
Scientific Programming 21 (2013) 43–61 43
DOI 10.3233/SPR-130362
IOS Press

Template metaprogramming techniques for
concept-based specialization

Bruno Bachelet a,b,∗, Antoine Mahul c and Loïc Yon a,b

a Clermont Université, Université Blaise Pascal, LIMOS, BP 10448, F-63000 Clermont-Ferrand, France
b CNRS, UMR 6158, LIMOS, F-63171 Aubière, France
c Clermont Université, Université Blaise Pascal, CRRI, F-63000 Clermont-Ferrand, France

Abstract. In generic programming, software components are parameterized on types. When available, a static specialization
mechanism allows selecting, for a given set of parameters, a more suitable version of a generic component than its primary
version. The normal C++ template specialization mechanism is based on the type pattern of the parameters, which is not always
the best way to guide the specialization process: type patterns are missing some information on types that could be relevant to
define specializations.

The notion of a concept, which represents a set of requirements (including syntactic and semantic aspects) for a type, is known
to be an interesting approach to control template specialization. For many reasons, concepts were dropped from C++11 standard,
this article therefore describes template metaprogramming techniques for declaring concepts, modeling relationships (meaning
that a type fulfills the requirements of a concept), and refinement relationships (meaning that a concept refines the requirements
of another concept).

From a taxonomy of concepts and template specializations based on concepts, an automatic mechanism selects the most
appropriate version of a generic component for a given instantiation. Our purely library-based solution is also open for retroactive
extension: new concepts, relationships, and template specializations can be defined at any time; such additions will then be picked
up by the specialization mechanism.

Keywords: Generic programming, template specialization, concept-based overloading/specialization, template metaprogramming

1. Introduction

Generic programming focuses on providing param-
eterized software components, notably algorithms and
data structures, as general as possible and broadly
adaptable and interoperable [14], and as efficient as
non-parameterized components. Generic programming
relies on the notion of a generic component that is a
class, a function, or a method with parameters that are
types or static values, instead of dynamic values as the
usual arguments of functions and methods.

With modern compilers, no loss of efficiency oc-
curs when the parameters of a generic component
are bound at compile time, which makes generic pro-
gramming particularly adapted for scientific program-
ming (e.g., [4,5,15,17,21]). When designing scientific
libraries with generic programming, template special-
ization is a major concern as it allows assembling com-

*Corresponding author. Tel.: +33473405044; bruno.bachelet@
univ-bpclermont.fr.

ponents together at compile-time in an optimal man-
ner, for instance, selecting the most appropriate code
for an algorithm based on the types bound to its tem-
plate parameters.

The normal C++ template specialization mechanism
is based on the type pattern of the template parameters,
which is known to have many drawbacks. In this arti-
cle, we propose a solution based on metaprogramming
techniques to control template specialization with con-
cepts. It enables declaring a taxonomy of concepts that
can be used to control template specialization: tem-
plate parameters are constrained by concepts (instead
of type patterns) to define a specialization. At instantia-
tion time, an automatic mechanism selects the most ap-
propriate version of a generic component based on the
concepts of the types bound to the template parameters.

1.1. Template specialization

Similar to inheritance in object-oriented program-
ming, which allows the specialization of classes, C++

1058-9244/13/$27.50 © 2013 – IOS Press and the authors. All rights reserved

44 B. Bachelet et al. / Template metaprogramming techniques for concept-based specialization

provides a mechanism to specialize generic compo-
nents (called templates). At instantiation time, the
compiler selects a version, the primary or a special-
ized one, of a template based on the type pattern of the
types (or static values) bound to the parameters. Here is
a C++ example of a generic class, ArrayCompara-
tor, that allows comparing two arrays that contain N
elements of type T.

template <class T, int N>
class ArrayComparator {
public:
static int
run(const T * a, const T * b) {
int i = 0;
while (i<N && a[i]==b[i]) ++i;
return
(i==N ? 0 : (a[i]<b[i] ? -1 : 1));

}
};

The comparison of arrays of characters is presum-
ably more efficient using a built-in function. Therefore,
a specialization of the template with T = char can be
provided.

template <int N>
class ArrayComparator<char,N> {
public:
static int
run(const char * a, const char * b)
{ return memcmp(a,b,N); }

};

1.2. Concepts

In generic programming, instantiating a generic
component raises two concerns: (i) how to ensure that
a type bound to a parameter fulfills the requirements of
the generic component (e.g., any type bound to T must
provide operators < and == in the ArrayCompara-
tor class); (ii) how to select the most appropriate spe-
cialization of the generic component for a given bind-
ing of the parameters (e.g., if type char is bound
to parameter T, then specialization ArrayCompara-
tor<char,N> is selected; but how to make another
type benefit from the same specialization).

To address these issues, the notion of a concept has
been introduced [3]. When a type is bound to a param-
eter of a generic component, it must satisfy a set of
requirements represented by a concept. These require-
ments define syntactic constraints (i.e., on the interface
of the type) and semantic constraints (i.e., on the be-
havior of the type). When a type fulfills the require-
ments of a concept, it is said that the type “models” the

concept. The notion of a specialization between con-
cepts is called “refinement”: a concept that includes the
requirements of another concept is said to refine this
concept.

For instance, let us define the concept Integral
that captures the requirements of an integral number,
and the concept Numerical that captures the require-
ments of any kind of number. One can state that type
int models concept Integral, and concept Inte-
gral refines concept Numerical.

1.3. Challenges with concepts

Concern (i) of the previous section is called “con-
cept checking” [18], and its goal is to detect the types
bound to the parameters of a generic component that
do not model the required concepts. A concept acts like
a contract between the users and the author of a generic
component: the author specifies requirements on the
parameters using concepts, and the users must bind the
parameters to types that fulfill these requirements (i.e.,
to types that model the specified concepts).

In C++, concepts can not be defined explicitly, and
for now, they are only documentation (e.g., Standard
Template Library). This leads to late error detections,
and thus to cryptic error messages [18]: for instance,
let us declare the instantiation ArrayCompara-
tor<X,10>; if type X has no operator <, the error will
be detected in method run, and not at the instantiation
point. In some languages, specific features are used to
support concepts for generic programming (e.g., type
classes in Haskell, deferred classes in Eiffel . . . [8]).

In Java and C#, concepts are represented with in-
terfaces, but this approach restricts concepts to syntac-
tic requirements. Moreover, concepts bring more flex-
ibility, because a type is not predestined to model any
given concept. A type models a concept either implic-
itly (it fulfills automatically all the requirements of a
concept, cf. “auto concepts” [9]), or explicitly (one has
to declare the modeling relationship and to make ex-
plicit how the type fulfills the requirements, cf. “con-
cept maps” [9]).

Concern (ii) of the previous section usually deals
with “concept-based overloading” [11], as generic pro-
gramming in C++ has a central notion of generic al-
gorithms where function template specialization is es-
sential. In this article, we propose a solution for the
specialization of both function and class templates, so
we choose to use the term “concept-based specializa-
tion”. This approach uses the partial specialization ca-
pability of templates that is only available for classes
in C++. Therefore, this solution is basically designed

B. Bachelet et al. / Template metaprogramming techniques for concept-based specialization 45

for class template specialization, but is fully usable for
function template specialization (as explained in Sec-
tion 3.2, the specialization process of a function tem-
plate can be easily delegated to a class template).

The goal of concept-based specialization is to con-
trol the specialization of generic components with
concepts rather than type patterns. By type pattern,
we mean a type or a parameterized type (e.g., T*
or vector<T>), or a template template parameter
[23] (e.g., template <class> class U). Spe-
cialization based on type patterns can lead to ambigui-
ties (the compiler cannot decide between two possible
specializations) or false specializations (the compiler
selects an unintended specialization), as explained in
Section 2. Furthermore, the extensibility of specializa-
tion based on type patterns is limited: to control the
specialization of a template for a new type (i.e., a type
that was not considered in the specialization process
before), a new specialization often needs to be defined
(unless the type already matches the type pattern of a
suitable specialization).

Several attempts have been made to represent con-
cepts in C++. On one hand, implementations for con-
cept checking have been proposed, mainly to ensure in-
terface conformance of types bound to template param-
eters [16,18]. On the other hand, an implementation for
concept-based specialization has been proposed [13].
In this solution, the specialization is based on both the
SFINAE (substitution failure is not an error) principle
[2] and a mechanism to answer the question “does type
T model concept C?” (through the enable_if tem-
plate). However this approach may still lead to ambi-
guities.1

More recently, an extension of the C++ language
to support concepts [7,9] has been proposed to be in-
cluded into the C++ standard [10]. This extension is
available within the experimental compiler Concept-
GCC [9,12], and is also implemented as Concept-
Clang in Clang, a C language family front-end for the
LLVM compiler [22]. The inclusion of concepts has
been deferred from C++11 standard, and a new exten-
sion, Concepts Lite [20], has been designed and im-
plemented as a branch of GCC 4.8. This extension in-
troduces “template constraints”, a.k.a. “concepts lite”,
which is a subset of concepts that allows the use of
predicates to constrain template parameters. It is un-
deniably an improvement on existing solutions to con-
trol template specialization, but concepts lite can not

1As explained in Boost documentation: http://www.boost.org/
doc/libs/release/libs/utility/enable_if.html.

be considered to be full concepts, as some features are
missing. The long-term goal of this extension is to pro-
pose a complete definition of concepts.

A library-based emulation of C++0x concepts,
called the Origin Concept library, has also been devel-
oped based on new features of C++11 [19]. The pri-
mary goal of this solution is to provide a uniform inter-
face to defining and using concepts, but no new tech-
nique is proposed for concept-based specialization as
it favors the Boost’s enable_if approach [13].

1.4. Proposal

In this article, a solution focused on the concept-
based specialization aspect only is proposed. Due to
portability concerns, our goal is to provide a purely
library-based solution that could be used with any stan-
dard C++ compiler, and no need of an additional tool.
The proposed technique enables declaring concepts,
modeling relationships, and refinement relationships.
Once a taxonomy of concepts has been declared, it can
be used to control the specialization of templates: to
define a specialization, concepts (instead of type pat-
terns) are used to constrain parameters. At instantia-
tion time, the most appropriate version of a template is
selected based on the concepts modeled by the types
bound to the parameters: a metaprogram determines,
for each one of these types, the most specialized con-
cept to consider for this instantiation.

Even if the proposed technique does not detect di-
rectly concept mismatches to provide more under-
standable error messages, it needs to perform some
checking on concepts to lead the specialization pro-
cess. The checking is only based on “named confor-
mance” [16] (i.e., checking on whether a type has
been declared to model a given concept), and does not
consider “structural conformance” (i.e., checking on
whether a type implements a given interface).

One key idea of generic programming is to express
components with minimal assumptions [14], therefore
our solution is open for retroactive extension:

• A new concept or a new relationship (model-
ing or refinement) can be declared at any time.
The declaration of such relationships is distinct
from the definition of types and concepts, con-
trary to class inheritance and interface implemen-
tation that have to be declared with the definition
of classes.

• A new specialization based on concepts can be
defined at any time, but only for templates that
have been prepared for concept-based specializa-
tion.

46 B. Bachelet et al. / Template metaprogramming techniques for concept-based specialization

Section 2 discusses several issues encountered with
template specialization, and shows how concepts can
be used to bypass most of them. Section 3 presents
template metaprogramming techniques for concept-
based specialization, and an example using our library-
based solution. Section 4 reports the compile-time per-
formance of the library depending on the number of
concepts and the number of relationships (modeling
and refinement) declared in a program. The full source
code of the library and of the examples is available for
download.2

2. Issues with template specialization

This section presents several issues that may occur
with template specialization based on type patterns,
and how they can be addressed with concepts:

(i) Some types that can be considered somehow sim-
ilar (e.g., with a common subset of operations in their
interface) could be bound to the same specialization of
a template, but if they have no type pattern in common,
several specializations must be defined.

(ii) A specialization based on type patterns may lead
to false specialization (i.e., an unintended specializa-
tion), because a type pattern can be insufficient to cap-
ture the requirements that a template needs for a pa-
rameter.

Existing solutions, proposed by McNamara and
Smaragdakis [16] and Järvi et al. [13], that use con-
cepts to control template specialization in C++ are dis-
cussed in this section. Refinement relationships appear
to be necessary to address another issue:

(iii) A type can possibly be bound to different spe-
cializations of a template, when it models concepts that
constrain different specializations. If there is no clear
ordering between these concepts, to choose one spe-
cialization is not possible.

The solution presented in this paper allows concept-
based specialization for both function and class tem-
plates, but it is basically designed for class template
specialization, because, as detailed in Section 3, it uses
the partial specialization capability of templates that
is not available for functions. However, concept-based
overloading can easily be enabled: the function tem-
plate to be specialized calls a static method of a class
template where the whole specialization process is de-
fined with our approach (cf. Section 3.2 for details).
Therefore, the discussion in this paper is illustrated
with an example of class template specialization.

2Source code is available at: http://forge.clermont-universite.fr/
projects/show/cpp-concepts.

2.1. Specialization based on type patterns

As an example, we propose to develop a generic
class, Serializer, to store the state of an object
into an array of bytes (the “deflate” action), or to re-
store the state of an object from an array of bytes (the
“inflate” action). The primary version of the template,
which makes a bitwise copy of an object in memory, is
defined as follows.

template <class T> class Serializer {
public:
static int
deflate(char * copy, const T & object);
static int
inflate(T & object, const char * copy);

};

This version should not be used for complex objects,
such as containers, where the internal state may have
pointers that should not be stored (because these ver-
sions of the deflate and inflate actions would lead to
memory inconsistency after restoring). Let us define a
specialized version of Serializer for the sequence
containers of the STL (Standard Template Library),
such as vectors and lists.

template
<class T, class ALLOC,
template <class,class> class CONTAINER>

class Serializer< CONTAINER<T,ALLOC> > {
public:
static int
deflate(char * copy, const

CONTAINER<T,ALLOC> & container);
static int
inflate(CONTAINER<T,ALLOC> & container,

const char * copy);
};

For this specialization, parameter CONTAINER is
constrained with the type pattern of the STL sequence
containers: they are generic classes with two parame-
ters, the type T of the elements to be stored, and the
type ALLOC of the object used to allocate elements.

Now, let us consider associative containers of the
STL, such as sets and maps. Their type pattern is dif-
ferent from the one of sequence containers (they have
at least one more parameter COMP to compare ele-
ments), whereas sequence and associative containers
have a common subset of operations in their interface
that should allow defining a common specialization of
Serializer. However, as specialization is based on
type pattern for now, another specialization of Seri-
alizer is necessary.

B. Bachelet et al. / Template metaprogramming techniques for concept-based specialization 47

Fig. 1. Taxonomy of concepts for the serialization example.

template <class T, class COMP,
class ALLOC,
template <class,class,class>
class CONTAINER>

class
Serializer< CONTAINER<T,COMP,ALLOC> >
{ [...] };

Notice that this specialization of Serializer is
only suitable for sets, and not for maps, because their
type pattern is different: maps have an additional pa-
rameter K for the type of the keys associated with the
elements of the container. The specialization Seri-
alizer< CONTAINER<K, T, COMP, ALLOC> >
is necessary for maps, whereas maps and sets have
a common subset of operations in their interface and
should share the same specialization.

The specialization for sets has been written hav-
ing only STL associative containers in mind, but any
type matching the same type pattern can be bound to
the specialization. Thus, there could be an unintended
match. For instance, the std::string class of the
C++ standard library is an alias for a type that matches
the type pattern of sets:

std::basic_string< char,
std::char_traits<char>,
std::allocator<char> >

The first two issues presented in the introduction of
the section have been illustrated here. They could be
addressed with concepts:

(i) “Similar” types (i.e., sharing a common subset of
features) could model the same concept, and a special-
ization for this concept could be defined. Therefore,
“similar” types with different type patterns could be
bound to the same specialization.

(ii) Concepts could avoid false specialization: with
template specialization based on concepts, any tem-
plate parameter could be constrained by a concept, and
only types that model this concept could be bound to
the parameter. This way, only the types that satisfy the
requirements of a specialization could be considered.

For the example of serialization discussed here,
Fig. 1 proposes concepts and their relationships. The
SingleObject and STLContainer concepts are
defined to provide two specializations for Serial-
izer: one based on bitwise copy, and another one
based on the common subset of operations shared by
all STL containers, respectively. As sequence and asso-
ciative containers are of different natures, one can think
of different ways of optimizing the serialization opera-
tions. For this reason, the STLContainer concept is
refined into the STLSequence and STLAssocia-
tive concepts to provide specializations of Seri-
alizer for sequence containers and associative con-
tainers respectively.

2.2. Specialization based on concepts

Existing solutions for concept-based specialization
in C++ [13,16] are discussed here. They use concepts

48 B. Bachelet et al. / Template metaprogramming techniques for concept-based specialization

to guide the specialization of templates, and enable ad-
dressing the two first issues presented in the introduc-
tion of the section. However, about the third issue, that
is to find the most appropriate specialization when a
type can possibly be bound to several specializations,
the solutions presented here are not fully satisfactory.

2.2.1. Concept-based dispatch
The solution of McNamara and Smaragdakis [16]

implements concepts with “static interfaces” in C++,
and proposes a “dispatch” mechanism to control tem-
plate specialization with concepts. The solution is
based on the StaticIsA template that provides some
concept checking: StaticIsA<T,C>::valid is
true if T models concept C. Let us assume that
StaticIsA answers accordingly to the taxonomy of
concepts of Fig. 1 (see the source code for details).
Here is an example of the dispatch mechanism for the
specialization of the Serializer generic class.

enum { IS_SINGLE_OBJECT, IS_STL_CONTAINER,
IS_STL_SEQUENCE,
IS_STL_ASSOCIATIVE, UNSPECIFIED };

template <class T> struct Dispatcher {
static const int which
= StaticIsA<T,STLAssociative>::valid ?
IS_STL_ASSOCIATIVE
: StaticIsA<T,STLSequence>::valid ?
IS_STL_SEQUENCE
: StaticIsA<T,STLContainer>::valid ?
IS_STL_CONTAINER
: StaticIsA<T,SingleObject>::valid ?
IS_SINGLE_OBJECT
: UNSPECIFIED;

};

template <class T>
struct ErrorSpecializationNotFound;

template
<class T, int = Dispatcher<T>::which>
class Serializer
: ErrorSpecializationNotFound<T> {};

template <class T>
class Serializer<T,IS_SINGLE_OBJECT>
{ [...] };
template <class T>
class Serializer<T,STL_CONTAINER>
{ [...] };
template <class T>
class Serializer<T,STL_SEQUENCE>
{ [...] };
template <class T>
class Serializer<T,STL_ASSOCIATIVE>
{ [...] };

The Dispatcher template goes through all the
concepts (in a well-defined order) until its parameter
T models a concept. The symbolic constant associated
with the found concept is stored in the which attribute
of Dispatcher. For instance, Dispatcher<
vector<int> >::which is equal to IS_STL_
SEQUENCE.

Compared to the version of the Serializer tem-
plate based on type patterns, there is an additional pa-
rameter with a default value that is the answer of the
dispatcher for parameter T. This value is used rather
than the type pattern of T to define the specializations
of Serializer. This way, it is possible to provide a
specialization for any concept. For instance, Serial-
izer< vector<int> > instantiates in fact Seri-
alizer< vector<int>, IS_STL_SEQUENCE >
and matches the specialization for the STLSequence
concept.

Notice that the primary version of the template in-
herits from a class that is only declared, the aim being
that this version could not be instantiated. This way,
compilation errors related to the fact that T has been
instantiated with a wrong type occurs at the instantia-
tion of Serializer, rather than inside the code of
Serializer where it tries to call invalid operations
on T. This solution avoids usual error messages that
could be cryptic for the user [18].

In this solution, a dispatcher (and dispatch rules)
is defined for nearly each context of specialization
(i.e., for each template that is specialized), which can
quickly become tedious. A dispatcher can be reused,
but only between specialization contexts that are iden-
tical (i.e., providing specializations based on the same
concepts). Moreover, to define a new specialization for
a template implies to change its dispatch rules. A solu-
tion where the dispatch rules, for each context of spe-
cialization, are automatically deduced from the mod-
eling and refinement relationships of the taxonomy of
concepts should be provided.

2.2.2. Concept-based overloading
The solution proposed by Järvi et al. [13] relies on

the enable_if template, which can be found in the
Boost Library [1], and the SFINAE (substitution fail-
ure is not an error) principle [2], to provide some con-
trol on template specialization with concepts. The def-
inition of enable_if is recalled here.

template <bool B, class T = void>
struct enable_if_c { typedef T type; };

B. Bachelet et al. / Template metaprogramming techniques for concept-based specialization 49

template <class T>
struct enable_if_c<false,T> {};

template <class COND, class T = void>
struct enable_if
: enable_if_c<COND::value,T> {};

At instantiation time, if B is true, there is a nested
type type inside enable_if_c, and thus inside
enable_if, if its parameter COND has an attribute
value set to true. Let us assume that, for each con-
cept C of the taxonomy of Fig. 1, a template is_C<T>
is defined so is_C<T>::value is true if T models
concept C (see the source code for details). Here is an
example of the use of enable_if for the specializa-
tion of the Serializer generic class.

template <class T, class = void>
class Serializer
: ErrorSpecializationNotFound<T> {};

template <class T> class
Serializer<T, typename

enable_if< is_SingleObject<T> >
::type>

{ [...] };

template <class T> class
Serializer<T, typename

enable_if< is_STLContainer<T> >
::type>

{ [...] };

template <class T> class
Serializer<T, typename

enable_if< is_STLSequence<T> >
::type>

{ [...] };

template <class T> class
Serializer<T, typename

enable_if<
is_STLAssociative<T> >

::type>
{ [...] };

The SFINAE principle is: if there is an error when
binding types to the parameters of a template special-
ization, this specialization is discarded. For instance,
the instantiation Serializer< vector<int> >
implies an attempt to instantiate Serializer<
vector<int>, typename enable_if< is_
SingleObject< vector<int> > >::type>,3

and because enable_if has no member type in this

3typename is necessary in C++ to declare that the member
type is actually a type and not a value.

case, the specialization for concept SingleObject
is ignored.

This solution keeps only the specializations con-
strained with a concept modeled by the type bound
to T. If more than one specialization remain, the com-
piler has to deal with an ambiguity: for instance,
vector<int> models both STLContainer and
STLSequence concepts. This ambiguity could be
avoided: concept STLSequence is more specialized
than concept STLContainer, so the specialization
for STLSequence should be selected.

2.2.3. Conclusion
In this section, solutions have been presented to con-

trol template specialization with concepts. Concept-
based dispatch allows considering refinement relation-
ships, but the selection of the specialization is not au-
tomatic and requires some specific code for each con-
text of specialization. At the opposite, concept-based
overloading allows an automatic selection of the spe-
cialization, but is not able to deal with ambiguities that
could be avoided considering refinement relationships.

3. A solution for concept-based specialization

Concepts appear to be better suited than type pat-
terns to control template specialization, but to our
knowledge, there is no solution that addresses all the
issues brought up in the previous section. We propose
here template metaprogramming techniques that en-
able defining a taxonomy of concepts, and using this
taxonomy to automatically select the most appropriate
specialization of a template.

Two main goals have guided our choices toward this
library-based solution: to provide a fully portable C++
code (meaning that we do not want to modify the C++
language itself, and to provide an extra tool to prepro-
cess the code), and to be open for retroactive extension
(new concepts, relationships, and template specializa-
tions can be defined at any time).

3.1. Example

Let us consider the example of the Serializer
generic class with our solution. In a first step, the tax-
onomy of concepts of Fig. 1 is defined: concepts and
relationships (modeling and refinement) are declared.
Then, the Serializer template is defined: first its
primary version, and then its specializations for each
concept. Details on the implementation of the library
are presented afterward.

50 B. Bachelet et al. / Template metaprogramming techniques for concept-based specialization

Concepts declaration
gnx_declare_concept(SingleObject);
gnx_declare_concept(ComplexObject);
gnx_declare_concept(STLContainer);
gnx_declare_concept(STLSequence);
gnx_declare_concept(STLAssociative);

Modeling and refinement relationships
template <> struct gnx_models_concept<char,SingleObject> : gnx_true {};
template <> struct gnx_models_concept<int,SingleObject> : gnx_true {};
template <> struct gnx_models_concept<float,SingleObject> : gnx_true {};

template <class T>
struct gnx_models_concept<std::vector<T>,STLSequence> : gnx_true {};

template <class T>
struct gnx_models_concept<std::list<T>,STLSequence> : gnx_true {};

template <class T>
struct gnx_models_concept<std::set<T>,STLAssociative> : gnx_true {};

template <class K, class T>
struct gnx_models_concept<std::map<K,T>,STLAssociative> : gnx_true {};

template <>
struct gnx_models_concept<STLContainer,ComplexObject> : gnx_true {};

template <>
struct gnx_models_concept<STLSequence,STLContainer> : gnx_true {};

template <>
struct gnx_models_concept<STLAssociative,STLContainer> : gnx_true {};

Template primary version
struct SerializerContext;

template <class T,class = gnx_best_concept(SerializerContext,T)>
class Serializer : ErrorSpecializationNotFound<T> {};

Template specialized versions
template <>
struct gnx_uses_concept<SerializerContext,SingleObject> : gnx_true {};

template <class T> class Serializer<T,SingleObject> { [...] };

template <>
struct gnx_uses_concept<SerializerContext,STLContainer> : gnx_true {};

template <class T> class Serializer<T,STLContainer> { [...] };

template <>
struct gnx_uses_concept<SerializerContext,STLSequence> : gnx_true {};

template <class T> class Serializer<T,STLSequence> { [...] };

template <>
struct gnx_uses_concept<SerializerContext,STLAssociative> : gnx_true {};

template <class T> class Serializer<T,STLAssociative> { [...] };

B. Bachelet et al. / Template metaprogramming techniques for concept-based specialization 51

Concepts are declared using macro gnx_
declare_concept. The modeling and refinement
relationships are equally declared using metafunc-
tion gnx_models_concept. To control the special-
ization, a “specialization context” must be declared
(SerializerContext in our example). Each spe-
cialization of Serializer based on a concept must
be declared and associated with the specialization
context SerializerContext, using metafunction
gnx_uses_concept. The most appropriate con-
cept for a type bound to parameter T is automatically
determined by the gnx_best_concept macro and
stored in an additional parameter of the Serial-
izer template, enabling template specialization based
on this parameter.

3.2. Concept-based overloading

Our solution uses the partial specialization capa-
bility of templates that is not available for functions
in C++. However, concept-based overloading of func-
tions is possible with very few extra code. For instance,
let us define function inflate that calls the in-
flate static method of Serializer; this function
benefits indirectly of the concept-based specialization
of the class:

template <class T>
inline int
inflate(T & object, const char * copy)
{ return
Serializer<T>::inflate(object,copy); }

3.3. Metafunctions

Some fundamental metafunctions are necessary to
implement our library. These generic classes are com-
mon in metaprogramming libraries (e.g., in the Boost
MPL Library). A metafunction acts similarly to an or-
dinary function, but instead of manipulating dynamic
values, it deals with metadata, meaning entities that
can be handled at compile time in C++: mainly types
and static integer values [1]. In order to manipulate
equally types and static values in metafunctions, meta-
data are embedded inside classes, as follows.4

4We chose to prefix all the metafunctions and macros of our li-
brary with “gnx_”. We also chose to use our own metafunctions
instead of the ones of MPL for two reasons: we only need few of
them and we want to be able to easily change their implementation
to optimize the compile time.

template <class TYPE>
struct gnx_type { typedef TYPE type; };

template <class TYPE, TYPE VALUE>
struct gnx_value
{ static const TYPE value = VALUE; };

typedef gnx_value<bool,true> gnx_true;
typedef gnx_value<bool,false> gnx_false;

Template gnx_type<T> represents a type and
provides a type member type that is T itself. The
same way, template gnx_value<T,V> represents a
static value and provides an attribute value that is the
value V of type T. Based on template gnx_value,
types gnx_true and gnx_false are defined to rep-
resent the boolean values.

The parameters of a metafunction, which are the pa-
rameters of the template representing the metafunc-
tion, are assumed to be metadata (i.e., to be classes
with a member type or value). The “return value”
of a metafunction is implemented with inheritance: the
metafunction inherits from a class representing a meta-
data. This way the metafunction itself has a member
type or value, and can be a parameter of another
metafunction. Here are metafunctions necessary for
the discussion of this section.

template <class TYPE1, class TYPE2>
struct gnx_same : gnx_false {};

template <class TYPE>
struct gnx_same<TYPE,TYPE> : gnx_true {};

template
<class TEST, class IF, class ELSE,
bool = TEST::value>

struct gnx_if : ELSE {};

template
<class TEST, class IF, class ELSE>
struct gnx_if<TEST,IF,ELSE,true> : IF {};

Metafunctions usually need template specializa-
tion to fully implement their behavior. Metafunction
gnx_same determines whether two types are identi-
cal: gnx_same<T1,T2> inherits from gnx_true
if T1 and T2 are the same type, or from gnx_false
otherwise. Thus, the value returned by metafunction
gnx_same<T1,T2> is stored in its value attribute.
Metafunction gnx_if acts similarly to the common
if instruction: gnx_if<T,A,B> inherits from A if
T::value is true, or from B otherwise. If A and B
represent metadata, then gnx_if<T,A,B> inherits
the member nested in A or B.

52 B. Bachelet et al. / Template metaprogramming techniques for concept-based specialization

3.4. Declaring concepts

This section describes how concepts are represented
and automatically indexed in order to be manipulated
afterward by metafunctions that control concept-based
specialization. In our solution, an empty structure, de-
fined using macro gnx_declare_concept, rep-
resents a concept. For instance, struct STLCon-
tainer {}; declares concept STLContainer.

3.4.1. Typelists
Concepts also need to be stored in a container, in or-

der to be manipulated by metafunctions, for instance,
to determine the most appropriate concept for a tem-
plate specialization. Notably, the “typelist” technique
[2,6], based on metaprogramming, allows building a
static linked list to store types, and can be defined as
follows.

template <class CONTENT, class NEXT>
struct gnx_list {
typedef CONTENT content;
typedef NEXT next;
};

struct gnx_nil {};

Type gnx_nil represents “no type” (void is not
used, as it could be a valid type to be stored in a list),
and is used to indicate the end of a list. For instance,
to store the STLSequence and STLAssociative
concepts in a list:

typedef
gnx_list< STLSequence,

gnx_list<STLAssociative,
gnx_nil> > mylist1;

Common operations on linked lists can be defined
on typelists [2]. For instance, to add concept STLCon-
tainer in the previous list:

typedef gnx_list<STLContainer,mylist1>
mylist2;

However, typelists are too static for our needs: in the
previous example, list mylist1 cannot be modified
to add a type, so a new list mylist2 has to be cre-
ated instead. In the following section, a solution is pro-
posed to build a list of concepts that can be modified
at compile time to add new concepts, without changing
the identifier of the list. Typelists will nevertheless be
useful in our solution for several metafunctions where
operations for merging and searching lists of concepts
are necessary.

3.4.2. Indexing concepts
To design a list where concepts can be added at any

time, a mechanism for indexing the concepts is pro-
posed. The metafunction gnx_concept is defined: it
has one parameter that is an integer value, and it re-
turns the concept associated with this number. Adding
a concept to the list is performed by the specialization
of the metafunction.

template <int ID> struct gnx_concept
: gnx_type<gnx_nil> {};

template <> struct gnx_concept<1>
: gnx_type<STLContainer> {};
template <> struct gnx_concept<2>
: gnx_type<STLSequence> {};
[...]

Indexing the concepts by hand is not acceptable, so
a solution to get the number of concepts already in the
list is needed. For this purpose, a preliminary version
of the gnx_nb_concept metafunction is proposed.
It goes through all the concepts in the list by increasing
an index until finding gnx_nil.

template <int N = 0> struct gnx_nb_concept
: gnx_if< gnx_same<typename

gnx_concept<N+1>::type,
gnx_nil>,

gnx_value<int,N>,
gnx_nb_concept<N+1>

> {};

For an automatic indexing of the concepts, one
would use the return value of metafunction gnx_nb_
concept to determine the next index to assign to a
new concept.

template <> struct
gnx_concept<gnx_nb_concept<>::value+1>
: gnx_type<STLContainer> {};

template <> struct
gnx_concept<gnx_nb_concept<>::value+1>
: gnx_type<STLSequence> {};

[...]

However, this solution does not work, because using
gnx_nb_concept<> infers that gnx_concept
is instantiated from gnx_concept<0> to gnx_
concept<N+1>, where N is the number of in-
dexed concepts. Due to this fact, specializing gnx_
concept for STLContainer and STLSequence
in the previous example is not possible, because
gnx_concept<N+1> has already been instantiated
based on the primary version of gnx_concept. To

B. Bachelet et al. / Template metaprogramming techniques for concept-based specialization 53

eliminate this flaw, an additional parameter, called
here “observer”, is added to both metafunctions gnx_
concept and gnx_nb_concept.

template <int ID, class OBS = gnx_nil>
struct gnx_concept : gnx_type<gnx_nil> {};

template <class OBS, int N = 0>
struct gnx_nb_concept
: gnx_if< gnx_same<typename

gnx_concept<N+1,OBS>
::type, gnx_nil>,

gnx_value<int,N>,
gnx_nb_concept<OBS,N+1>

> {};

The idea is to provide a different observer each time
the concepts need to be counted to determine the next
index to assign to a new concept: the new concept itself
will be the observer. With this solution, counting the
concepts with observer OBS induces the instantiation
of gnx_concept<N+1,OBS>, so any specialization
for index N+1 with an observer other than OBS is still
possible. Finally, concepts are indexed as follows.

template <class OBS> struct
gnx_concept<gnx_nb_concept<STLContainer>

::value+1, OBS>
: gnx_type<STLContainer> {};

template <class OBS> struct
gnx_concept<gnx_nb_concept<STLSequence>

::value+1, OBS>
: gnx_type<STLSequence> {};

[...]

To declare a concept in a single and easy instruction,
as presented in the example at the start of the section,
the gnx_declare_concept macro is defined.

#define gnx_declare_concept(CONCEPT) \
struct CONCEPT {}; \

\
template <class OBS> struct \
gnx_concept<gnx_nb_concept< CONCEPT > \

::value+1, OBS> \
: gnx_type< CONCEPT > {}

To conclude, the gnx_nb_concept metafunc-
tion requires O(n) operations, where n is the num-
ber of concepts already declared in the program.
Hence, at compile time, indexing n concepts requires
O(

∑n
i=1 i) = O(n2) operations.

3.5. Modeling and refinement relationships

This section describes how modeling and refine-
ment relationships are represented to build a tax-
onomy of concepts, and presents several metafunc-
tions to get useful information from a taxonomy.
Modeling relationships, between a type and a con-
cept, and refinement relationships, between two con-
cepts, are declared equally in our solution with the
gnx_models_concept metafunction.

template <class TYPE_OR_CONCEPT,
class CONCEPT>

struct gnx_models_concept : gnx_false {};

The primary version of the template returns false,
and the relationships are declared through specializa-
tions of the template: if type X models concept C
(or concept X refines concept C), then specialization
gnx_models_concept<X,C> must return true.

template <> struct gnx_models_concept<X,C>
: gnx_true {};

Notice that gnx_models_concept provides an
answer for a direct relationship only. If a type T mod-
els a concept C1 that refines a concept C2, this meta-
function returns false for a relationship between T and
C2. Additional metafunctions, necessary in our solu-
tion to find any relationship between a type and a con-
cept (or between two concepts), are briefly presented
below (see the source code for details).

• Metafunction gnx_direct_concepts<X>
provides a list (using the typelist technique) of
all the concepts directly modeled by a type (or
refined by a concept) X. It goes through all the
concepts using their index, and checks whether X
models (or refines) each concept using metafunc-
tion gnx_models_concept. Assuming that to
retrieve a concept from its index (i.e., to call meta-
function gnx_concept) is a constant time oper-
ation, metafunction gnx_direct_concepts
requires O(n) operations, where n is the number
of concepts declared in the program.

• Metafunction gnx_all_concepts<X> pro-
vides a list of all the concepts directly or indi-
rectly modeled by a type (or refined by a con-
cept) X. It calls gnx_direct_concepts to
list the concepts directly related to X, and recur-
sively gets all the concepts related to each one
of the direct concepts. This metafunction requires
O(n2 + rn) operations, where r is the number of
modeling and refinement relationships declared

54 B. Bachelet et al. / Template metaprogramming techniques for concept-based specialization

in the program: at worst, all the n concepts are
asked for their direct concepts (i.e., a call to meta-
function gnx_direct_concepts), which re-
quires O(n2) operations; to build the final list, at
worst all the r relationships are considered, and
each time the list of the currently found concepts
is merged with the list of the newly found con-
cepts, which requires O(rn) operations (at worst
2n operations are necessary for the merging, as it
avoids duplicates).

• Metafunction gnx_matches_concept<X,C>
returns whether a type (or a concept) Xmodels (or
refines) a concept C, directly or indirectly. This
metafunction searches for C in the list of concepts
provided by metafunction gnx_all_concepts
and requires O(n2 + rn) operations: O(n2 + rn)
operations to build the list, and O(n) for the
search.

3.6. Specialization based on concepts

This section explains how to declare template spe-
cializations based on concepts and how the “best”
specialization is automatically selected at instantiation
time.

3.6.1. Declaring specializations
With our solution, controlling the specialization of

a template with concepts that constrain one of its pa-
rameters implies an additional parameter. In the exam-
ple, class Serializer has initially one parameter T,
and based on different concepts that types bound to T
might model, several specializations of Serializer
must be provided. For this purpose, an extra parameter
is added to Serializer.

template <class T, class
= gnx_best_concept(SerializerContext,T)>
class Serializer
: ErrorSpecializationNotFound<T> {};

This additional parameter is the most specialized
concept that a type bound to T models and that is
of interest for the specialization of Serializer.
This “best” concept is obtained using the gnx_best_
concept macro, which eases the call to metafunction
gnx_contextual_concept.

#define gnx_best_concept(CONTEXT,TYPE) \
typename \
gnx_contextual_concept<CONTEXT,TYPE> \
::type

Notice that metafunction gnx_contextual_
concept requires a “specialization context”, which is

a type that represents the context of a given template
specialization. Each template that uses specialization
based on concepts requires its own context.

There are two main reasons for this notion of a spe-
cialization context: (i) as seen previously, metafunction
gnx_nb_concept, called by many metafunctions,
requires an observer to perform correctly and to allow
defining new concepts at any time, and this observer
will be the specialization context; (ii) as explained in
the next section, it is necessary to known which con-
cepts are of interest for a given specialization context
(i.e., which concepts are involved in the specialization
control), and we want a library-based solution compli-
ant with the C++ standard, so each one of these con-
cepts must be associated with the context using the
gnx_uses_concept metafunction.

template <> struct
gnx_uses_concept<SerializerContext,

STLContainer>
: gnx_true {};

In our example, the SerializerContext con-
text has been declared for the specialization of Seri-
alizer. Among others, concept STLContainer is
used to define a specialization of Serializer, so
gnx_uses_concept is specialized (the same way
as gnx_models_concept) to specify that concept
STLContainer is used in the SerializerCon-
text context.

3.6.2. Selecting the best specialization
Based on the list of concepts declared in a special-

ization context, and a taxonomy of concepts, meta-
function gnx_contextual_concept determines
the “best” concept for a type T, meaning the most spe-
cialized concept that T models and that is of interest
for the context of specialization.

If we consider the taxonomy of concepts of Fig. 2,
and a context X that provides specializations for con-
cepts C1, C2 and C5 in this example, the following
best concepts should be selected.

• For type A: concept C2, candidates are C1 and
C2, but C2 is more specialized.

• For type B: no concept, there is no candidate in
the context’s list, gnx_nil is returned.

• For type C: concept C5, it is the only choice.
• For type D: concepts C1 or C5, both concepts

are valid (because D models both), and there is
no relationship between them to determine that
one is more specialized than the other. The se-
lected one depends on the implementation of
gnx_contextual_concept. In our solution,
the concept with the highest index is selected. But

B. Bachelet et al. / Template metaprogramming techniques for concept-based specialization 55

Fig. 2. Example of best concept selection.

to avoid this arbitrary selection, one can add rela-
tionships to the taxonomy of concepts, or can spe-
cialize metafunction gnx_contextual_
concept for type D in context X.

Metafunction gnx_contextual_concept<X,
T> goes through the list of all the concepts mod-
eled directly or indirectly by type T (provided by
gnx_all_concepts<T>), and selects the one that
does not refine directly or indirectly any other con-
cept in the list (using metafunction gnx_matches_
concept) and that is declared in context X. This
metafunction requires O(n2 + rn) operations: O(n2 +
rn) operations to build the list, and O(n) to select the
best candidate (because gnx_all_concepts has
already achieved all the necessary gnx_matches_
concept instantiations).

3.7. Conclusion

Two steps are necessary for concept-based special-
ization with our solution: (i) to declare concepts and
modeling/refinement relationships in order to define a
taxonomy of concepts; (ii) for each context of special-
ization, to declare the concepts that are used to control
the specialization. These steps are not monolithic, and
new concepts, relationships, and specializations can be
defined at any time (but before the first instantiation

of the targeted generic component), which provides
high flexibility with minimal assumptions about com-
ponents.

The selection of the best specialization is fully au-
tomatic and safe as long as the modeling and refine-
ment relationships are correct. Notice that those rela-
tionships, declared manually with our solution, could
be automated using a mechanism to check structural
conformance, such as the “concept classes” introduced
in [19] (i.e., type traits that indicate whether a type
models a concept), or the StaticIsA template of
Section 2.2.1:

template <class TYPE, class CONCEPT>
struct gnx_models_concept
: gnx_value<bool, StaticIsA<TYPE,CONCEPT>

::valid> {};

3.7.1. Pitfalls
However, a few issues occur with our solution. First,

the type pattern of any template specialized based on
concepts is altered: for each primary template param-
eter, an extra “hidden” parameter may be added to get
its best concept. For instance, users of the Serial-
izer generic class could think that this template has
only one parameter, whereas it actually has two.

Secondly, the notion of an observer, which is totally
hidden from the users of a template specialized based
on concepts, has been introduced to bypass an instanti-

56 B. Bachelet et al. / Template metaprogramming techniques for concept-based specialization

ation problem with metafunction gnx_nb_concept
(cf. Section 3.4.2). However there are very specific sit-
uations where the issue remains. For instance, the fol-
lowing specialization may be troublesome.

template <> class Serializer<int>
{ [...] };

It induces the full instantiation of Serializer
that forces the default value of the hidden parame-
ter to be instantiated (i.e., gnx_contextual_con-
cept<SerializerContext,int>), which itself
forces gnx_nb_concept to be instantiated for ob-
server SerializerContext. If concepts are added
after this code, another call to metafunction gnx_
contextual_concept with context Serializ-
erContext will ignore the new concepts. Hence,
one should avoid to instantiate gnx_contextual_
concept before the final use of the targeted template.
In our example, the full instantiation can be avoided as
follows.

template <class CONCEPT>
class Serializer<int,CONCEPT>
{ [...] };

3.7.2. Usage
For the designers of generic libraries, using our so-

lution for concept-based specialization helps improv-
ing extensibility and maintainability, as specialization
is controlled by concepts that are more relevant and ro-
bust to guide the process than type patterns, and be-
cause retroactive extension is possible (i.e., a special-
ization, a concept, or a relationship, can be added at
any time, with no impact on existing code).

Designing a generic library with concept-based spe-
cialization also offers new possibilities to end-users.
They have the opportunity to easily extend the tax-
onomy of concepts. For instance, if std::deque
were not yet in the taxonomy, one can associate
it with concept STLSequence, and automatically,
std::deque benefits from the specialization of Se-
rializer for STLSequence. Nonintrusively, the
users can also define new specializations for concepts
that were not foreseen by the designers of the generic
library, but it requires some documentation on this li-
brary.

4. Compile-time performance

The theoretical performance of the metafunctions of
our solution has been studied in this paper. We as-
sumed some operations of the compiler to be constant
time, so it is important to confirm the theoretical per-

formance with practical experiments. The initial imple-
mentation of the library, that is presented in this paper,
is meant for understanding. Thus, a second version of
the library has been designed to optimize the compile
time. Nevertheless, the metaprogramming techniques
and how to use the library remain unchanged with this
new version. To understand what kind of optimization
has been performed, let us discuss on the following ex-
ample of metafunction.

template <class A> struct plain_meta
: gnx_if < test<A>, branch1<A>,

branch2<A> > {};

At instantiation time, both branch1<A> and
branch2<A> are instantiated. But depending on the
value of test<A>, only one of the two templates
actually needs to be instantiated. In our library, such
cases occur many times and lead to a lot of unneces-
sary instantiations. Metafunctions can be rewritten us-
ing an intermediate template that hides the two possi-
ble branches of the conditional statement in separate
specializations of the template. Here is an optimized
version of the example that shows the technique that
has been applied on all the metafunctions of the library.

template <class A, bool TEST>
struct _optimized_meta_;

template <class A> struct optimized_meta
: _optimized_meta_<A, test<A>::value> {};

template <class A>
struct _optimized_meta_<A,true>
: branch1<A> {};
template <class A>
struct _optimized_meta_<A,false>
: branch2<A> {};

The tests presented here have been performed with
the optimized version5 of the library on an Intel Core
2 Duo T8100 2.1 GHz with 3 GB of memory, and us-
ing GNU G++ 4.3.4 (its template recursion limit set to
1024). Instances with different numbers n of concepts
and r of modeling/refinement relationships declared in
the whole program have been randomly generated (see
the source code for details). Each compile time pre-
sented here is expressed in seconds and is the mean of
compilations of 10 different instances.

Figure 3 reports the compile time, depending on n,
for indexing concepts. As predicted by the theoretical
performance analysis, there is a quadratic dependence
on n (confirmed by a quadratic regression with a cor-
relation coefficient6 R = 0.997).

5Optimized version 2011-08-25 was used for the experiments.
6R = Pearson’s correlation coefficient; the closer to 1, the more

the regression fits the curve.

B. Bachelet et al. / Template metaprogramming techniques for concept-based specialization 57

Fig. 3. Compile time for indexing concepts (r = 100).

Fig. 4. Compile time for gnx_direct_concepts (50 instantiations, r = 100).

Figure 4 reports the compile time, depending on n,
of 50 instantiations of metafunction gnx_direct_
concepts (which lists the concepts that a given type
or concept directly models or refines respectively). The
theoretical performance analysis predicted a linear de-

pendence on n, but the practical results show other-
wise, which we think is related to our assumption that
accessing a concept through its index (i.e., a call to
gnx_concept) was constant time. It seems that to
find a specialization of a template, the compiler may

58 B. Bachelet et al. / Template metaprogramming techniques for concept-based specialization

require a number of operations dependent on the to-
tal number of specializations for this template. How-
ever, this non-linear dependence is not so significant,
as the linear regression shows a correlation coefficient
R = 0.986 in the range of our experiments, and the in-

stantiations of gnx_direct_concepts represent
only one step of the whole compilation process.

Figures 5 and 6 report the compile time, depend-
ing respectively on n and r, of 50 instantiations of
gnx_contextual_concept (which determines

Fig. 5. Compile time for gnx_contextual_concept (50 instantiations, r = 300).

Fig. 6. Compile time for gnx_contextual_concept (50 instantiations, n = 80).

B. Bachelet et al. / Template metaprogramming techniques for concept-based specialization 59

the best concept for a type bound to a template param-
eter). The performance of each intermediate metafunc-
tion is not shown, as it is similar. As predicted by the
theoretical performance analysis, there is a quadratic
dependence on n (confirmed with R = 1), and a linear

dependence on r (confirmed with R = 0.989).
Our library has been tested successfully on several

compilers: GNU GCC from 3.4.5 to 4.4.3, Microsoft
Visual C++ 10, and Embarcadero C++ 6.20. Figures 7
and 8 report the time of the whole compilation pro-

Fig. 7. Whole compile time (with 30 instantiations of gnx_contextual_concept, r = 100).

Fig. 8. Whole compile time (with 50 instantiations of gnx_contextual_concept, n = 50).

60 B. Bachelet et al. / Template metaprogramming techniques for concept-based specialization

cess for those compilers, from indexing the concepts to
finding the best concepts for types bound to template
parameters, depending on n and r. Notice that we were
not able to test all the instances with Embarcadero’s
compiler, due to a hard limitation of 256 levels in the
template recursion.

5. Conclusion

This paper describes template metaprogramming
techniques to control the specialization of generic
components with concepts. As concepts are not part of
the C++ language yet, a library-based solution is pro-
vided to declare concepts and modeling/refinement re-
lationships in order to define a taxonomy of concepts.
It relies on an automatic indexing of the concepts that
allows a retroactive extension: at any time, new con-
cepts and modeling/refinement relationships can be de-
clared.

The library also provides a mechanism to automat-
ically select the most appropriate specialization of a
template based on concepts. Specializations of generic
components can be defined by constraining template
parameters with concepts rather than type patterns. At
instantiation time, a metafunction determines the most
specialized concept, for a given specialization context,
of any type bound to a template parameter, and thus
guides the selection of the most appropriate specializa-
tion. Our solution is invasive because an extra param-
eter (invisible to the user) must be added to any tem-
plate that is intended to be specialized based on con-
cepts; but after the definition of the primary version of
the template, specializations based on concepts can be
added non intrusively and retroactively.

The retroactive extension enabled by the proposed
technique provides high flexibility with minimal as-
sumptions about the components: the coupling be-
tween a template and the types bound to its parameters
only occurs at instantiation time, while the most appro-
priate specialization is selected. However, because our
goal was to provide a fully portable C++ code with no
extra tool, we were not able to automate the identifica-
tion of the concepts that control the specialization of a
given template. Therefore, the notion of a specializa-
tion concept is necessary and requires to explicitly de-
clare each concept that is involved in the control of a
specialization.

To conclude, a theoretical performance analysis
and the performance of practical experiments have
been presented to show the compile time overhead of

our solution. Even if a quadratic dependence on the
number of concepts has been identified, the compile
time is reasonable for many applications: compiling
50 specializations with 50 concepts and 250 model-
ing/refinement relationships on an average computer
requires less than 5 seconds.

Acknowledgements

The authors would like to thank the editor and the
anonymous reviewers for their constructive comments
that helped to improve the manuscript.

References

[1] D. Abrahams and A. Gurtovoy, C++ Template Metaprogram-
ming: Concepts, Tools, and Techniques from Boost and Be-
yond, Addison-Wesley, 2004.

[2] A. Alexandrescu, Modern C++ Design: Generic Program-
ming and Design Patterns Applied, Addison-Wesley, 2001.

[3] M.H. Austern, Generic Programming and the STL: Using
and Extending the C++ Standard Template Library, Addison-
Wesley, 1999.

[4] B. Bachelet, A. Mahul and L. Yon, Designing generic algo-
rithms for operations research, Software: Practice and Experi-
ence 36(1) (2006), 73–93.

[5] C.G. Baker and M.A. Heroux, Tpetra, and the use of generic
programming in scientific computing, Scientific Programming
20(2) (2012), 115–128.

[6] K. Czarnecki and U. Eisenecker, Generative Programming:
Methods, Tools, and Applications, Addison-Wesley, 2000.

[7] G. Dos Reis and B. Stroustrup, Specifying C++ concepts, in:
Proceedings of POPL’06, ACM Press, 2006, pp. 295–308.

[8] R. Garcia, J. Järvi, A. Lumsdaine, J.G. Siek and J. Willcock,
A comparative study of language support for generic program-
ming, in: Proceedings of OOSPLA’03, 2003, pp. 115–134.

[9] D. Gregor, J. Järvi, J.G. Siek, B. Stroustrup, G. Dos Reis
and A. Lumsdaine, Concepts: Linguistic support for generic
programming in C++, in: Proceedings of OOPSLA’06, 2006,
pp. 291–310.

[10] D. Gregor, B. Stroustrup, J.G. Siek and J. Widman, Pro-
posed wording for concepts (Revision 3), Technical Report
N2421=07-0281, ISO/IEC JTC 1, 2007.

[11] J. Järvi, D. Gregor, J. Willcock, A. Lumsdaine and J.G. Siek,
Algorithm specialization in generic programming: Challenges
of constrained generics in C++, in: Proceedings of PLDI’06,
ACM Press, 2006.

[12] J. Järvi, M. Marcus and J.N. Smith, Programming with C++
concepts, Science of Computer Programming 75 (2010), 596–
614.

[13] J. Järvi, J. Willcock and A. Lumsdaine, Concept-controlled
polymorphism, in: Lecture Notes in Computer Science,
Vol. 2830, Springer-Verlag, 2003, pp. 228–244.

[14] M. Jazayeri, R. Loos, D. Musser and A. Stepanov, Generic
programming, in: Report of the Dagstuhl Seminar on Generic
Programming, 1998.

B. Bachelet et al. / Template metaprogramming techniques for concept-based specialization 61

[15] U. Köthe, STL-style generic programming with images, C++
Report Magazine 12(1) (2000), 24–30.

[16] B. McNamara and Y. Smaragdakis, Static interfaces in C++,
in: First Workshop on C++ Template Programming, 2000.

[17] J.G. Siek, L.-Q. Lee and A. Lumsdaine, The Boost Graph Li-
brary: User Guide and Reference Manual, Addison-Wesley,
2002.

[18] J.G. Siek and A. Lumsdaine, Concept checking: Binding para-
metric polymorphism in C++, in: First Workshop on C++ Tem-
plate Programming, 2000.

[19] A. Sutton and J.I. Maletic, Emulating C++0x concepts, Science
of Computer Programming 78 (2013), 1449–1469.

[20] A. Sutton, B. Stroustrup and G. Dos Reis, Concepts lite: Con-
straining templates with predicates, Technical Report, N3580,
ISO/IEC JTC 1, 2013.

[21] T.L. Veldhuizen, Arrays in Blitz++, in: Lecture Notes in Com-
puter Science, Vol. 1505, Springer-Verlag, 1998, pp. 223–230.

[22] L. Voufo, M. Zalewski and A. Lumsdaine, ConceptClang: an
implementation of C++ concepts in clang, in: 7th ACM SIG-
PLAN Workshop on Generic Programming, 2011.

[23] R. Weiss and V. Simonis, Exploring template template pa-
rameters, in: Lecture Notes in Computer Science, Vol. 2244,
Springer-Verlag, 2001, pp. 500–510.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

