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Abstract. Accurate and timely prediction of weather phenomena, such as hurricanes and flash floods, require high-fidelity com-
pute intensive simulations of multiple finer regions of interest within a coarse simulation domain. Current weather applications
execute these nested simulations sequentially using all the available processors, which is sub-optimal due to their sub-linear
scalability. In this work, we present a strategy for parallel execution of multiple nested domain simulations based on partitioning
the 2-D processor grid into disjoint rectangular regions associated with each domain. We propose a novel combination of perfor-
mance prediction, processor allocation methods and topology-aware mapping of the regions on torus interconnects. Experiments
on IBM Blue Gene systems using WRF show that the proposed strategies result in performance improvement of up to 33% with
topology-oblivious mapping and up to additional 7% with topology-aware mapping over the default sequential strategy.
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1. Introduction

Accurate and timely prediction of catastrophic
events such as hurricanes, heat waves, and thunder-
storms enables policy makers to take quick preventive
actions. Such predictions require high-fidelity weather
simulations and simultaneous online visualization to
comprehend the simulation output on-the-fly. Weather
simulations mainly comprise of solving non-linear par-
tial differential equations numerically. Ongoing efforts
in the climate science and weather community contin-
uously improve the fidelity of weather models by em-
ploying higher order numerical methods suitable for
solving model equations at high resolution discrete el-
ements.

Simulating and tracking multiple regions of interest
at fine resolutions is important in understanding the in-
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terplay between multiple weather phenomena and for
comprehensive predictions. For example, Fig. 1 illus-
trates the phenomena of two depressions occurring si-
multaneously in the Pacific Ocean. Here, it is necessary
to track both depressions to forecast the possibility of
a typhoon or heavy rainfall. In such scenarios, multiple
simulations need to be spawned within the main par-
ent simulation to track these phenomena. The high res-
olution simulations are generally executed as subtasks
within the coarser-level parent simulation.

In weather simulations involving multiple regions of
interest, the nested child simulations are solved r num-
ber of times for each parent integration step, where r
is the ratio of the resolution of the parent simulation to
the nested simulation. At the beginning of each nested
simulation, data for each finer resolution smaller re-
gion is interpolated from the overlapping parent re-
gion. At the end of r integration steps, data from the
finer region is communicated to the parent region. The
nested simulations demand large amounts of compu-
tation due to their fine resolutions. Hence, optimiz-
ing the executions of nested simulations can lead to a
significant overall performance gain. Additionally, the
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Fig. 1. Visualization of multiple depressions in August 2010 on Pa-
cific Ocean. (Colors are visible in the online version of the article;
http://dx.doi.org/10.3233/SPR-130367.)

need for simultaneous visualization of the fine-grained
weather predictions also entails high frequency output
of weather forecast, which in turn results in huge I/O
costs. Typically, these I/O costs constitute a substantial
fraction (20–40%) of the total simulation time. Thus,
reducing the I/O costs can also improve the overall per-
formance.

Existing weather applications employ a default strat-
egy of executing the nested simulations correspond-
ing to a single parent domain sequentially one after
the other using the full set of processors. However,
these applications typically exhibit sub-linear scala-
bility resulting in diminishing returns as the problem
size becomes smaller relative to the number of avail-
able cores. For example, we observed that the popular
Weather Research and Forecasting model (WRF) [17,
22] is scalable up to large number of cores [16] when
executed without a subdomain, but exhibits poor scala-
bility when executed with subdomains. Figure 2 shows
the scalability of WRF on a rack of IBM Blue Gene/L.
The simulation corresponded to a region with parent
domain of size 286 × 307 and involving a subdomain
of size 415 × 445. Note that the performance of WRF
involving a subdomain saturates at about 512 proces-
sors. Hence in a WRF simulation with two subdomains
executed on a total of 1024 cores, the performance of
a subdomain executed on 512 cores will be about the
same as when executed on all the 1024 cores. Thus,
partitioning the 1024 cores equally among the subdo-

Fig. 2. Execution time of a weather simulation over a 107 km2 do-
main on Blue Gene/L. (Colors are visible in the online version of the
article; http://dx.doi.org/10.3233/SPR-130367.)

mains for simultaneous execution will give better per-
formance than serial execution on all the 1024 cores.

We focus on optimizing the parallel execution of
high-resolution nested simulations so as to improve the
overall performance of weather simulations pertaining
to multiple regions of interest. The simultaneous ex-
ecution of independent and non-homogeneous nested
simulations, with different subdomain sizes, requires
an efficient partitioning of the entire processor space
into multiple disjoint rectangular processor grids that
can be assigned to the different nested simulations.
This can minimize the parallel execution time if the
number of processors are allocated in proportion to the
work load associated with each nested simulation. This
ensures that the time spent in the r integration steps
of the different nested simulations is nearly equal, and
the nested domains reach the synchronization step with
the parent simulation together. We propose an efficient
processor allocation strategy based on recursive bisec-
tion that takes into account the above requirements,
and also uses estimates of relative execution times of
the nests. We estimate these relative execution times
using a performance prediction model based on linear
interpolation in a 2D domain from a small set of ac-
tual simulation times obtained from profiling runs. Our
experiments show that our prediction model is highly
accurate and exhibits less than 6% prediction error for
most configurations.

We also propose topology-aware mapping of the
nested subdomains on torus interconnects. Torus net-
works are widely prevalent in modern supercomputers,
with 11 of the top 25 supercomputers in the November
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2011 list based on torus network topology [25]. In this
work, we consider architectures with 3D torus network
topology viz. IBM’s Blue Gene/L and Blue Gene/P. We
have developed heuristics for mapping the 2D virtual
process topology involved in the nested simulations
to the 3D torus such that the neighbouring processes
in the virtual topology are mapped onto neighbouring
nodes of the torus. We propose mapping heuristics that
minimize the communication for nested simulations
and the parent simulation.

Experiments on IBM Blue Gene systems show that
the proposed performance modeling, partitioning and
processor allocation strategies can improve simulation
performance over the default strategy of employing the
maximum number of processors for all the nested sim-
ulations by up to 33% with topology-oblivious map-
ping and up to an additional 7% with topology-aware
mapping. We also achieve up to 66% reduction in
MPI_Wait times. Our approach for parallelization of
multiple nested simulations also results in better I/O
scalability.

To summarize, following are our primary contribu-
tions.

(1) A performance model for nested simulations
based on linear interpolation that can predict ex-
ecution times with less than 6% error.

(2) Efficient method for processor allocation that re-
sult in 8% improvement over a naïve proportional
allocation policy.

(3) Topology-aware 2D to 3D mapping that result in
7% improvement over topology-oblivious map-
ping.

Section 2 describes related work in performance
modeling, load balancing and mapping. Section 3
presents our performance model, processor allocation
and mapping strategies. Section 4 presents experimen-
tal results to illustrate the performance improvement
achieved. Section 5 briefly highlights the generality of
this work. Section 6 concludes and enumerates our fu-
ture efforts.

2. Related work

Our work is primarily related to three research areas:
(1) performance modeling and prediction, (2) static
load balancing for parallel applications, and (3) map-
ping of processes in the virtual topology onto the phys-
ical network topology.

2.1. Performance modeling and prediction

There has been a lot of research on performance
modeling and prediction of applications running on
HPC systems. Allan et al. [1] compare tools for pre-
dicting performance on a range of architectures and
applications. Due to the rich history of this field, we
only focus on prior work involving weather forecasting
applications. Kerbyson et al. [12] develop an analyti-
cal performance model parameterized in terms of WRF
inputs (grid size, computation load per grid point,
etc.) and system parameters (processor count, network
topology, latencies and bandwidth, etc.) via a careful
manual inspection of the dynamic execution behav-
ior of WRF. Delgado et al. [8] (extending their earlier
work in [20]) describe a regression-based approach for
modeling WRF performance on systems with less than
256 processors, but their primary focus is on capturing
the system related factors such as clock speed, network
bandwidth, which they do via a multiplicative effects
model.

Unlike previous efforts, our performance prediction
model uses linear interpolation based on the grid size
and aspect ratio of the grid using actual simulation
times obtained from a small set of profiling WRF runs.
Our prediction approach does not explicitly incorpo-
rate system related factors. Further, [12] and [8] only
focus on predicting performance for single domain
configurations whereas we use performance prediction
results for partitioning the available processor space
into different sizes for concurrent executions of multi-
ple nested domains.

2.2. Static load balancing for parallel applications

Parallelization of scientific applications involving
numerical modeling is a well-studied area with vast
amount of literature. Most of the earlier existing work
on static data parallel simulations such as those in
weather modeling applications is based on domain de-
composition where the domain of interest is divided
into smaller subdomains that are assigned to individ-
ual processors such that the load is balanced across the
processors while minimizing the communication costs.
There exists a number of approaches such as recursive
bisection [21] and graph partitioning [11] that cater to
both regular and irregular domains. Recent work [18]
addresses scenarios involving processors with hetero-
geneous computational capacity and communication
bandwidth that requires partitioning the domain of in-
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terest into multiple subdomains in proportion to the
computational capacity of the processors.

In contrast to earlier work, the application-specific
constraints in our work require that a single nested
domain is assigned to a rectangular processor grid
with constraints on the aspect ratio of the rectangle to
achieve optimal performance. We partition the proces-
sor space into multiple disjoint rectangular grids that
are assigned to the individual nested domains so that
the computational capacity is proportional to the do-
main workload. Our algorithm for partitioning the pro-
cessor space is based on recursive bisection that is of-
ten used for decomposing regular 2D domains.

2.3. Mapping

Past work [2–4,9,10] shows various techniques to
map parallel applications to communication networks.
The techniques vary with the different network topolo-
gies. Specifically, mapping optimizations for Blue
Gene torus networks [2,4] take the application commu-
nication logs as an input and generate mapfiles for fu-
ture application runs to optimize the hop-byte metric.
Bhatele et al. [2] also show benefits in a single domain
WRF run with their techniques.

These techniques in literature are oblivious to the
exact data flow in the application, though they can be
tuned to map certain critical phases of the application.
While they may be sufficient for single domain WRF
simulations, multiple sibling domains running simulta-
neously present a harder problem. This is because we
need to optimize the communications in the main do-
main as well as the multiple nested domains. In this
paper, we present mapping optimizations for WRF that
selectively map each subdomain to a sub-rectangle of
the torus, while also keeping the number of hops min-
imal for the subdomain and the parent domain proces-
sors. None of the existing work address this problem of
topology-aware mapping for multiple dependant sub-
tasks of an application.

3. Parallelization of subdomains

In simulations involving nested domains, the simu-
lation of the high-resolution nests are highly compute-
intensive. Thus, the performance of these simulations
improves with increasing number of cores. However,
increasing the number of cores often leads to diminish-
ing returns, especially when applications exhibit sub-
linear scalability. The current strategy in WRF is to ex-

ecute these high-resolution nested simulations sequen-
tially, utilizing all the cores to process one nest at a
time. We show that performance of the overall simu-
lation can be improved by subdividing the processor
space into partitions for simultaneous executions of the
nested simulations.

We concurrently execute the multiple nested simu-
lations on disjoint subsets of processors. Estimates of
the execution times of the nested simulations are re-
quired to decide the number of processors to be allo-
cated for each nested simulation. We use linear interpo-
lation for performance prediction as described in Sec-
tion 3.1. The performance prediction of the simulation
times is then used for partitioning the available pro-
cessor space for the nested simulations as described in
Section 3.2.

The simulations of the high-resolution nests are
spawned from the parent domain simulation. As men-
tioned above, the default WRF strategy is to spawn the
nested simulations on the full set of available proces-
sors; these simulations use the MPI_COMM_WORLD
communicator. In our approach, we create sub-com-
municators for each nested simulation. Since we use
different sub-communicators for different nested sim-
ulations, it is beneficial to map the processes within a
sub-communicator onto neighbouring nodes in the net-
work topology. Furthermore, since the parent simula-
tion uses the global communicator, a universal map-
ping scheme benefits both the parent and nested sim-
ulations. These topology-aware mapping heuristics are
described in Section 3.3.

3.1. Performance prediction

We propose a performance model that predicts the
relative execution times of the nested simulations with
a low error. A naïve approach is to assume that exe-
cution times are proportional to the number of points
in the domain. However, our experiments indicate that
a simple univariate linear model based on this feature
results in more than 19% prediction errors. Our model
uses piecewise linear interpolation based on the do-
main sizes. For a domain having width nx and height
ny , we use the following two features of the domain
for interpolation

(1) Total number of points in the domain, given by
nx · ny .

(2) Aspect ratio of the domain, given by nx/ny .
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Fig. 3. (a) Delaunay Triangulation of points representing known ex-
ecution times. (b) Partitions of processor space in the ratio of exe-
cution times of nested simulations. (Colors are visible in the online
version of the article; http://dx.doi.org/10.3233/SPR-130367.)

The naïve approach exhibits higher errors than our
model because the total number of points do not cap-
ture the x-communication volume and y-communi-
cation volume separately. Hence the prediction for do-
main size of nx1 × ny1 would be same as the predic-
tion for domain size of nx2 × ny2 where nx1 · ny1 =
nx2 ·ny2. The aspect ratio together with the total num-
ber of points capture the x- and y-dimensions and
hence give better predictions.

We conducted experiments on a fixed number of
processors for a small set (size = 13) of domains with
different domain sizes and different aspect ratios. The
actual execution times of these 13 domains are used
to interpolate the execution times for other domains
of varying sizes. Each domain can be represented as
a point in the XY plane, where the x-coordinate de-
notes the aspect ratio and the y-coordinate denotes the
total number of points in the domain. The convex hull
of these 13 points is triangulated using Delaunay tri-
angulation [7]. Figure 3(a) shows a snapshot of the tri-
angulation. The vertices of the triangles represent the
known execution times. A domain D, represented as
a point P (x, y) inside the convex hull, will fall inside
one of the triangles as marked in Fig. 3(a). P lies in-
side �ABC whose vertices are A(x1, y1), B(x2, y2)
and C(x3, y3). The barycentric coordinates [6] of P are
obtained from A, B and C by Eqs (1), (2) and (3). The
predicted execution time TD of P can be interpolated
from the execution times of the domains represented
by the vertices of �ABC as shown in Eq. (4).

λ1 =
(y2 − y3) ∗ (x− x3) + (x3 − x2) ∗ (y − y3)

(y2 − y3) ∗ (x1 − x3) + (x3 − x2) ∗ (y1 − y3)
,

(1)

λ2 =
(y3 − y1) ∗ (x− x3) + (x1 − x3) ∗ (y − y3)

(y2 − y3) ∗ (x1 − x3) + (x3 − x2) ∗ (y1 − y3)
,

(2)

λ3 = λ1 − λ2, (3)

TD = λ1 ∗ T(x1,y1) + λ2 ∗ T(x2,y2) + λ3 ∗ T(x3,y3). (4)

The 13 domains required for interpolation will have
to be carefully chosen for good predictions. To deter-
mine this set, we randomly generated a large number
of points with domain size ranging from 94 × 124 to
415 × 445 and the aspect ratio ranging from 0.5–1.5.
From this large set, we manually selected a subset of
13 points that nicely cover the rectangular region de-
fined by the diagonal between (minimum domain sizes,
minimum aspect ratio) and (maximum domain sizes,
maximum aspect ratio). These points were selected in
a way that the region formed by them could be trian-
gulated well.

We note that it suffices to estimate the relative execu-
tion times for processor allocation to the nests. Hence,
prediction on a particular processor size is sufficient
to deduce the relative execution times. For larger do-
mains, i.e. for the points lying outside the basis set of
13 points, we scale down to the region of coverage
and then interpolate for that point. Though this does
not accurately predict the execution times of the larger
domains, this approach captures the relative execution
times of those larger domains, and hence suffices as
a first order estimate. Therefore, these 13 experiments
suffice for predictions and it is not necessary to obtain
the actual execution times for larger domain sizes. We
have tested this approach on test domains with varying
sizes and aspect ratios, and our predictions exhibit less
than 6% error. The total number of points in these test
domains lie in the range of 55,900–94,990, and the as-
pect ratio lie in the range of 0.5–1.5. We also tested by
scaling up the number of points in each sibling, while
retaining the aspect ratio.

Our performance model based on Delaunay trian-
gulation can be very useful in modeling applications
where the exact interplay of the parameters used for
modeling are unknown. In absence of such analytical
model, linear interpolation gives a fairly accurate esti-
mate as shown by our approach.

3.2. Processor allocation

We propose a processor allocation strategy in the
context of multiple nested simulations that results in
near-optimal performance. A simple processor alloca-
tion strategy is to equally subdivide the total number
of processors among the nested simulations. However,
this results in load imbalance because of the varying
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domain sizes of the nested simulations. We therefore
use the relative execution times obtained from the per-
formance prediction model to decide the number of
processors to allocate for each nested simulation.

The parent simulation domain is solved on the full
set of available processors. The processor space can be
considered as a virtual processor grid of size Px · Py .
Consider the parent simulation domain of size nx×ny .
Initially, this domain is distributed over the proces-
sors by assigning rectangular regions of size nx/Px ×
ny/Py to each processor. The sibling domains are as-
signed processors as follows. The virtual processor
grid is partitioned into multiple rectangular subgrids.
The number of partitions is equal to the number of
nested simulations. The area of a region allocated for a
nested simulation is proportional to the predicted exe-
cution time of the nested simulation. This is illustrated
in Fig. 3(b) – it shows the sub-grids of the proces-
sor space allocated to 4 nested simulations whose pre-
dicted execution times (as obtained from our perfor-
mance prediction model) are in the ratio of 0.15 : 0.3 :
0.35 : 0.2.

The subdivision of the 2D virtual process topol-
ogy into k rectangular regions is a variant of the
rectangular partitioning problem, which is known to
be NP-hard [15]. We develop some heuristics for this
problem. The pseudocode for this is shown in Algo-
rithm 1. This algorithm divides the processor grid into
regions that are as square-like as possible in order to
minimize the difference in the communication volume
of the X and Y dimensions.

The algorithm works as follows. We start by con-
structing a Huffman tree [5] using the execution time
ratios as the weights, as shown in line 1. This gives us a
binary tree such that at every internal node, the left and
right children are fairly well-balanced in terms of the
sum of the execution time ratios of the nested domains
that belong to the two subtrees rooted at these two chil-
dren. We then use this Huffman tree to construct a bal-
anced split-tree over the virtual processor grid. This
is done as follows. Note that all the nested domains
lie at the leaves of the Huffman tree. We traverse the
internal nodes of the Huffman tree in a breadth first
(BFS) order, as shown in line 2. For every internal
node, we first determine the longer of the two dimen-
sions in lines 6–10. We then split the current grid along
the longest dimension in the ratio of the total execu-
tion times of the nested domains in the left and right
subtrees, as shown in lines 11–13; we then set the grid
sizes for the two children as shown in lines 14–18.

The partitioning is always done along the longer di-
mension to ensure that the rectangles are as square-
like as possible. Figure 4 shows the difference when

Algorithm 1. Partitioning algorithm

Input: Nested simulation domains
{D1,D2, . . . ,Dk}, execution time ratios
R = {R1,R2, . . . ,Rk} of k nested
simulations, total number of processors P ,
virtual processor grid Px × Py

Output: Partition Px(i), Py(i) for each nested
simulation domain Di for 1 � i � k

1 Construct a Huffman tree, H , over the nested
domains with execution time ratios as weights ;

/* Construct a balanced
split-tree using the Huffman
tree */

2 for every internal node u of H traversed in BFS
order do

3 if (u=root) then
4 (Px(u),Py(u)) = (Px,Py)
5 if (Px(u) � Py(u)) then
6 PShortDim = Px(u),

PLongDim = Py(u) ;
7 else
8 PShortDim = Py(u),

PLongDim = Px(u) ;
9 end

10 Let l and r denote the left and right children
of u respectively ;

11 Let Subtreel and Subtreer denote the nested
domains in the subtrees rooted at l and r
respectively ;

12 Wl =
∑

j∈Subtreel Rj ,
Wr =

∑
j∈Subtreer Rj ;

13 Divide PLongDim into Pl & Pr in the ratio of
Wl : Wr;

14 if (Px(u) � Py(u)) then
15 Set (Px(l),Py(l)) = (PShortDim,Pl) &

(Px(r),Py(r)) = (PShortDim,Pr) ;
16 else
17 Set (Px(l),Py(l)) = (Pl,PShortDim) &

(Px(r),Py(r)) = (Pr ,PShortDim) ;
18 end
19 end

the first partitioning is along the longer dimension and
when it is along the shorter dimension for k = 3. As
can be seen, rectangle 3 is more square-like in Fig. 4(a)
than in Fig. 4(b).
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Fig. 4. Partitions for k = 3 when the first partition is along the longer
dimension (a) and when it is along the shorter dimension (b). (Col-
ors are visible in the online version of the article; http://dx.doi.org/
10.3233/SPR-130367.)

3.3. Mapping

Weather simulations are very communication in-
tensive. For example, in WRF, each integration time-
step involves 144 message exchanges with the four
neighbouring processes [16]. IBM’s HPCT [4] profil-
ing tools show that about 40% of the total execution
time in WRF is spent in communication.

Mapping is the placement of processes in the vir-
tual topology onto the physical network topology. In
this work we consider supercomputers with 3D torus
interconnects and hence we address the problem of 2D
to 3D mapping as shown in Fig. 5. Figure 5(a) shows
the 2D virtual process topology for a WRF input with
2 sibling domains (sibling 1 and sibling 2) of identi-
cal size. This virtual topology is used by the applica-
tion for MPI communications. Figure 5(b) shows the
3D torus architecture of many modern-day supercom-
puters. Each process in the 2D grid is mapped to one
of the nodes in the 3D network topology. This place-
ment affects the number of hops in the network be-
tween neighbouring processes in the 2D topology be-
cause of the difference in the dimensionality. The fewer
the hops between the communicating processes in the
torus, the lesser will be the time required for communi-
cation, thereby improving the overall application per-
formance. We propose mapping heuristics in the con-
text of nested simulations of multiple regions of in-
terest. We describe topology-oblivious and topology-
aware mapping heuristics in the following sections.

3.3.1. Topology-oblivious mapping
The partitioning scheme subdivides the processor

space into rectangular regions for simultaneous execu-
tions of the nested simulations. The case of 2 nested
simulations is shown in Fig. 5(a). The processes 0–3,
8–11, 16–19, 24–27 are allocated to one nested simu-
lation and the rest of the processes are allocated to the
other nested simulation. The simple mapping scheme

Fig. 5. 2D to 3D mapping. (a) Virtual process topology for 32 pro-
cesses. (b) Topology-oblivious mapping on 4 × 4 × 2 torus. (Col-
ors are visible in the online version of the article; http://dx.doi.org/
10.3233/SPR-130367.)

is to sequentially map the processes in increasing or-
der of process numbers to the torus nodes in increas-
ing order of x, y and z coordinates. This is shown in
Fig. 5(b). In this example, the simple sequential map-
ping places processes 0–3 on the topmost row (y = 0)
of the first plane (z = 0) of the torus, followed by pro-
cesses 4–7 in the second row (y = 1, z = 0), 8–11 in
the third row (y = 2, z = 0) and so on.

This simple mapping scheme is sub-optimal for the
communications within each of the nested simulations.
This is because the neighbouring rows in the virtual
topology are more than 2 hops apart in the torus, as
shown with the help of green and blue nodes. For ex-
ample, 0 and 8 are neighbours in the 2D topology
whereas they are 2 hops apart in the torus. Similarly,
process 8 is 3 hops away from process 16 in the torus.
The topology-aware mapping heuristics discussed in
the next section addresses this problem.

3.3.2. Topology-aware mapping
The general problem of mapping belongs to NP [2].

We describe below two heuristics for 2D to 3D map-
ping for multiple nested simulations.

Partition mapping. In this algorithm, we map each
partition onto contiguous nodes of the torus. The parti-
tion mapping for the 2D process topology of Fig. 5(a)
is shown in Fig. 6(a). The neighbouring processes in
the virtual topologies of the partitions are neighbours
in the torus. For example, processes 0 and 8 are neigh-
bours in the virtual topology as well as in the torus. The
first plane (z = 0) of the torus retains the 2D topol-
ogy of the first partition, as shown by green rectangle
in Fig. 5(a) and green nodes in Fig. 6(a). Similarly, the
second plane (z = 1) of the torus retains the 2D topol-
ogy of the second partition, as shown by blue rectangle
in Fig. 5(a) and blue nodes in Fig. 6(a).

This mapping also improves the parent domain
communication performance because the neighbouring



100 P. Malakar et al. / A divide and conquer strategy for scaling weather simulations with multiple regions of interest

Fig. 6. Topology-aware mappings. (a) Partition mapping. (b) Multi-
-level mapping. (Colors are visible in the online version of the arti-
cle; http://dx.doi.org/10.3233/SPR-130367.)

processes in the smaller rectangles are also neighbour-
ing processes in the bigger rectangle. However, some
of the processes in the parent domain are more than 1
hop away. For example, process 3 is 2 hops away from
process 4 in Fig. 6(a).

Multi-level mapping. This is a modification of the
partition mapping such that the neighbouring processes
in the nested simulations as well as the neighbouring
processes in the parent simulations are neighbours in
the torus. In this mapping, we fold the rectangular par-
tition in half and curl it across two z-planes so that half
the rectangle is in first plane and the other half is in the
second plane. This is illustrated in Fig. 6(b).

Processes in the first rectangle of Fig. 5(a) are folded
anti-clockwise from the first plane (z = 0) to the sec-
ond plane (z = 1). For example, process 0 is mapped
to coordinate (0, 0, 0) in the torus, process 1 is mapped
to coordinate (1, 0, 0), process 2 is mapped to (1, 0, 1),
and so on. This ensures the processes in the first rect-
angle have 1-hop distant neighbours. Processes in the
second rectangle of Fig. 5(a) are folded anti-clockwise
from the second plane (z = 1) to the first plane
(z = 0). For example, process 4 is mapped to coordi-
nate (3, 0, 1) in the torus, process 5 is mapped to co-
ordinate (2, 0, 1), process 6 is mapped to (2, 0, 0), and
so on. This ensures that the processes in the second
rectangle have 1-hop distant neighbours. Thus, this im-
proves performance of nested simulations. This map-
ping also ensures that the processes in the parent do-
main are 1 hop apart. For example, processes 3 and 4
are 1 hop apart and so on.2 Thus this universal map-
ping scheme benefits both the nested simulations and
the parent simulation.

We map nests to sub-rectangles where communica-
tion is always among near neighbours. This being an
optimal mapping, the processes are placed nearby and

2The links between first and last nodes in a row/column of the
torus have not been shown in the figures.

so the network contention due to the halo exchanges
reduces. Our mapping schemes can be also applicable
where there is an overlap between the processors allo-
cated to different dependant subtasks of an application.

4. Experiments and results

4.1. Domain configurations

We used WRF [22] for all our experiments. The par-
ent simulation domain in WRF can have multiple child
domains, called nests, which in turn can have children
at the second level. Nests at the same level are called
siblings. Our WRF simulations involved up to a max-
imum of 4 sibling domains and resolution of up to
1.5 km. The minimum and maximum nest sizes used
in the experiments were 178× 202 and 925× 820. For
empirical evaluation, we chose the following two re-
gions.

4.1.1. South East Asia
This covers countries such as Malaysia, Singapore,

Thailand, Cambodia, Vietnam, Brunei and Philippines.
The innermost nests were chosen such that the major
business centers in this region are well represented. All
these locations are affected by the meteorological fea-
tures that are developed over South China Sea. Thus,
it is desirable to assess the meteorological impact on
these key locations within the same modelling frame-
work. Figure 7 shows a sample domain configuration
that has the parent domain at 4.5 km resolution and
the sibling domains at 1.5 km resolution. We experi-
mented with eight different configurations at varying
levels of nesting and different number of sibling do-
mains. Three configurations had sibling domains at the
second level whereas the remaining ones had siblings
at the first level of nesting.

4.1.2. Pacific Ocean
The second region extends from 100◦E–180◦E and

10◦S–50◦N, covering the western Pacific Ocean re-
gion, where typhoons occur frequently. We experi-
mented for the July 2010 typhoon season with 85 dif-
ferent configurations of the nest domains. These con-
figurations were randomly generated with domain size
ranging from 94×124 to 415×445 and the aspect ratio
ranging from 0.5–1.5. We form multiple nests to track
multiple depressions over the Pacific region. There can
be several depressions forming over the region, which
trigger high-resolution nest formation. The parent do-
main size is 286×307 at 24 km resolution and the nests
have 8 km resolution, with up to 4 siblings at the first
level of nesting.



P. Malakar et al. / A divide and conquer strategy for scaling weather simulations with multiple regions of interest 101

Fig. 7. Sample domain with four sibling nests at 1.5 km res-
olution. (Colors are visible in the online version of the article;
http://dx.doi.org/10.3233/SPR-130367.)

4.2. Experimental setup

4.2.1. IBM Blue Gene/L
Blue Gene/L (BG/L) [23] is the first generation of

IBM’s Blue Gene supercomputers. Each node consists
of two 700 MHz PPC 440 processor cores with 1 GB of
physical memory. The system supports two execution
modes for the applications – coprocessor (CO) mode
and virtual node (VN) mode. In the CO mode, one core
is dedicated to communication and other for computa-
tion. In the VN mode, both cores are used for compu-
tation. 3D torus network is the primary communication
network in BG/L. We have experimented on maximum
of 1024 cores on BG/L.

4.2.2. IBM Blue Gene/P
Blue Gene/P (BG/P) [24] is the second generation

of Blue Gene supercomputers. Each node contains four
850 MHz PPC 450 processor cores with 4 GB of phys-
ical memory. BG/P supports three different application
execution modes – Symmetric Multi Processing (SMP)
mode, Dual mode and the VN mode. SMP mode sup-
ports one process per node with up to four threads
per process; Dual mode supports two processes per
node with up to two threads per process and VN mode
supports four single-threaded processes per node. The
communication network in BG/P is similar to BG/L.
We experimented on up to 8192 cores on BG/P.

4.2.3. WRF runtime setup
WRF-ARW version 3.3.2, was used for the experi-

ments. Parallel netCDF (PnetCDF) [14] was used for
performing I/O on BG/P. The split I/O option of WRF

was used on BG/L, where every process writes its own
data onto the disk. WRF was run in the VN mode on
BG/P in order to study the scalability issues while us-
ing higher number of MPI ranks. In all the simulations,
Kain–Fritsch convection parameterization, Thompson
microphysics scheme, RRTM long wave radiation,
Yonsei University boundary layer scheme, and Noah
land surface model were used. We experimented with
both low and high output frequencies for parallel I/O
on BG/P. The output frequency for BG/L simulations
was 1 h.

4.3. Improvement in execution time

In this section, we present the results on the perfor-
mance improvement on BG/L and BG/P using WRF
domains with varying nest sizes and varying number
of siblings.

4.3.1. Improvement in per-iteration time
The average and maximum performance improve-

ment in terms of decrease in the time required for the
integration step of WRF is 21.14% and 33.04%. This
is the overall improvement in the simulation perfor-
mance on 1024 cores (512 nodes in VN mode) on
BG/L from 85 configurations with nest sizes varying
from 178 × 202 to 394 × 418 and number of siblings
varying from 2–4. This improvement is due to the par-
allel execution of sibling domains on different subsets
of processors. However, it is important to note that the
default strategy of using all the processors for solving a
nest, can be beneficial if the application exhibits linear
or superlinear speedup.

Figure 8 shows the percentage improvement in ex-
ecution time, averaged over 30 different domain con-
figurations. The figure shows that the performance im-
provement is higher when the I/O times are also con-
sidered. This is because parallel NetCDF does not scale
well with increasing number of processors. In our ap-
proach, fewer number of processors output data for the
siblings, thereby the time to output data is lesser than
the default approach. It should be noted that for any
practical application, generation of output data is im-
portant for visualization and perceiving the simulation
output. Hence our approach proves beneficial for prac-
tical scenarios.

4.3.2. Improvement in communication time
The average and maximum percentage improvement

in MPI_Wait time is shown in Table 1. In WRF, the
simulations perform halo exchanges with 4 neighbour-
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Fig. 8. Performance improvement of execution time on up to 4096
BG/P cores including and excluding I/O times. (Colors are visi-
ble in the online version of the article; http://dx.doi.org/10.3233/
SPR-130367.)

Table 1

Average and maximum improvement in MPI_Wait times on BG/L
and BG/P

#Processors Average (%) Maximum (%)

1024 on BG/L 38.42 66.30

512 on BG/P 30.70 60.92

1024 on BG/P 36.01 60.11

2048 on BG/P 27.02 55.54

4096 on BG/P 28.68 43.86

ing processes. One of the reasons for the high wait
times observed in the default execution is due to the
high average number of hops between neighbouring
processes. However, in our case, since the siblings
are solved on smaller subset of processors, the aver-
age number of hops decreases resulting in lesser load
on the network. It also leads to lesser congestion and
smaller delay for point-to-point message transfer be-
tween neighbouring processes.

4.3.3. Improvement in sibling simulation time
WRF solves one parent time step followed by solv-

ing r nested time steps. Therefore, improving the per-
formance of nest solve time steps improves the over-
all performance of the application. In our approach we
simultaneously execute all the siblings as compared to
sequentially executing them one after the other. We il-
lustrate the benefit of this approach on the sibling inte-
gration times with the help of a domain configuration
which has 4 siblings at the first level. The sibling con-
figurations and the number of processors allocated to

Table 2

Sibling configurations for 4 siblings on BG/L

Sibling 1 Sibling 2 Sibling 3 Sibling 4

Nest size 394 × 418 232 × 202 232 × 256 313 × 337

#Processors 18 × 24 18 × 8 14 × 12 14 × 20

Fig. 9. Sibling execution times on 1024 processors on BG/L for
4 siblings. (Colors are visible in the online version of the article;
http://dx.doi.org/10.3233/SPR-130367.)

these siblings according to our partitioning strategy are
shown in Table 2. Figure 9 compares the nested exe-
cution times for this configuration. The first bar shows
the sibling times for the default serial execution. In this
case, the siblings take 0.4, 0.2, 0.2 and 0.3 s when ex-
ecuted sequentially on 1024 cores on BG/L. Since the
siblings are solved sequentially, the execution times
add up resulting in 1.1 s. In our parallel strategy, when
the siblings are solved on subset of processors, the
times taken are 0.7, 0.6, 0.6 and 0.7 s. The individual
sibling solve times have increased due to using fewer
than 1024 processors. However, since these are solved
concurrently, the overall time for nest solve step for the
4 siblings is 0.7 s in our approach and 1.1 s in the de-
fault approach, thereby resulting in 36% performance
gain for the sibling domains.

Our processor allocation strategy reduces the num-
ber of processors per sibling as compared to the de-
fault strategy. Hence if the nest sizes are large, the per-
formance improvement by executing the simulation on
fewer number of processors will be low. This is be-
cause the scalability of the larger domains reach sat-
uration at higher number of processors. Hence as we
increase the number of processors for the simulation,
the performance improvement will increase. We illus-
trate this with the help of a simulation configuration
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Fig. 10. Sibling execution times on up to 8192 processors on
BG/P. The legends on the rightmost side show the number of pro-
cessors. (Colors are visible in the online version of the article;
http://dx.doi.org/10.3233/SPR-130367.)

with 3 large siblings of sizes 586×643, 856×919 and
925 × 850. The performance improvement for differ-
ent number of processors and the nest execution times
for default sequential strategy and our approach are
shown in Fig. 10. The performance improvement on
1024 processors is only 1.33% because of higher satu-
ration limit for larger nests. As the number of proces-
sors is increased for the full simulation, the number of
processors allocated to the nests also increase. More-
over, the larger sibling domains reach saturation limit
much before 8192 processors and hence we observe a
performance improvement of 20.64% for 8192 proces-
sors.

4.3.4. Effect on varying sibling configurations
In this section we present results for varying num-

ber of sibling domains and varying sizes of sibling do-
mains.

Varying number of siblings. The more the number of
siblings, the longer will be the time taken per iteration
by the default approach because of sequential execu-
tion of the nests. In our approach since we concurrently
execute all the siblings, the number of siblings do not
affect the time if the maximum number of processors is
sufficiently high for the nest sizes. Hence we observe
that the average performance improvement for experi-
ments involving 2 siblings is 19.43% whereas the av-
erage improvement in execution time for experiments
involving 4 siblings is 24.22%.

Varying sibling sizes. The larger the nest sizes, the
higher will be the number of processors required to im-
prove performance. Hence we observe that with larger
nest sizes the performance improvement decreases as
shown in Table 3.

Table 3

Sibling configurations and performance improvement for varying
nest sizes on up to 8192 BG/P cores

Maximum nest size 205 × 223 394 × 418 925 × 820

% improvement 25.62 21.87 10.11

4.4. Improvement with topology-aware mapping

In this section, we present the performance improve-
ment achieved by the topology-aware mappings dis-
cussed in Section 3.3.2. Table 4 shows the execu-
tion times per iteration for the default strategy, the
topology-oblivious and topology-aware mappings on
1024 BG/L cores. The first three rows correspond to
2-sibling domain configuration, and the fourth and fifth
row correspond to 3-sibling and 4-sibling configura-
tions. We observe additional improvement of up to 7%
over the topology-oblivious mapping. It can be seen
that our mappings outperform the existing TXYZ map-
ping in Blue Gene.

The percentage improvement in execution times and
MPI_Wait times over the default strategy is illustrated
in Fig. 11(a) and (b), respectively. It can be noted that
the multi-level mapping is slightly better or almost
equal in performance as compared to the partition map-
ping. This is because even though partition mapping
does not optimize the parent simulation, as explained
in Section 3.3.2, the overall simulation is not adversely
affected because the nested simulations are executed r
times more than the parent simulations.

Table 5 shows the execution times per iteration
for the default strategy, the topology-oblivious and
topology-aware mappings for various sibling config-
urations on BG/P. The first two rows correspond to
4-sibling domain configuration and the third row cor-
responds to 3-sibling configuration. The multi-level
mapping performs almost similar to the partition map-
ping. This may be due to load imbalance in WRF.

Figure 12(a) illustrates the percentage improvement
in the MPI_Wait times and Fig. 12(b) illustrates the
reduction in the average number of hops over the de-
fault strategy. The MPI_Wait times decrease by more
than 50% on average for the topology-oblivious and
topology-aware mappings. The topology-aware map-
pings further decrease the wait times due to a 50% re-
duction in the average number of hops. This is due to
our efficient mapping heuristics that map the neigh-
bouring processes in the virtual topology to the neigh-
bouring torus nodes. The average number of hops for
the topology-oblivious mapping is the same as the de-
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Table 4

Execution times (s) for default, topology-oblivious and topology-aware mappings for various sibling configurations on BG/L

Default Topology-oblivious Partition mapping Multi-level mapping TXYZ mapping

2.77 2.25 2.10 2.07 2.12

3.69 3.08 2.95 2.92 2.95

3.43 2.89 2.72 2.72 2.83

4.98 3.92 3.72 3.72 3.99

4.75 3.53 3.39 3.33 3.44

Fig. 11. Percentage improvement with and without topology-aware
mapping on 1024 BG/L cores. (a) Percentage improvement in exe-
cution times. (b) Percentage improvement in MPI_Wait times. (Col-
ors are visible in the online version of the article; http://dx.doi.org/
10.3233/SPR-130367.)

fault execution because in both the cases, the default
mapping in BG/P is used. The increase in communica-
tion times for the default approach is due to increased
network congestion caused by more halo communica-
tions. We plan to explore other mapping/contention op-
timization algorithms as future work.

4.5. Effect on high-frequency output simulations

High resolution operational forecasts typically re-
quire forecast output very frequently. In order to simu-
late this scenario, we performed experiments with out-
put generated every 10 min of a simulation for all the
various regions of interest at the innermost level. We
present the results for high-frequency output simula-
tions. Figure 13(a)–(c) show the variation of per time-
step times for integration, I/O operations, and the total
time. The I/O time consists of time for writing output
files and processing the boundary conditions. The per
iteration integration time in Fig. 13(a) shows a steady
decreasing trend for both the default sequential and
the parallel versions until 4096 processors. The paral-
lel sibling version shows slightly better scaling behav-
ior in the range 4096–8192. However, in the case of
I/O performance, the parallel sibling case provides sig-
nificant reduction in I/O time. For the sequential ver-
sion, the per iteration I/O time steadily increases with
increasing number of processors. The effect of I/O per-
formance on the total times is clearly seen in the rela-
tive ratios of integration and I/O times in Fig. 14. This
observation suggests that PnetCDF has scalability is-
sues as the number of MPI ranks increases and could
be a real bottleneck in scaling high resolution weather
forecasting simulations. In the parallel execution case,
only a subset of the MPI ranks take part in writing out a
particular output file and thus, this results in better I/O
performance. Since the I/O times remain a relatively
low fraction of the total time, the parallel execution of
sibling nests shows better scalability for the total per
iteration time as shown in Fig. 13(c).

4.6. Efficiency of our processor allocation and
partitioning strategy

Our performance prediction model coupled with the
partitioning algorithm improves the performance by
8% as compared to a naïve strategy of subdividing the
processor space into consecutive rectangular chunks
based on the total number of points in the sibling.
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Table 5

Execution times (s) for default, topology-oblivious and topology-aware mappings on 4096 BG/P cores

Default Topology-oblivious Partition mapping Multi-level mapping

5.43 3.94 3.92 3.93

5.65 4.20 4.1 4.1

5.61 4.39 4.28 4.39

Fig. 12. Improvement in MPI_Wait times and average number of
hops with and without topology-aware mapping on 4096 BG/P
cores. (a) Percentage improvement in MPI_Wait times. (b) Reduc-
tion in average number of hops. (Colors are visible in the online ver-
sion of the article; http://dx.doi.org/10.3233/SPR-130367.)

We experimented with a 4-sibling domain configura-
tion, whose default execution time is 4.49 s per itera-
tion. The naïve strategy decreases the execution time
to 4.08 s, achieving 9% improvement whereas our al-
gorithm decreases the execution time to 3.72 s, thereby
obtaining 17% improvement over the default strat-
egy.

4.7. Scalability and speedup

We executed a simulation with two sibling nests of
259 × 229 size for the default sequential approach
and our simultaneous execution approach, varying the
number of processors from 32 to 1024. Figure 15
shows the scalability and speedup curves. Both the
approaches have similar scalability saturation limits.
However, our approach exhibits lower execution times
for all processor sizes. Our strategy of simultaneous
executions of siblings shows better speedup than the
default sequential strategy at a higher number of pro-
cessors. This is because the simulation stops scaling
beyond 700 processors. Hence, increasing the number
of processors for the siblings proves less useful than
solving the siblings simultaneously on smaller sub-
set of processors. For lower number of processors, the
speedup for both the approaches is almost the same.
This is because the simulation reaches saturation limit
at higher number of processors. Hence solving them
sequentially on the full set of processors gives equal
performance as solving them concurrently on subsets
of processors.

5. Discussion

Though we focussed on weather applications, the
algorithms developed in this work can improve the
throughput of applications with multiple simultane-
ous simulations within a main simulation, for exam-
ple crack propagation in a solid using LAMMPS [13].
Multiple cracks can be simultaneously atomistically
simulated within a continuum simulation domain. This
methodology can also be applied to nested high-
resolution coastal circulation modeling using
ROMS [19].

6. Conclusions and future work

In this paper, we presented a comprehensive scheme
to optimize weather simulations involving multiple
nested regions of interest. We show that the perfor-
mance of such weather simulations can be improved
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Fig. 13. Variation of integration, I/O, and total per iteration times with number of processors on BG/P. (a) Integration time per iteration. (b) I/O
time per iteration. (c) Total time per iteration. (Colors are visible in the online version of the article; http://dx.doi.org/10.3233/SPR-130367.)

Fig. 14. Variation of fraction of integration and I/O times aver-
aged over all the different configurations vs. number of processors
on BG/P. (Colors are visible in the online version of the article;
http://dx.doi.org/10.3233/SPR-130367.)

by allocating subsets of processors to each region of
interest instead of the entire processor space. We de-
veloped a linear interpolation based performance pre-
diction model which predicts the execution times with
low error. Our processor allocation scheme based on
Huffman tree construction and recursive bisection out-
performs a naïve proportional allocation by 8% with
respect to the total execution time. We developed 2D
to 3D mapping heuristics that take into consideration
communication in the nested simulations as well as the
parent simulation. We achieve up to 33% improvement
in performance with up to an additional 7% improve-
ment with our topology-aware mapping heuristics. Our
topology-oblivious and topology-aware mappings re-

Fig. 15. Scalability and speedup of default sequential strategy and
our concurrent execution approach. (Colors are visible in the online
version of the article; http://dx.doi.org/10.3233/SPR-130367.)

duce the communication times by a maximum of 66%.
To the best of our knowledge, ours is the first work
which optimizes the parallel execution of weather sim-
ulations involving multiple nested regions of interest.

In the current work, we experimented with topology-
aware mappings for foldable mappings. In future, we
plan to extend the mapping heuristics for non-foldable
mappings as well as develop novel schemes for the 5D
torus topology of Blue Gene/Q system. We also plan to
simultaneously steer these multiple nested simulations.
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