Scientific Programming 21 (2013) 109-121
DOI 10.3233/SPR-130368
I0S Press

109

MPI runtime error detection with MUST:
Advances in deadlock detection !

Tobias Hilbrich *, Joachim Protze *“4, Martin Schulz®, Bronis R. de Supinski ® and

Matthias S. Miiller <4

& Technische Universitit Dresden, Dresden, Germany
E-mail: tobias.hilbrich@tu-dresden.de

b Lawrence Livermore National Laboratory, Livermore, CA, USA

E-mails: {bronis, schulzm}@lIInl.gov
¢ RWTH Aachen University, Aachen, Germany

4 JARA — High Performance Computing, Aachen, Germany

E-mails: {mueller, protze} @rz.rwth-aachen.de

Abstract. The widely used Message Passing Interface (MPI) is complex and rich. As a result, application developers require
automated tools to avoid and to detect MPI programming errors. We present the Marmot Umpire Scalable Tool (MUST) that
detects such errors with significantly increased scalability. We present improvements to our graph-based deadlock detection
approach for MPI, which cover future MPI extensions. Our enhancements also check complex MPI constructs that no previous
graph-based detection approach handled correctly. Finally, we present optimizations for the processing of MPI operations that
reduce runtime deadlock detection overheads. Existing approaches often require O(p) analysis time per MPI operation, for p
processes. We empirically observe that our improvements lead to sub-linear or better analysis time per operation for a wide range

of real world applications.

Keywords: Deadlock detection, message passing interface, correctness checking

1. Introduction

The Message Passing Interface (MPI) [10] is a de
facto standard for parallel programming. It provides
a comprehensive API that enables users to exchange
messages between processes efficiently and portably.
The standard’s design targets and enables high perfor-
mance through low latency communication and high
scalability, but provides few syntactic or semantic ex-
tensions to enforce its correct use.

MPI applications can exhibit a wide range of error
classes. Simple errors result from invalid arguments
such as an invalid array length specification, while
other errors involve MPI resources such as communi-
cators or requests, e.g., the user starts a nonblocking
communication but does not complete it before calling

IThis paper received a nomination for the Best Paper Award at
the SC2012 conference and is published here with permission from
IEEE.

*Corresponding author: Tobias Hilbrich, Technische Universitét
Dresden, D-01062 Dresden, Germany. E-mail: tobias.hilbrich@
tu-dresden.de.

MPI_Finalize. Such errors are often hard to detect,
since root-cause and symptoms are far apart. Further,
some MPI usage errors may only occur for particular
interleavings, for some MPI implementations, or for
some systems. These errors arise from the flexibility
in the MPI standard with respect to buffering of point-
to-point communications or to making collective calls
synchronizing.

Various runtime tools can detect MPI errors. They
can detect some errors, e.g., the use of an invalid
MPI datatype, locally on the application processes.
Other errors, such as messaging deadlocks or type mis-
matches in messages, require information about more
than one process and, thus, need a non-local approach.
These runtime tools must communicate information
from the application processes to a process or thread
that runs non-local correctness checks, which compli-
cates their design and scalability. Current tools either
have incomplete functionality or scale poorly, which
renders them insufficient for reliably detecting errors
in large scale applications.

1058-9244/13/$27.50 © 2013 - IOS Press and the authors. All rights reserved

110

This paper presents MUST (Marmot Umpire Scal-
able Tool, named after its predecessors), a runtime tool
that overcomes the shortfalls of current tools by pro-
viding a scalable solution for efficient runtime MPI
error checking. MUST detects many classes of MPI
correctness errors and provides a flexible plugin con-
cept that allows users to customize the tool to the er-
ror classes of interest and to extend its functionality to
cover new classes of errors. Although MUST covers
various process-local correctness checks, this paper fo-
cuses on its non-local checks, primarily deadlock de-
tection. Specifically, we describe how to use MUST to
detect, to analyze, and to guide the removal of dead-
locks in MPI applications easily.

Figure 1 sketches correct and incorrect MPI commu-
nications. We use the notation “Recv(from:x)” for an
MPI_Recv call that uses MPI__COMM_WORLD, where
x specifies the source rank and omits the remaining
arguments for simplicity in the example. Similarly,
we use “Send(to:x)” for MPI_Send and “Barrier()”
for MPI_Barrier, respectively. Figure 1(a) shows a
correct communication between two processes, while
examples Fig. 1(b) and (c) are erroneous variations.
In Fig. 1(b) both processes will block in the receive
call and wait for each other to issue a matching send
call, which will never happen (assuming no additional
application threads execute MPI calls). This exam-
ple will always deadlock, while Fig. 1(c) shows an
implementation dependent deadlock. In MPI, calls to
MPI_Send are usually buffered for small messages,
which would allow both tasks to invoke their send calls
and then their receive calls. This example deadlocks,
however, if the send calls are not buffered and is there-
fore incorrect.

Figure 1(d) presents a potential deadlock that only
manifests itself in some runs. The Recv(from:ANY)
call of process 1 uses a wildcard source (MPI_ANY_

T. Hilbrich et al. / MPI runtime error detection with MUST: Advances in deadlock detection

SOURCE in MPI) that allows the receive operation to
match a send from any process. If this call receives
the message from process 0, the second receive of pro-
cess 1 can receive the message from process 2. All
three processes can then complete the Barrier call and
continue execution. Alternatively, if process 1 first re-
ceives the message from process 2, then its second re-
ceive cannot complete, as process 2 does not issue an-
other send before the Barrier call. Since process 1 can-
not issue the Barrier until process 2 sends the message,
both processes block indefinitely. These wildcard re-
ceives, as well as other MPI constructs, can lead to in-
terleaving dependent MPI deadlocks, which only occur
in some application runs.

Our graph-based approach uses the AND@®OR
model [4] to represent wait-for dependencies of active
MPI calls. This model simplifies the AND—OR model,
which can model wait-for conditions of the most gen-
eral type. We analyze a graph of the AND@OR model
to recognize and to visualize deadlocks. In this paper,
we generalize this model and improve its application
for runtime error detection tools. Specifically, our con-
tributions include:

e Generalization of the AND@OR model to handle
the full range of MPI usage scenarios previously
only covered by the more complex AND-OR
model;

Optimizations in runtime deadlock detection that
we empirically observe usually allow MUST to
analyze MPI operations with sub-linear complex-
ity;

Extension to detect deadlocks that involve non-
blocking wildcard receives robustly in complex
applications; and

A comprehensive application study that high-
lights the benefits of our optimizations.

Process 0 | Process 1 Process 0 | Process 1 Process 0 | Process 1
Send(to:1) Recv(from:0) Recv(from:1) | Recv(from:0) Send(to:1) Send(to:0)
Recv(from:1) | Send(to:0) Send(to:1) Send(to:0) Recv(from:1) | Recv(from:0)

(a) (b) (©)
Process 0 | Process 1 ‘ Process 2 .
Send(to:1) | Recv(from:ANY) | Send(to:1) l?rocess'O (Master') | Processes 1 to (size — 1)
for (i = 0; ¢ < size; i++) | Send(to:0)
Recv(from:2) Recv(from:ANY)
Barrier() Barrier() Barrier() ’
(d) ©)

Fig. 1. MPI communication examples. (a) Send—recv communication. (b) Recv-recv deadlock. (c) Send—send deadlock. (d) Schedule—dependent

deadlock. (e) Master—slave communication.

T. Hilbrich et al. / MPI runtime error detection with MUST: Advances in deadlock detection 111

We structure the rest of the paper as follows. Sec-
tion 2 compares our graph-based approach to related
work. Section 3 introduces the AND@®OR model and
details MUST, our runtime error detection tool. We
present our generalization of the AND®OR model in
Section 4 and highlight the architectural and opera-
tional changes to the existing deadlock detection ap-
proach that support a far more efficient analysis of MPI
operations in Section 5. Section 6 presents the chal-
lenges and technology that surround the handling of
nonblocking wildcard receives; and we demonstrate
the results of our improvements with two benchmark
suites in Section 7.

2. Related work

Our work is closely related to MPI runtime error de-
tection tools such as ISP [12], MPI-Check [9], MPICH
extension [3], Marmot [7], and Umpire [13]. Figure 2
compares these approaches for the deadlock examples
in Fig. 1(b), (c) and (d). We assume that the MPI im-
plementation buffers the Send calls in Fig. 1(c) so that
the example runs without producing a deadlock. We
omit the MPICH extension since it ignores deadlocks
and focuses on other correctness checks.

Marmot and MPI-Check implement a timeout-based
approach that detects the recv-recv deadlock
(Fig. 1(b)) but not the send—send deadlock (Fig. 1(c)),
and only detects the schedule—dependent deadlock
(Fig. 1(d)) if the error manifests (denoted by Run). Fur-
ther, a timeout approach can lead to false positives and
cannot represent the source of the deadlock graphi-
cally.

ISP investigates all interleavings of send/recv pairs
to verify deadlock freedom of nondeterministic MPI
programs. ISP analyzes both execution paths of the
schedule—dependent deadlock example so it detects
this error. ISP uses a centralized scheduler that exe-
cutes the application multiple times to check all pos-
sible interleavings. Although this approach provides
complete coverage, communication patterns often pro-
duce an exponential number of interleavings. Fig-

Recv— Send— Schedule—

recv send dependent
Marmot and MPI-check Yes No Run
ISP Yes Yes Yes
DAMPI Yes No Yes
AND@®OR Yes Yes Run

Fig. 2. Runtime approach comparison.

ure 1(e) shows an example in which the cost is pro-
hibitive for ISP to validate all possible interleavings,
even for a few tasks. Thus, although ISP provides good
coverage its applicability is limited.

DAMPT’s [14] distributed detection of alternative in-
terlavings overcomes ISP’s limitations. To explore dif-
ferent interleavings, DAMPI rewrites MPI calls based
on an existing enumeration of explorations to cover,
which eliminates ISP’s centralized scheduler. For each
interleaving, DAMPI executes the application and de-
tects deadlocks with a timeout. In summary, this ap-
proach can detect the recv-recv and the schedule—
dependent deadlock. However, DAMPI cannot detect
the send—send deadlock or visualize deadlocks graph-
ically and can give false positives due to the timeout-
based deadlock detection.

Umpire uses the AND®OR model with a graph-
based deadlock detection that can detect both the recv—
recv and the send—send deadlock but only detects
the schedule—dependent deadlock if the error is mani-
fested. This approach cannot lead to false positives and
provides a graphical representation of the source of the
deadlock. We build on this model and add support for
MPI scenarios that the Umpire deadlock conditions do
not cover and implement several significant optimiza-
tions to that approach. Further, this approach could
be used to replace the timeout approach in DAMPI
to overcome the drawbacks of timeout-based deadlock
detection.

Our generalized AND@GOR model [4] extends work
on the AND-OR graph-theoretic deadlock model [2,
8,15]. The AND-OR model, in which processes can
specify a Boolean equation as their wait-for condition,
is difficult to visualize. Our work demonstrates that
the AND@®OR model is equivalent and supports intu-
itive visualization. Our transformation of the AND-
OR model suits the limited AND-OR semantics of
MPI but might lead to many additional nodes for other
uses of AND-OR dependencies. Thus, its efficacy for
general deadlock scenarios (i.e., beyond MPI) remains
an open question.

3. MUST and the AND®OR model

Our Marmot Umpire Scalable Tool (MUST) extends
and scales the functionality of Marmot [7] and Um-
pire [13]. End users require a deadlock detection that
provides no false positives and enables a comprehen-
sive understanding of the source of the deadlock. The
solution must apply to all MPI applications with an ac-

112 T. Hilbrich et al. / MPI runtime error detection with MUST: Advances in deadlock detection

ceptable overhead. Experience with ISP shows that ex-
ploration of all alternative interleavings can be imprac-
tical at scale. Thus, we restrict our approach to consider
only deadlocks that manifest themselves in a given
run. We base this runtime approach on the AND@OR
model [4] that enables graph-based deadlock detection.

3.1. Runtime deadlock detection with MUST

The MUST library intercepts all MPI calls of all ap-
plication processes at runtime. The tool then checks the
correctness of the calls on the application processes or
on additional tool nodes of a tree-based overlay net-
work. The tree network allows scalable data aggrega-
tion and can run distributed or centralized correctness
checks. We currently use a centralized deadlock detec-
tor that runs the graph-based deadlock detection on the
root of the tree. Each application process forwards in-
formation about all communication calls to the dead-
lock detector.

The detector tracks the state of collective operations,
as well as queues for outstanding point-to-point com-
munications. Thus, MUST can determine if each MPI
call can complete or must wait for another communi-
cation call, e.g., a matching point-to-point communica-
tion. We use this information to capture all wait-for de-
pendencies between the processes. We represent these
wait-for conditions as a graph and use a graph analy-
sis to determine whether a deadlock exists at a certain
execution step of the application.

3.2. The AND®OR model

MUST’s detector evaluates each MPI operation and
for each operation that can not complete it deter-
mines the MPI processes for which it waits. In the
simplest case, an MPI process waits for exactly one
other process, e.g., a blocked MPT_Ssend call that
has no matching receive. More complex dependencies
wait for multiple processes, e.g., a process issues an
MPI_Barrier and waits for all processes in the com-
municator that have not yet issued a matching call.
A different behavior holds for a process that issues an
MPI_Recv with source equal to MPT_ANY_SOURCE.
The process waits for all processes in the communica-
tor until any one of them issues a matching send. In
summary, MPI processes can wait for one, all, or any
process in a subset of MPT_COMM_WORLD.

We use the terms AND semantics for processes that
wait for all processes of a process-set and OR se-
mantics for processes that wait for any process of a

process-set. Deadlock criteria exist for both AND se-
mantics (a cycle) and OR semantics (a knot, i.e., a set
of nodes X for which X is the descendant set of each
node in X). MPI usage can mix both semantic types;
hence we need a more general model. The most gen-
eral deadlock model, the AND-OR model, which al-
lows arbitrary combinations of AND and OR seman-
tics, is sufficiently general but more so than neces-
sary. This model’s generality complicates analysis and
graphical visualizations. Thus, we use the AND®OR
model, which limits each node in the graph to use ex-
clusively outgoing AND or OR semantic arcs. Its wait-
for graph (WFG) [4] uses the following definition:

Definition 1 (AND®OR WEFG). A tuple (V, Eanp,
FEor) forms an AND®OR WEFG if (V, Eanp U Eor)
is a directed graph and the following restriction holds:

{v eV |IzeV: (v,x) GEAND}
N{veV |3z eV: (v,2) € Egr} =0. (1)

A node in V represents a process. Two types of arcs
model wait-for dependencies between the processes.
Each node can have outgoing arcs of either the AND
semantics (arcs in Eanp) or the OR semantics (arcs
in EoR). Figure 3(a) shows the WFG for the deadlock
from Fig. 1(b). This graph only uses the AND semantic
that we illustrate with solid arcs. Figure 3(b) shows the
WEFG for the deadlock from Fig. 1(d) for the interleav-
ing that leads to deadlock. We assume that process 0
is blocked in the MPI_Send call, as MUST treats
standard mode sends as unbuffered. Finally Fig. 3(c)
shows a WFG with the OR semantics, for which we

0: MPI_Recv @

(@)
::
/
(b)
:"."‘
/’.:

()

Fig. 3. AND@OR WFG examples. (a) WFG for Fig. 1(b). (b) WFEG
for Fig. 1(d). (c) WFG for wildcard receive.

T. Hilbrich et al. / MPI runtime error detection with MUST: Advances in deadlock detection 113

use dashed arcs. The graph represents the wait-for con-
ditions of a variation of example Fig. 1(b) in which
process 0 uses a wildcard source.

The OR-knot [4], an AND®OR WFG deadlock cri-
terion, is a set of nodes X for which each node in X
can reach all nodes in X and does not have an outgo-
ing arc of the OR semantics that leads to a node not
in X. MUST’s graph search detects this criterion and
supports visualization that distinguishes the root of a
deadlock from processes that are waiting for it.

We provide new solutions for three fundamental lim-
its in the use of the AND@OR model for runtime dead-
lock detection:

o MPI constructs that are too general for the model;
e Wait-for analysis overhead; and
e Complexities in wildcard receive handling.

4. AND@OR generalization

Some combinations of wait-for scenarios can lead
to a blocked MPI process having outgoing dependen-
cies of both AND and OR semantics. The example in
Fig. 4 shows a case that uses MPT_Waitall and two
user-defined communicators (sends intended to match
the posted receives could occur later in the program).
Communicator A consists of processes 0, 1, and 2 and
communicator B consists of processes 0, 2, and 3. In
the example, process O blocks until both nonblock-
ing wildcard communication requests are completed.
Thus, it waits for both requests to complete (AND se-
mantics), which in turn wait for one process out of
a set of processes (OR semantics). Thus, this exam-
ple uses the AND and the OR semantics for a single
process, which the AND@®OR model cannot handle.
Some constructs in MPI can also lead to such cases,
including MPI_ Sendrecv, multithreaded MPI appli-
cations, and, in MPI-3, nonblocking collectives [6].

4.1. Transformation

The AND@®OR WEFG lacks the generality to han-
dle scenarios as in Fig. 4. We could use the AND-
OR model for these cases but would lose our graphi-
cal deadlock criterion. Thus, we provide a novel trans-

formation for wait-for dependencies of the AND-OR
model that adds additional WFG nodes to translate
them into the AND®OR model. Intuitively, we add
additional nodes that separate the wait-for conditions
of nodes that use both AND and OR semantics such that
each process (or node) only uses one of the two seman-
tics in the resulting wait-for graph. We thus demon-
strate that the AND@OR model is equivalent to the
AND-OR model while still providing the benefits of
intuitive visualization for common MPI usage.

In general deadlock theory, wait-for dependencies
link processes to resources. In MPI, processes wait for
messages from processes so our definition of AND-
OR wait-for dependencies formulates the dependen-
cies as from a process to a process.

Definition 2 (AND-OR wait-for dependency). For a
process set, V, and the associated set of valid wait-for
dependencies, A, each dependency w € A equals one
of the following:

e ywithv € V;
o (wy A wy) withw,wy € A;
o (w1 V wy) with wy,wy € A.

Informally, A is the set of all Boolean equations
with processes in V' as atoms. Each process v can
specify a wait-for dependency R € A, which we de-
note (v, R). We do not require each process to have
a dependency. We translate a set of general wait-for
dependencies, (vy, Ry), (v, Ry), . . ., (vn, Ryp), into the
AND@GOR model as follows:

translate (((v1, Ry), (v2, R2), . . ., (Un, Ry)))

= |J twi, Ry).

i=1

Figure 5 shows the function ¢ that we use to trans-
late the wait-for dependency of each process indi-
vidually. We define the union of AND®OR WFGs
(VY Elnps Edg) and (V2, E3\p, E3R) as (VI U V2,
Elxp U EXnps Edg U E3g)- This union returns an

Process 0

Process 1

Process 2 Process 3

Irecv(comm:A, from:ANY, &reqs[0])
Irecv(comm:B, from:ANY, &reqs[1])
Waitall(2, reqs)

Recv(from:2)

Recv(from:0) Recv(from:2)

Fig. 4. AND-OR semantics in MPI (Communicator A contains tasks 0, 1, and 2, communicator B contains tasks 0, 2, and 3).

114 T. Hilbrich et al. / MPI runtime error detection with MUST: Advances in deadlock detection

({v, R}, (v, R)},0),

ifReV,

t(l’, Rl) U t(y’ R2) U ({'U, z, Z/}’ {('U, ‘T)’ (U’ y)}’ @),

t(v, R) =

if R = (R A\ Ry),x = concat(a, v),y = concat(3,v),

t(x, R) Ut(y, R)) U ({v, 2y}, 0, {(®,2), 0, }),
if R= (R V Ry),x = concat(a, v),y = concat(3,v).

Fig. 5. Translation of AND-OR dependencies to AND@OR dependencies.

AND@®OR WFG if and only if each node in V! U V2
either only uses outgoing arcs of the AND type or of
the OR type. The union operator combines the inter-
mediate results that ¢ returns into a final AND@GOR
WFG. The function ¢ matches the Definition 2 of
AND-OR wait-for dependencies and recursively trans-
lates the wait-for dependency of a node v:

R € V: t adds the nodes v (the depending node) and
R, to the set of nodes in the WFG and adds an
AND semantic arc from v to R;

R = (R| A Rp): t introduces two additional nodes to
the WFG, one prefixed with “o” and one pre-
fixed with “(”; this case returns a WFG that re-
sults from the union of three WFGs: the WFGs
obtained with recursive calls to t(x, R;), which
translates the wait-for dependency R; applied to
the first additional node, and to t(y, R;), which
translates 2 applied to the second additional
node; and the WFG that contains the node v
and the two additional nodes x and y along with
AND arcs from v to x and y;

R = (R V Rp): Like the previous case, but the arcs
from v to x and y have the OR semantic.

[7PRE1)

We assume that no node in V' uses the “a” or “f”
symbols. Thus, each step of ¢ adds AND arcs or OR
arcs. As t creates a valid AND@®OR WEFG in each step
and each recursive call to ¢ uses a different symbol for
the first argument (the depending node), we conclude
that ¢ returns an AND@®OR WFG.

4.2. Example

In the example that Fig. 4 shows, process 0 waits
for both non-blocking receives to complete. The first
receive waits for processes 0, 1, or 2 and the second
waits for processes 0, 2 or 3. This corresponds to the
AND-OR wait-for dependency: Ry = ((OV 1) V2) A
(2Vv(3V0))). The remaining three processes are blocked
in receive calls in which processes 1 and 3 wait for
process 2, while process 2 waits for process 0.

Figure 6(a) shows the result of applying the translate
function, which applies ¢ to each wait-for condition,

to this example. The first step of this computation for
process 0 is:

t0,Ro) =t(0, ((0OV 1) V2) A (2V(3V0))))
=t(a0, (0V 1) V2))
ut(80,(2v (3 V0))
U ({0,a0, 80}, {(0, a0), (0, B0)}, 0).

The function introduces the additional nodes o0 and
B50. Afterwards, a0 represents the sub-wait-for condi-
tion ((0 V 1) V 2) of the wait-for condition of process O
and (30 represents ((2 V 3) V 0). Applying the recur-
sive scheme of ¢ repeatedly then leads to the WFG in
Fig. 6(a).

The WFG uses unnecessary intermediate nodes,
e.g., a0 and Ba0, which more elaborate transforma-
tion functions can avoid. Extensions of translate in
MUST handle conjunctions and disjunctions of arbi-
trary order (Fig. 6(b)). Also, we remove intermediate
nodes with exactly one incoming and one outgoing
arc (Fig. 6(c)). Finally, our implementation in MUST
replaces the additional node symbols of ¢ with more
meaningful labels. Thus, MUST provides the WFG
in Fig. 7 for the example in Fig. 4. This more intu-
itive representation highlights that the MPT_Waitall
call uses two requests, both resulting from calls to
MPI_TIrecv. We use a different node shape — a par-
allelogram — to indicate that the added nodes represent
complex MPI call semantics instead of processes.

4.3. Deadlock criterion

If translate returns a WFG with a deadlock, we can
use the OR-knot [4] to represent it graphically. Fig. 7
shows an example: the nodes that are filled in gray
form an OR-knot. Each node in this set can reach all
other nodes in the set, while no node has an outgo-
ing OR arc that leads to a node not in the set. Other
OR-knots exist in this example, one includes all nodes
and another contains processes 0, 2 and 3, and the
MPI_TIrecv node for “request[1]”.

T. Hilbrich et al. / MPI runtime error detection with MUST: Advances in deadlock detection 115

Fig. 6. AND@OR WFGs for the example of Fig. 4. (a) WFG that
results from the translate function. (b) Result of translate extended
to ternary (or higher order) Boolean operators. (c) Part (b) with un-
necessary intermediate nodes removed.

MUST provides these highlighted wait-for graphs
to its users. If users are not interested in the details
of the AND®OR model, we provide them a sim-
pler output: A list of processes that form a dead-
lock. This list includes our intermediate nodes, so we

2: MPI_Recv

Fig. 7. MUST output for the example of Fig. 4.

not only point users to a certain process that issues
an MPI_Waitall call, but also to the important re-
quest(s).

Deadlocks in the AND-OR model relate to dead-
locks in the constructed AND@GOR WFG. If translate
returns an AND®OR WFG with an OR-knot, V,, for
each node x € V, that ¢t added, if x was added by
processing a wait-for condition of a process v, then
v € V,, since any path that leads to x from another
process must pass through v. Further, no intermediate
node can form a cycle or an OR-knot without using
arcs of any node that represents a process. Thus, a pro-
cess is deadlocked if the node that represents this pro-
cess is part of an OR-knot. However, some of the addi-
tional nodes that are derived from a process v may not
be part of an OR-knot, as Fig. 7 illustrates.

5. Optimized deadlock analysis

Our generalization of the AND®OR model allows
us to model wait-for dependencies caused by any call
in the current and upcoming MPI standard. However,
this capability alone is insufficient. MUST also has to
optimize the processing of MPI operations in order to
reduce overhead and interference.

Runtime deadlock detectors intercept MPI calls and
interpret them based on the MPI standard to deter-
mine which MPI calls are blocked at a certain point
of execution. We need that information to compute the
WEFG, which we analyze to detect deadlocks. Current
approaches run this analysis on a central process or
thread [12,13]. For our long-term goal of deadlock de-
tection that will scale to 10,000 or more processes, we
must make the following processing steps scalable:

Point-to-point matching;
Collective matching;

Wait-state analysis; and
Graph-based deadlock detection.

The remainder of this section details optimizations of
these steps that we implement in MUST.

116 T. Hilbrich et al. / MPI runtime error detection with MUST: Advances in deadlock detection

5.1. Runtime detection costs

Graph-based deadlock detection has a complexity of
O(pz) for p processes [4] and, thus, is the most expen-
sive processing step. However, MPI semantics allows a
deadlock detector to analyze the MPI calls pessimisti-
cally. The detector does not need to analyze any MPI
call of a process that is currently blocked in a preced-
ing MPI call. Thus, even if a deadlock exists, the de-
tector can process further MPI calls of other processes.
As a result, we do not need to run the deadlock detec-
tion when we analyze an MPI event. We invoke the de-
tection only if we suspect the presence of a deadlock:

o If the detector receives no additional MPI events
within a configurable time period;

o If only some processes send MPI events; or

e When all processes report a call to MPI_
Finalize.

Thus, we infrequently invoke the graph-based search,
where a single search for about 10,000 processes com-
pletes within seconds. As a result, the major overhead
for our runtime deadlock detection results from the
other three processing steps rather than from the graph-
based deadlock detection.

The detector must intercept and analyze more MPI
calls at scale, which increases the overhead for mes-
sage matching. These steps must eventually be dis-
tributed [5]. MUST still uses centralized components,
but with an improved wait-state analysis. In Um-
pire [4], the detector always tracks the WFG. Calls
such as wildcard receives or collective calls introduce
O(p) arcs to the WFG for p processes ((p — 1)/2 arcs
on average for collective calls and p arcs on average
for wildcard receives). Umpire’s overhead to update
the WFG for a single operation increases linearly with
scale. Also, most applications increase their number of
communication calls linearly with scale. Thus, the to-
tal overhead for runtime deadlock detection becomes
O(p?). Even with efficient distributed runtime dead-
lock detection, overhead would scale linearly, which
would render a distributed approach impractical. Thus,
we investigate the analysis time per MPI operation
closely to provide a foundation for a distributed imple-
mentation.

5.2. Delayed WFG construction
MUST overcomes Umpire’s limitation by construct-

ing the WFG only on demand, i.e., if MUST invokes
deadlock detection. Thus, with p processes, the detec-

tor analyzes the wait-for dependencies of up to p oper-
ations during a WFG construction. Each operation may
require up to p arcs, thus, the WFG construction has a
complexity of O(p?), which matches the cost of the ac-
tual deadlock detection. For our goal of runtime dead-
lock detection with about 10,000 processes this infre-
quent overhead is acceptable. MUST’s matching and
wait-state analysis costs of different types of MPI op-
erations are:

Send/Receive: O(1) if receives/sends use individual
queues per communicator, send-receive rank
pair, and tag;

Wildcard receive: O(p) to search all processes for a
matching send call;

Single completion: O(log k) to check the matching
state of the nonblocking communication to
which the request refers, which we find in
O(log k) for k requests;

Multi completion: O(nlog k) to check the matching
state that is associated with each of the n re-
quests in the completion;

Collective operation: (O(1) to check whether all pro-
cesses have issued the collective operation.

Analyzing send, receive (with specified source), and
collective calls requires O(1), which allows our de-
tector to handle them with low overhead. The detec-
tor can also analyze completion calls that use a sin-
gle request efficiently with O(log k). The challeng-
ing calls are wildcard receives, with O(p) complex-
ity and multi-completions (i.e., MPI_Waitall) with
O(nlogk) complexity. Multi-completions require n
preceding calls to a send or receive initiator. Comple-
tions that complete all requests like MPI_Waitall,
lead to an acceptable complexity of O(log k) per oper-
ation on average (n times O(1) and once O(n log k)).
The calls MPI_Waitsome and MPI_Waitany can
impose higher cost as they may only complete one or
a few requests. Section 7 presents an empirical study
of these optimizations that shows sublinear growth in
the analysis time per MPI operation for a wide vari-
ety of applications, which motivates future distributed
implementations of runtime deadlock detection.

6. Wildcard receive handling

Wildcard receives complicate the correctness and ef-
ficiency of runtime deadlock detection. If the detector
handles a wildcard call that has no known matching
send call yet, it can treat the operation as blocked and

T. Hilbrich et al. / MPI runtime error detection with MUST: Advances in deadlock detection 117

uses the OR semantic to model wait-for dependencies.
Handling wildcard receives for which multiple match-
ing send calls are available is much more complex.
MUST needs to adapt its matching decisions to the
same decisions that the MPI implementation makes.
Otherwise, the detector would not follow the same in-
terleaving as the application run, which can lead to an
erroneous analysis. Approaches such as ISP or DAMPI
do not suffer from this property, as they rewrite nonde-
terministic MPI calls such that they enforce a known
and controlled interleaving, which turns each execu-
tion of the application into a deterministic run.

To adapt to nondeterministic choices of the
MPI implementation, we must monitor the field
MPI_Status.MPI_SOURCE for wildcard receives.
Blocking receives provide this information when they
return, while the wait or test call that completes the re-
ceive provides it for nonblocking receives. Although
the detector may determine that a nonblocking receive
can match some send, the detector must still wait un-
til the application completes the receive. The detector
uses this information to choose the same match as the
MPI implementation. Thus, the detector must queue
all MPI operations that the application issues until the
completion result arrives. Due to this queuing, exist-
ing tools, such as Umpire [13], can exhibit undesirable
behavior in the following three scenarios:

e A deadlock occurs before or while a completion
executes;

e The application never executes the completion; or

e The detector requires more memory than avail-
able to queue MPI operations.

These scenarios lead to unresponsiveness or incom-
plete analyses, which can make the tool incapable
of detecting some deadlocks. MUST overcomes these
limitations with advanced wildcard handling. We still
pause the analysis of MPI operations when we wait for
the completion of a nonblocking wildcard receive but
we add two new analysis modes: probing and deciding.
These modes handle the cases that could lead to tool
unresponsiveness or incomplete analyses.

6.1. Probing in MUST

When a timeout invokes deadlock detection, we use
probing if a wildcard receive with at least one known
match has no available completion information. Fig-
ure 8 shows a situation that resembles the scenario in
Fig. 1(d). If the first call to MPI_Irecv from pro-
cess 1 matches the send of process 0, the applica-

Process 0 Process 1 Process 2
Send(to:1) Irecv(from:ANY, &reqs[0]) Send(to:1)
Irecv(from:2, &reqs[1])
Waitall(2, reqs)
Barrier() Barrier() Barrier()

Fig. 8. Schedule—dependent MPI deadlock with an unavailable wild-
card completion source.

tion will complete. Otherwise, this example deadlocks
with processes 0 and 2 stuck in the MPT_Barrier
call (assuming that the MPI implementation buffers the
MPI_Send call of process 0) and process 1 in the
MPI_Waitall call. Since the completion call (in this
case MPI_Waitall) hangs, the tool cannot obtain
the matching decision from the MPI implementation.
Thus, we must detect the deadlock without it.

The probing mode matches each wildcard receive
with all matching send calls, in order to determine if a
deadlock exists. If a specific matching decision leads to
deadlock, then we report the error and abort any further
analysis. Otherwise, we repeat our probing process un-
til we have tested all possible matches. If no matching
decision leads to deadlock then the detector waits for
additional MPI operations.

Figure 8 shows an example that requires this ap-
proach. Process 2 encounters a wild card receive op-
eration. MUST then tests for matches with the send in
process 0, which does not lead to a deadlock, followed
by a test with the send in process 2, which reveals the
deadlock.

Several synthetic tests of Umpire and MUST re-
quire probing. Some stress tests require MUST to in-
vestigate several hundred interleavings in order to de-
tect a deadlock. In theory, the number of interleavings
can be exponential. However, we are not aware of any
cases in which only one (or few) of the exponential
number of interleavings leads to a deadlock.

We suspend the search of possible matches after a
configurable time period and restart the search with
an increased time period if no additional MPI opera-
tions arrive. If the search space exceeds the space that
MUST can cover in a given amount of time, we might
not be able to report a deadlock (false negative). MUST
notifies users when probing starts and allows them to
complete the wildcard receives in question at an early
time, in order to avoid this rare situation altogether.

6.2. Deciding in MUST

When MUST waits for a wildcard source, the de-
tector queues all other MPI operations until the source

118 T. Hilbrich et al. / MPI runtime error detection with MUST: Advances in deadlock detection

Process 0

Process 1

Process 2

Irecv(from: ANY, &req)
//long communication
Wait(req)

Isend(to:0, &req)
/long communication //long communication
Wait(req)

Isend(to:0, &req)

Wait(req)

Fig. 9. Late wildcard receive completion.

arrives. If these queues would exceed the available
memory, we use the deciding mode. Figure 9 shows a
scenario in which a nonblocking wildcard receive of
process 0 has multiple available matches, while a com-
pletion only occurs after a long phase of additional
communication. When deciding, MUST first performs
a probing step to determine if a deadlock exists. If so,
we report the error and abort. Otherwise, we enforce
some matching decision to allow the execution to con-
tinue. In the example, MUST could decide to match
the receive of process 0 with the send of process 1.
Deciding can cause MUST to report false positives, so
we note this behavior in our correctness log and allow
users to issue a completion at an earlier time or to add
a missing completion. Applications for which MUST
can report false positives are rare, as their communica-
tion pattern must be dependent on wildcard matching
decisions. Approaches such as DAMPI do not support
such applications.

7. Application results

We use the NAS Parallel Benchmarks (NPB) [1]
(v3.3) and SPEC MPI2007 [11] (v2.0) to evaluate
MUST’s runtime deadlock detection improvements.
We use NPB problem size D and the mref size for
SPEC MPI2007. We run these benchmarks on a Linux-
based cluster with 1944 nodes of two 6 core Xeon 5660
processors. Each node has 24 GB of main memory and
uses a QDR InfiniBand interconnect. We use a range
of 16 to 512 cores to measure the behavior of MUST
at increased scale and to validate the improvements of
our optimized detector implementation. The NPB ker-
nels bt and sp require square numbers of processes so
we use 36 instead of 32, 121 instead of 128, and 529
instead of 512 processes for them. For simplicity, we
do not highlight this difference in our graphs. Further,
126.lammps contains a potential send—send deadlock
that MUST detects. In this case we measure MUST’s
overheads and analysis time per MPI operation for all
operations that MUST analyzes to detect the deadlock.

MUST currently offers three operation modes of
communication between the MPI processes and the
master. The first uses synchronous communication, the
second uses immediate asynchronous communication,
and the third uses aggregated asynchronous commu-

nication. The synchronous mode only issues an MPI
call on the application processes after the centralized
detector analyzes the respective event, which reflects
Marmot’s operation mode. The second mode imme-
diately starts a non-blocking communication to notify
the detector of a new communication event, whereas
the third mode aggregates multiple events into a larger
contiguous buffer for higher bandwidth communica-
tion. Umpire uses the last mode in combination with
errorhandlers, signal handlers, and atexit handlers to
guarantee that the centralized detector can process all
important events even if an application process crashes
or hangs. MUST also implements this communication
mechanism, but our prototype crash handling requires
additional investigation to guarantee that we catch all
bugs on a wide range of platforms. We use the aggre-
gated communication strategy for our measurements
and provide the other communication strategies for
cases where our crash handling might fail.

Figure 10(a) and (c) shows application slowdowns
with MUST; a slowdown of 2 corresponds to a 100%
increase in application run time. MUST overhead in-
cludes the run time for all correctness checks that we
provide and run times that MUST’s communication
system consumes to forward MPI call information to
the central deadlock detector. We run local correctness
checks such as detection of invalid arguments or MPI
resource leaks locally. An additional MPI process ex-
ecutes the central detector that checks type matching,
verifies collective operations, and runs our deadlock
detection.

We can analyze all kernels except 107.leslie3d and
121.pop2 at 512 processes (Memory and runtime lim-
itations). MUST can handle most kernels with a slow-
down of about 2 or lower at 128 processes. The particu-
larly challenging benchmark 721.pop2 invokes a large
number of point-to-point calls (about 50,000 per pro-
cess per second already at 32 processes).

The scalability limit of NPB problem size D and of
the mref input set for SPEC MPI2007 is about 512 pro-
cesses, which increases MUST’s overhead due to a
high communication to computation ratio. Figure 12
shows MUST’s overhead for selected NPB kernels at
problem size E and for the Ilref input set for SPEC
MPI2007. The chart shows that MUST can handle ap-
plications at 1024 processes.

T. Hilbrich et al. / MPI runtime error detection with MUST: Advances in deadlock detection 119

016 Processes

032 Processes

Slowdown

NA\\Y

W64 Processes

1128 Processes

256 Processes

@512 Processes

016 Processes

032 Processes

W64 Processes

128 Processes

Analysis time per MPI operation[usec]

64
W
32
Y
f 016 Processes
16 ’
< Y ’ 032 Processes
g 8 /. : m
° /| 4 64 Processes
E 4 Y Y g f
@ : / / / E1128 Processes
4 "
2 / / f 256 Processes
Y Y
14 g / @512 Processes
Y Y
Y
Y|
0.5 - T T !

mg ep bt sp

©

256 Processes

@512 Processes

016 Processes

032 Processes

W64 Processes

0

E1128 Processes

256 Processes

@512 Processes

Analysis time per MPI operation[usec]

B

Fig. 10. MUST overheads and associated analysis time per MPI operation. (a) Slowdown for SPEC MPI2007. (b) Analysis time per MPI operation
for SPEC MPI12007. (c) Slowdown for NPB. (d) Analysis time per MPI operation for NPB.

Figure 10(b) and (d) show the analysis time per
MPI operation of our deadlock detector. This met-
ric indicates that distributed runtime deadlock detec-
tion is feasible. If this time increases linearly with
scale, distributed detection becomes impractical. Scal-
ing behavior, e.g., a change in the ratio between col-
lective and point-to-point calls, influences this metric.
Buffering of operations based on the order in which
they are processed can also impact it. Thus, our mea-
surements exhibit some variability. Of the 21 bench-
marks, 127.wrf2, 132.zeusmp?2, lu, 137.lu, 130.socorro

and 729.tera_tf show repeated increases in the analy-
sis time per MPI operation across scale, which Fig. 11
details. The charts indicate a sublinear increase for the
benchmarks 127.wrf2, 132.zeusmp2, lu, and 137.1u, for
which we use logarithmic fits in Fig. 11. The bench-
marks /30.socorro and 129.tera_tf show a more linear
increase for this metric. The benchmark 7/30.soccorro
completes arrays of MPI requests with repeated calls
to MPI_Waitany, which causes MUST’s increased
analysis time for this benchmark. For 129.tera_tf,
the amount of point-to-point communication calls de-

—_
o
=]

N
wn
N
w

T. Hilbrich et al. / MPI runtime error detection with MUST: Advances in deadlock detection

=
wn

N
H

13 <

L

I
©

=
~

\

s
w

N y

=
n

I
[N}

E

=
w

I
N

Analysis time per MPI operation [Jusec]
Analysis time per MPI operation [Jusec]

100 200

o 4

0 100 200 300 400 500 600
#Processes

15 3.6

300 400 500 600
#Processes

Analysis time per MPI operation [Jusec]
-

100 200 300 400 500 600
#Processes

o 4

3.1

12

y ad

1.4

2.6

Pl)

13
@

v
2.1

ol

1.2

1.6

r"'
11 4

11

0.8 4

Analysis time per MPI operation [Jusec]
Analysis time per MPI operation [Jusec]

0 100 200 300 400 500 600
#Processes

0 100 200

300 400 500 600
#Processes

0.7 4 T T T T T J
0 100 200 300 400 500 600
#Processes

Analysis time per MPI operation [Jusec]

Fig. 11. Detailed analysis time per MPI operation plots. (a) MP12007: 127.wrf2. (b) MPI2007: 132.zeusmp2. (c) NPB: lu. (d) MP12007: 137.1u.

(e) MPI12007: 130.socorro. (f) MP12007: 129.tera_tf.

32

16

N 256 Processes

Slowdown

B512 Processes

1024 Processes

o A e |

o A

Fig. 12. MUST overheads with larger data sets.

creases while the amount of collective calls per process
stays constant. MUST currently incurs higher analysis
time for collective calls than for point-to-point calls,
due to type matching.

8. Conclusions

We present MUST, a novel runtime error detection
tool for MPI applications. Key features include type
matching, collective verification, and deadlock detec-
tion. We contribute theoretic and processing exten-
sions for the AND@®OR model based deadlock detec-

tion. With p processes, the existing approach based on
this model required an analysis time of O(p) for each
blocking MPI operation, which makes deadlock de-
tection prohibitively expensive at scale. We overcome
this limitation and achieve sublinear analysis time for
a wide variety of applications. We demonstrate this re-
sult for two major benchmark suites for up to 1024
processes. Additionally, the generalization of our dead-
lock model allows us to handle complex wait-for se-
mantics that arise with certain existing MPI constructs
and will become more common with future MPI exten-
sions such as nonblocking collectives.

Although our current approach can scale to at least
1024 processes for many applications and inputs, fu-
ture use cases will need additional advances. Dead-
lock detection becomes more challenging as systems
scale even further and some errors may only occur
at higher scales. Our work provides a basis for scal-
able distributed MPI runtime deadlock detection, but
we will need additional scalable techniques for point-
to-point matching, collective matching, and wait-state
analysis.

Acknowledgements

Part of this work was performed under the auspices
of the US Department of Energy by Lawrence Liver-

T. Hilbrich et al. / MPI runtime error detection with MUST: Advances in deadlock detection 121

more National Laboratory under Contract DE-ACS52-
07NA27344. (LLNL-CONF-555978). This work has
been supported by the CRESTA project that has re-
ceived funding from the European Community’s Sev-
enth Framework Programme (ICT-2011.9.13) under
Grant Agreement no. 287703.

References

(1]

(2]

(3]

[4]

(3]

(6]

D.H. Bailey, L. Dagum, E. Barszcz and H.D. Simon, NAS par-
allel benchmark results, IEEE Parallel and Distributed Tech-
nology, Technical Report, 1992.

V.C. Barbosa and M.R.F. Benevides, A graph-theoretic charac-
terization of AND-OR deadlocks, 1998.

C. Falzone, A. Chan and E. Lusk, Collective error detection
for MPI collective operations, in: Recent Advances in Par-
allel Virtual Machine and Message Passing Interface, 12th
European PVM/MPI Users’ Group Meeting, Springer, 2005,
pp. 138-147.

T. Hilbrich, B.R. de Supinski, M. Schulz and M.S. Miiller,
A graph based approach for MPI deadlock detection, in:
ICS’09: Proceedings of the 23rd International Conference
on Supercomputing, ACM, New York, NY, USA, 2009,
pp. 296-305.

T. Hilbrich, M.S. Miiller, B.R. de Supinski, M. Schulz and
W.E. Nagel, GTI: A generic tools infrastructure for event based
tools in parallel systems, in: I[PDPS 2012: Proceedings of the
26th IEEE International Parallel & Distributed Processing
Symposium, 2012.

T. Hoefler, A. Lumsdaine and W. Rehm, Implementation and
performance analysis of non-blocking collective operations for
MPI, in: Proceedings of the 2007 International Conference on
High Performance Computing, Networking, Storage and Anal-
ysis, SCO7, IEEE Computer Society/ACM, November 2007.

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

B. Krammer and M.S. Miiller, MPI application development
with MARMOT, in: PARCO, Vol. 33, Central Institute for Ap-
plied Mathematics, Jiilich, Germany, 2005, pp. 893-900.

S. Lee, Fast, centralized detection and resolution of distributed
deadlocks in the generalized model, /EEE Trans. Softw. Eng.
30(9) (2004), 561-573.

G.R. Luecke, H. Chen, J. Coyle, J. Hoekstra, M. Kraeva and
Y. Zou, MPI-CHECK: A tool for checking Fortran 90 MPI pro-
grams, Concurrency and Computation: Practice and Experi-
ence 15(2) (2003), 93-100.

Message Passing Interface Forum, MPI: A message-passing
interface standard, Version 2.2, April 2009, available at:
http://www.mpi-forum.org/docs/mpi22-report.pdf.

M.S. Miiller, M. van Waveren, R. Lieberman, B. Whitney,
H. Saito, K. Kumaran, J. Baron, W.C. Brantley, C. Parrott,
T. Elken, H. Feng and C. Ponder, SPEC MPI2007 — an appli-
cation benchmark suite for parallel systems using MPI, Con-
currency and Computation: Practice and Experience 22(2)
(2010), 191-205.

S.S. Vakkalanka, S. Sharma, G. Gopalakrishnan and
R.M. Kirby, ISP: A tool for model checking MPI programs, in:
13th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, 2008, pp. 285-286.

J.S. Vetter and B.R. de Supinski, Dynamic software testing
of MPI applications with umpire, Supercomputing, ACM/IEEE
2000 Conference, 4—10 November 2000, pp. 51-51.

A. Vo, Scalable formal dynamic verification of MPI programs
through distributed causality tracking, PhD dissertation, Uni-
versity of Utah, School of Computing, March 2011.

H.J. Yoon and D.Y. Lee, Deadlock-free scheduling of pho-
tolithography equipment in semiconductor fabrication, /EEE
Transactions on Semiconductor Manufacturing 17(1) (2004),
42-54.

Advances in : ~ = Journal of

o . Industrial Engineerin
INultimedia e

Applied
Computational
Intelligence and Soft
- ; ey Lomputing—
H H nternational Journal of ! - "
The Scientific D gureter . ey B P —
World Journal Sensor Networks

Advances in

Fuzzy
Systems

Modelling &
Simulation
in Engineering

e

Hindawi

Submit your manuscripts at

http://www.hindawi.com

Jourr
Computer Networks
and Communications Advances in

Artificial
Intelligence

i ‘ Advances in
Biomedical Imaging Artificial
¥ 9, =M Neural Systems

#

International Journal of
Computer Games
Technology

Intel ional J na
Reconfigurable
Computing

e . Computational i
t Ad S ~ Journal of
Journal of uman-Computer Intelligence and e, Electrical and Computer
Robotics Interaction Neuroscience Engineering

