing and un-
balanced locus of work that requires global dynamic
load balancing, such as the adaptive Fast Multipole Al-
gorithm (FMA) for N-body simulation, for which our
strict scheduling mode would be suboptimal.

Acknowledgements

The authors thank the anonymous reviewers for
their helpful feedback and RENCI for the use of
the Intel Nehalem system in our evaluation. This ar-
ticle has been co-authored by Lawrence Livermore
National Security, LLC under Contract No. DE-AC52-
07NA27344 with the US Department of Energy.
Accordingly, the US Government retains and the pub-
lisher, by accepting the article for publication, ac-
knowledges that the US Government retains a non-
exclusive, paid-up, irrevocable, world-wide license to
publish or reproduce the published form of this article
or allow others to do so, for US Government purposes
(LLNL-CONF-555492).

References

[1] AMD Inc., Performance guidelines for AMD Athlon(TM) 64
and AMD Opteron(TM) ccNUMA multiprocessor systems,
June 2006, available at: http://support.amd.com/us/Processor
%5FTechDocs/40555.pdf.

[2] U.A. Acar, G.E. Blelloch and R.D. Blumofe, The data locality
of work stealing, in: SPAA’00: Proc. 12th ACM Symposium on
Parallel Algorithms and Architectures, ACM, 2000, pp. 1–12.

[3] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin,
J. Mellor-Crummey and N.R. Tallent, HPCToolkit: Tools for
performance analysis of optimized parallel programs, Con-
currency and Computation: Practice and Experience 22(6)
(2010), 685–701.

[4] E. Ayguadé, N. Copty, A. Duran, J. Hoeflinger, Y. Lin, F. Mas-
saioli, X. Teruel, P. Unnikrishnan and G. Zhang, The design of
OpenMP tasks, IEEE Trans. Parallel Distrib. Syst. 20 (2009),
404–418.

[5] G.E. Blelloch, P.B. Gibbons and Y. Matias, Provably efficient
scheduling for languages with fine-grained parallelism, Jour-
nal of the ACM 46(2) (1999), 281–321.

[6] R. Blumofe and C. Leiserson, Scheduling multithreaded com-
putations by work stealing, in: SFCS’94: Proc. 35th An-
nual Symposium on Foundations of Computer Science, IEEE,
November 1994, pp. 356–368.

[7] W.J. Bolosky, M.L. Scott, R.P. Fitzgerald, R.J. Fowler and
A.L. Cox, NUMA policies and their relation to memory archi-
tecture, in: ASPLOS’91: Proc. 4th International Conference on
Architectural Support for Programming Languages and Oper-
ating Systems, ACM, 1991, pp. 212–221.

[8] F. Broquedis, O. Aumage, B. Goglin, S. Thibault, P.-A. Wacre-
nier and R. Namyst, Structuring the execution of OpenMP ap-
plications for multicore architectures, in: IPDPS 2010: Proc.
25th IEEE International Parallel and Distributed Processing
Symposium, IEEE, April 2010, pp. 1–10.

[9] F. Broquedis, J. Clet-Ortega, S. Moreaud, N. Furmento,
B. Goglin, G. Mercier, S. Thibault and R. Namyst, hwloc:
A generic framework for managing hardware affinities in HPC
applications, in: PDP 2010: Proc. 18th Euromicro Interna-
tional Conference on Parallel, Distributed and Network-Based
Processing, IEEE Computer Society, Pisa, Italia, February
2010, pp. 180–186.

[10] B. Chamberlain, D. Callahan and H. Zima, Parallel pro-
grammability and the Chapel language, International Journal
of High Performance Computing Applications 21(3) (2007),
291–312.

[11] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. von Praun and V. Sarkar, X10: An object-
oriented approach to non-uniform cluster computing, in: OOP-
SLA’05: Proc. 20th ACM SIGPLAN Conference on Object Ori-
ented Programming Systems, Languages, and Applications,
ACM, 2005, pp. 519–538.

[12] S. Chen, P.B. Gibbons, M. Kozuch, V. Liaskovitis, A. Ail-
amaki, G.E. Blelloch, B. Falsafi, L. Fix, N. Hardavellas,
T.C. Mowry and C. Wilkerson, Scheduling threads for con-
structive cache sharing on CMPs, in: SPAA’07: Proc. 19th
ACM Symposium on Parallel Algorithms and Architectures,
ACM, 2007, pp. 105–115.

[13] A. Duran and X. Teruel, Barcelona OpenMP tasks suite, 2010,
available at: http://nanos.ac.upc.edu/projects/bots.

136 S.L. Olivier et al. / Characterizing and mitigating work time inflation in task parallel programs

[14] A. Duran, X. Teruel, R. Ferrer, X. Martorell and E. Ayguadé,
Barcelona OpenMP tasks suite: A set of benchmarks targeting
the exploitation of task parallelism in OpenMP, in: ICPP’09:
Proc. 38th International Conference on Parallel Processing,
IEEE, September 2009, pp. 124–131.

[15] M. Frigo, C.E. Leiserson and K.H. Randall, The implementa-
tion of the Cilk-5 multithreaded language, in: PLDI’98: Proc.
1998 ACM SIGPLAN Conference on Programming Language
Design and Implementation, ACM, 1998, pp. 212–223.

[16] M. Funk and R. Peterson, Of NUMA on POWER7 in IBM i,
IBM Performance Management Resource Library, January
2010, available at: http://www.ibm.com/systems/resources/
pwrsysperf%5FP7NUMA.pdf.

[17] Y. Guo, J. Zhao, V. Cave and V. Sarkar, SLAW: A scalable
locality-aware adaptive work-stealing scheduler for multi-core
systems, in: PPoPP’10: Proc. 15th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, ACM,
2010, pp. 341–342.

[18] L. Huang, H. Jin, L. Yi and B.M. Chapman, Enabling
locality-aware computations in OpenMP, Scientific Program-
ming 18(3,4) (2010), 169–181.

[19] S. Hunold, R. Hoffmann and F. Suter, Jedule: A tool for visual-
izing schedules of parallel applications, in: ICPP 2010: Proc.
39th International Conference on Parallel Processing Work-
shops, IEEE Computer Society, 2010, pp. 169–178.

[20] D. Leijen, W. Schulte and S. Burckhardt, The design of a task
parallel library, SIGPLAN Notices: OOPSLA’09: 24th ACM
SIGPLAN Conference on Object Oriented Programming Sys-
tems, Languages, and Applications 44(10) (2009), 227–242.

[21] C. Liao, D.J. Quinlan, T. Panas and B.R. de Supinski, A ROSE-
based OpenMP 3.0 research compiler supporting multiple
runtime libraries, in: IWOMP 2010: Proc. 6th International
Workshop on OpenMP, M. Sato, T. Hanawa, M.S. Müller,
B.M. Chapman and B.R. de Supinski, eds, Lecture Notes in
Computer Science, Vol. 6132, Springer, 2010, pp. 15–28.

[22] A. Mandal, R. Fowler and A. Porterfield, Modeling memory
concurrency for multi-socket multi-core systems, in: ISPASS
2010: Proc. IEEE International Symposium on Performance
Analysis of Systems and Software, IEEE Computer Society,
March 2010, pp. 66–75.

[23] J. Marathe and F. Mueller, Hardware profile-guided automatic
page placement for ccNUMA systems, in: PPoPP’06: Proc.
11th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, 2006, pp. 90–99.

[24] C. McCurdy and J.S. Vetter, Memphis: Finding and fix-
ing NUMA-related performance problems on multi-core plat-
forms, in: ISPASS 2010: IEEE International Symposium on
Performance Analysis of Systems and Software, IEEE Com-
puter Society, March 2010, pp. 87–96.

[25] D. Molka, D. Hackenberg, R. Schone and M. Muller, Memory
performance and cache coherency effects on an Intel Nehalem
multiprocessor system, in: PACT’09: Proc. 18th International
Conference on Parallel Architectures and Compilation Tech-
niques, September 2009, pp. 261–270.

[26] D.S. Nikolopoulos, E. Artiaga, E. Ayguadé and J. Labarta, Ex-
ploiting memory affinity in OpenMP through schedule reuse,
SIGARCH Computer Architecture News 29(5) (2001), 49–55.

[27] S.L. Olivier, A.K. Porterfield, K.B. Wheeler and J.F. Prins,
Scheduling task parallelism on multi-socket multicore sys-
tems, in: ROSS’11: Proc. International Workshop on Run-

time and Operating Systems for Supercomputers, ACM, 2011,
pp. 49–56.

[28] S.L. Olivier and J.F. Prins, Comparison of OpenMP 3.0 and
other task parallel frameworks on unbalanced task graphs, In-
ternational Journal of Parallel Programming 38(5,6) (2010),
341–360.

[29] OpenMP Architecture Review Board, OpenMP API, Ver-
sion 3.0, May 2008.

[30] L.L. Pilla, C.P. Ribeiro, D. Cordeiro, A. Bhatele, P.O.A.
Navaux, J.-F. Méhaut and L.V. Kalé, Improving parallel sys-
tem performance with a NUMA-aware load balancer, INRIA–
Illinois Joint Laboratory on Petascale Computing, Urbana,
IL, Technical Report TR-JLPC-11-02, 2011, available at:
http://hdl.handle.net/2142/25911.

[31] J. Reinders, Intel Threading Building Blocks – Outfitting C++

for Multi-Core Processor Parallelism, O’Reilly, Sebastopol,
CA, 2007.

[32] D. Schmidl, C. Terboven and D. an Mey, Towards NUMA
support with distance information, in: IWOMP 2011: Proc.
7th International Workshop on OpenMP, B.M. Chapman,
W.D. Gropp, K. Kumaran and M.S. Müller, eds, Lecture Notes
in Computer Science, Vol. 6665, Springer, 2011, pp. 69–79.

[33] D. Schmidl, C. Terboven, D. an Mey and H.M. Bücker, Bind-
ing nested OpenMP programs on hierarchical memory archi-
tectures, in: IWOMP 2010: Proc. 6th International Workshop
on OpenMP, M. Sato, T. Hanawa, M.S. Müller, B.M. Chapman
and B.R. de Supinski, eds, Lecture Notes in Computer Science,
Vol. 6132, Springer, 2010, pp. 29–42.

[34] N.R. Tallent and J.M. Mellor-Crummey, Effective performance
measurement and analysis of multithreaded applications, in:
PPoPP’09: Proc. 14th ACM SIGPLAN Symposium on Prin-
ciples and Practice of Parallel Programming, ACM, 2009,
pp. 229–240.

[35] C. Terboven, D. Schmidl, T. Cramer and D. an Mey, Assessing
OpenMP tasking implementations on NUMA architectures, in:
IWOMP 2012: Proc. 8th International Workshop on OpenMP,
B.M. Chapman, F. Massaioli, M.S. Müller and M. Rorro, eds,
Lecture Notes in Computer Science, Vol. 7312, Springer, 2012,
pp. 182–195.

[36] M. Thottethodi, S. Chatterjee and A.R. Lebeck, Tuning
Strassen’s matrix multiplication for memory efficiency, in:
SC98: Proc. 1998 ACM/IEEE Conference on Supercomput-
ing, IEEE Computer Society, Washington, DC, USA, 1998,
pp. 1–14.

[37] M. Voss and T. Wilmarth, Intel threading building blocks:
Ready for non-uniform memory access platforms, 2009,
available at: http://isdlibrary.intel-dispatch.com/vc/2724/
treadingbuildingblocks%5F110609.pdf.

[38] K.B. Wheeler, R.C. Murphy and D. Thain, Qthreads: An API
for programming with millions of lightweight threads, in:
IPDPS 2008: Proc. 22nd IEEE International Symposium on
Parallel and Distributed Processing, IEEE, 2008, pp. 1–8.

[39] Y. Yan, J. Zhao, Y. Guo and V. Sarkar, Hierarchical place trees:
A portable abstraction for task parallelism and data movement,
in: LCPC 2009: 22nd International Workshop on Languages
and Compilers for Parallel Computing, G.R. Gao, L.L. Pol-
lock, J. Cavazos and X. Li, eds, Lecture Notes in Computer
Science, Vol. 5898, Springer, 2010, pp. 172–187.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

