
Scientific Programming 21 (2013) 65–78 65
DOI 10.3233/SPR-130365
IOS Press

Compiler-directed file layout optimization for
hierarchical storage systems 1

Wei Ding a,∗, Yuanrui Zhang b, Mahmut Kandemir a and Seung Woo Son c

a The Pennsylvania State University, University Park, PA, USA
E-mails: {wzd109, kandemir}@cse.psu.edu
b Intel Corporation, University Park, PA, USA
E-mail: yuanrui.zhang@intel.com
c Northwestern University, Evanston, IL, USA
E-mail: sson@eecs.northwestern.edu

Abstract. File layout of array data is a critical factor that effects the behavior of storage caches, and has so far taken not much
attention in the context of hierarchical storage systems. The main contribution of this paper is a compiler-driven file layout
optimization scheme for hierarchical storage caches. This approach, fully automated within an optimizing compiler, analyzes
a multi-threaded application code and determines a file layout for each disk-resident array referenced by the code, such that
the performance of the target storage cache hierarchy is maximized. We tested our approach using 16 I/O intensive application
programs and compared its performance against two previously proposed approaches under different cache space management
schemes. Our experimental results show that the proposed approach improves the execution time of these parallel applications
by 23.7% on average.

Keywords: File layout, compiler optimization

1. Introduction

Caching file blocks in memory (called “storage
caching”) is a promising way of alleviating disk laten-
cies in applications that manipulate disk-resident data
sets. Modern high end systems can employ storage
caching in multiple layers, e.g., compute nodes, stor-
age nodes, and I/O nodes. Specifically, the compute
nodes are used to execute the application threads, the
storage nodes are used to connect the disks, and the I/O
nodes are used to transfer data between compute nodes
and storage nodes. As illustrated in Fig. 1, in this type
of storage systems, a cluster of compute nodes is con-
nected to a cluster of I/O nodes; each compute node
can have a shared or private cache; and each I/O node
can have a cache that could be accessed by multiple
compute nodes. And, each storage node can employ a
cache that is shared by all compute nodes that have ac-
cess to it. Clearly, how to take advantage of such stor-
age cache hierarchy for I/O-intensive scientific appli-

1This paper received a nomination for the Best Paper Award at
the SC2012 conference and is published here with permission from
IEEE.

*Corresponding author. E-mail: wzd109@cse.psu.edu.

cations may be critical from the performance point of
view.

Compiler support for I/O-intensive applications
have been investigated in the past. Prior compiler re-
search in this direction can be roughly divided into two
categories: code transformations and file layout opti-
mizations. Most of the prior code transformation work
[4,25,27] deals with iteration space tiling and distribu-
tion of loop iterations across multiple nodes. File lay-
out optimizations [27] represent a complementary ap-
proach and prior efforts in this direction target sequen-
tial applications. To our knowledge, there is no prior
compiler-based work that automatically optimizes file
layouts targeting parallel computing platforms with hi-
erarchical storage caches. Note that, while it is possi-
ble to apply single node centric file layout optimiza-
tions to multi-threaded applications that run on par-
allel systems, such an approach would have at least
two problems. First, single-node centric file layout op-
timization strategies fail to capture data sharing pat-
terns among parallel threads, and consequently, the re-
sulting file layouts may not be very good when access
patterns of all compute nodes are considered. Second,
as will be demonstrated later in this paper through ex-

1058-9244/13/$27.50 © 2013 – IOS Press and the authors. All rights reserved



66 W. Ding et al. / Compiler-directed file layout optimization for hierarchical storage systems

Fig. 1. A sample storage system with three-layer storage cache hierarchy. Rectangles represent caches at different layers. Applications run on
CPUs on compute nodes. I/O nodes aggregate I/O demands from compute nodes and issue aggregated I/O requests to storage nodes. The set of
storage nodes (or file servers) manage storage devices and provide high performance I/O. In this hierarchy, the I/O nodes run a file system client
on behalf of the compute nodes. (Colors are visible in the online version of the article; http://dx.doi.org/10.3233/SPR-130365.)

perimental analysis, optimizing layout for only a single
layer versus for an entire storage cache hierarchy (mul-
tiple layers) can lead to very different results. There-
fore, a framework that optimizes file layouts consider-
ing parallel (inter-thread) data access patterns and un-
derlying hierarchical cache organization can be very
useful in practice. This paper is a step in this direction
and makes the following contributions:
• Targeting high-performance computing platforms

and I/O-intensive, array-based parallel applications
that manipulate disk-resident data sets, we propose a
fully automated file layout optimization strategy. This
strategy focuses on data layout restructuring as op-
posed to code restructuring, and it is implemented
within an optimizing compiler and determines an opti-
mized file layout for each disk-resident data array ma-
nipulated by the application. To the best of our knowl-
edge, this is the first compiler-based I/O work that
determines a file layout which considers parallel file
accesses from multiple threads running on high per-
formance computing systems with hierarchical storage
caches.
• We evaluate this optimization strategy using a set

of 16 I/O applications under different system configu-
rations that accommodate hierarchical caches. Our ex-
perimental results indicate that the proposed approach
improves (in our default system configuration) execu-
tion latencies by 23.7% when averaged over 16 I/O-
intensive applications. Our results also show that this
approach outperforms state-of-the-art code transfor-
mation and file layout optimization.

• We demonstrate that the effectiveness of our ap-
proach increases when recent exclusive cache manage-
ment strategies are employed.

2. Multi-layer storage hierarchy

Our approach targets multi-layer storage hierarchy.
Figure 1 illustrates an example of such hierarchy with
three layers: compute nodes, I/O nodes, and storage
nodes. Recent high-end parallel computing platforms,
such as the IBM Blue Gene/P (BG/P) system [18]
at Argonne National Laboratory the Cray XT5 sys-
tem [19] at Oak Ridge National Laboratory, employ
multi-layered systems. Designing robust high-end sys-
tems is becoming increasingly challenging, partly be-
cause matching storage system performance to high
degree of computation parallelism available is becom-
ing increasingly difficult. As far as storage systems are
concerned, there is also a growing performance gap be-
tween CPU/memory speed and disk latency. Therefore,
high degrees of scalability are hardly achieved with-
out providing a set of dedicated nodes for handing I/O.
For example, a key concept in the Blue Gene archi-
tecture is the organization of compute and I/O nodes,
also called an I/O forwarder [1] in BG/P, into logical
groups called processing sets or psets. A pset consists
of one I/O node and a collection of compute nodes.
The I/O forwarding mechanism built in this architec-
ture dramatically reduces the number of file system
operations/clients that the storage system (parallel file
system) sees, thereby improving overall system’s scal-
ability. The Cray XT5 I/O subsystem also has simi-



W. Ding et al. / Compiler-directed file layout optimization for hierarchical storage systems 67

lar architecture where storage arrays connected to I/O
nodes, called SIO nodes, which reside on a high-speed
interconnect [19].

In our study, we assume that nodes in all layers
can be equipped with certain amount of storage caches
(though in our experiments we allocate caches only
in I/O and storage nodes, due to the high demand of
compute node memory). Multi-layer caching has pre-
viously been investigated in several studies [12,44,47].
In Fig. 1, each rectangle represents storage caches at
different layers. In this particular configuration, every
four compute nodes are connected to one dedicated I/O
node, all of which are then connected to two storage
server. We note that the ratio of I/O nodes to compute
nodes can vary from system to system, and depending
on the specific configuration, each I/O node services
I/O request from different number of computer nodes.
Since multi-layered architectures are prevalent, it is
crucial to explore cache management and optimization
policies that operate in a hierarchy-aware manner.

We now informally discuss what role file layout
optimization can play in improving performance of
hierarchical storage caches. From a data access per-
spective, one can talk about three different “layouts”
for data. “Array Layout” represents how a multi-
dimensional data structure is viewed by the program.
“File layout”, on the other hand, is a result of the map-
ping between array elements (in the multi-dimensional
space) and file locations. Finally, “Disk Layout”, a re-
sult of the mapping between file locations and disks,
captures the storage order of data in disks, and is influ-
enced by the underlying file striping strategies adopted.
While file systems do not enforce any specific file lay-
out, straightforward layouts such as “row-major” and
“column-major” are probably the most widely used
ones. In a row-major layout for instance, data elements
in a row are stored in consecutive file locations, and
rows are stored one after another. Although such sim-
ple file layouts are probably sufficient for sequential
applications with good spatial reuse, they may not be
the best option for multi-threaded applications that ma-
nipulate disk-resident datasets.

To illustrate this, consider Fig. 2(a) which shows a
highly simplified example where a thread (of a multi-
threaded application) makes data accesses to a file un-
der a default (e.g., row-major) file layout. It can be ob-
served that these data accesses are scattered all over
the file space, which tends to increase the number of
“data blocks” (our cache management unit) occupied.
Higher number of data blocks required to store the re-
quested data elements in turn increases the pressure
on shared storage caches. More specifically, since each

Fig. 2. Importance of optimized file layout in minimizing the number
of blocks needed to store the accessed data. (Colors are visible in the
online version of the article; http://dx.doi.org/10.3233/SPR-130365.)

thread brings to the cache more data elements than it
needs, effective cache capacity is reduced, which in
turn affects application performance. Further, this also
hurts performance of other threads that share the same
storage cache with this thread. Consider now Fig. 2(b)
which shows the same data accesses under an alter-
nate file layout optimized using our approach, techni-
cal details of which will be presented in the follow-
ing sections. In this case, the data elements accessed
by our thread are stored in consecutive file locations,
which helps us minimize the number of data blocks
occupied. That is, optimizing file layout in this fash-
ion reduces the “block footprint” of a node in the tar-
get hierarchical cache system. Based on this observa-
tion, we propose a framework to minimize the number
of data blocks accessed by each thread at each storage
layer in a multi-layer storage hierarchy. It needs to be
emphasized however that the final file layout should
be determined by considering accesses coming from
all threads of the application, and in addition, the re-
sulting mapping function between data elements and
file locations should be easy to express (from a com-
piler implementation viewpoint). This optimization is
called “inter-node file layout optimization” in this pa-
per, and the file layout determined by it cannot be ob-
tained through existing conventional file layout opti-
mization strategies alone.

3. Background

In this section, we give the notations and main con-
cepts used in this paper. Figure 3(a) shows an ex-



68 W. Ding et al. / Compiler-directed file layout optimization for hierarchical storage systems

Fig. 3. (a) An example code fragment with file I/O commands, and
(b) its simplified version.

ample code fragment written using MPI-IO [17]. It
performs matrix multiplication on disk-resident data.
For simplicity, we omit the I/O commands and rep-
resent such a code as shown in Fig. 3(b) in our dis-
cussion. In such I/O-intensive applications, if the loop
bounds and array accesses are affine functions of outer
loop indices and loop-invariant parameters (to sim-
plify the notation, we omit the loop-invariant parame-
ters in our discussion), we can employ the polyhedral
model [2] to represent loops and disk-resident arrays,
in which, the iteration space of an n-level loop nest
is viewed as an n-dimensional polyhedron bounded
by linear inequalities derived from loop bounds. Each
point in this polyhedron is denoted by an iteration
vector �i = (i1, i2, . . . , in)T , with ik being the itera-
tor of the kth loop (starting from the outermost one),
where 1 � k � n. Similarly, the data space of an
m-dimensional array is viewed as an m-dimensional
polyhedron bounded by constants derived from the ar-
ray declaration statements, and each point (array ele-
ment) in this polyhedron is denoted by a data (index)
vector �a = (a1, a2, . . . , am)T , with ak corresponding
to the index of the kth dimension, where 1 � k � m.
Each array reference �r can be expressed in terms of the
iteration vector as: �a = Q ·�i+�q, where Q is the access
matrix of m × n and �q is the offset vector of m × 1.
For example, the reference W [i, j] to the disk-resident
array W in Fig. 3(b) can be expressed as:

�r =

(
1 0 0
0 1 0

)
·�i+

(
0
0

)
,

where�i = (i1, i2)T and �r = (r1, r2)T . In other words,
each array reference represents a mapping from the it-
eration space to the data space of the corresponding
disk-resident array.

Another important concept used in this work is
hyperplane. In an x-dimensional space (either iter-
ation or data space) denoted by the vector �b =
(b1, b2, . . . , bx)T , a hyperplane is defined by an affine
equality g1b1 + g2b2 + · · · + gxbx = c, where

g1, g2, . . . , gx (rational numbers) are hyperplane coef-
ficients and c is hyperplane constant. The hyperplane
vector �g = (g1, g2, . . . , gx), which is normal to the hy-
perplane, defines a hyperplane family, where “mem-
ber” hyperplanes have the same hyperplane vector but
different values of c. In this work, hyperplanes are
used to express iteration space and data space parti-
tions based on access patterns.

Hyperplanes can be used to explain our loop paral-
lelization and distribution strategy, where, the
m-dimensional iteration space is evenly partitioned
into iteration blocks (the last block may have a smaller
number of iterations). By a set of parallel hyperplanes
orthogonal to the uth dimension (corresponding to the
uth loop, where u �= m),2 and these iteration blocks
are assigned to the threads in a round robin fashion in
the order of the thread numbers. These parallel hyper-
planes are called the iteration hyperplanes. The hyper-
plane vector that represents these iteration space hy-
perplanes is a 1 × m unit vector (denoted as �hI ,s) in
the form of (0, 0, . . . , 0, 1, 0, . . . , 0), where 1 appears at
the uth position. The left portion of Fig. 5 illustrates
an example of our loop parallelization and distribution
strategy where iteration blocks are distributed across
two threads (P1 and P2).

4. Inter-node file layout optimization

Figure 4 shows where our inter-node file layout op-
timization falls in the compilation flow. Our optimiza-
tion is applied following the loop parallelization and
distribution phase (described in Section 3), which gen-
erates parallelized loop nests that access one or more
disk resident arrays. In addition to these loop nests, the
input to our approach also includes a description of the
target storage cache topology (e.g., the number of lay-
ers, number of caches at each layer, their capacities,
and block sizes). Each array is assumed to be stored in
a separate file.3 Based on the discussion in Section 2,
in order to minimize the number of data blocks ac-
cessed by each thread, we need to first find the data el-
ements touched by each thread. This is the main goal
in the first step of our approach (Section 4.1). Infor-
mally speaking, this step re-orders the data elements
stored in the file such that the portion of data elements
accessed by each thread can be easy identified based

2The value of u is specified by the user.
3While storing multiple arrays in the same file can potentially

bring further benefits, we postpone its investigation to a future study.



W. Ding et al. / Compiler-directed file layout optimization for hierarchical storage systems 69

Fig. 4. High level overview of our approach. (Colors are visible in the
online version of the article; http://dx.doi.org/10.3233/SPR-130365.)

on certain dimension of the array. After that, our sec-
ond step (Section 4.2) takes the storage cache hierar-
chy into account to form the file layout such that the
number of data blocks accessed by each thread can be
minimized at each storage cache level. The output of
our approach are the modified array accesses (array in-
dex functions are updated) and optimized file layout
for each array based on parallel accesses issued to it
by different threads. It is important to emphasize that
our approach determines a file layout for each disk-
resident data at compile time. There is no dynamic
(runtime) layout changes involved and no other run-
time overheads.

4.1. Step I: Array partitioning

Based on our loop parallelization and distribution
strategy explained in Section 3, in this section, we per-
form a unimodular data transformation on each array to
isolate the data elements touched by different threads.

Let us first introduce the concept of unimodular
data transformation. A unimodular data transformation
maps each data vector �a in the original data space to a
unique vector �a′ in the transformed data space through
a transformation matrix D, whose determinant is either
+1 or −1 [30], i.e., �a′ = D�a, and the array reference
�r is changed accordingly to �r ′, i.e., �r ′ = D�r.

The basic idea of array partitioning is to perform a
unimodular data transformation on each array to iso-
late the data elements touched by different threads.
Observe that, in our loop parallelization and distribu-
tion strategy (explained in Section 3), two iterations
(denoted as �i1 and �i2, respectively) that reside on the
same iteration hyperplane (defined by �hI ) must be ac-
cessed by the same thread and grouped into the same
iteration block (see Fig. 5). Therefore, if the data ele-
ments accessed by these two iterations through a trans-
formed reference �r′ always reside on the same hy-

Fig. 5. Illustration of array partitioning.

perplane with a hyperplane vector �hA on the trans-
formed data space, then the transformed n-dimensional
data space for each array can be evenly partitioned
into data blocks (the last data block may have smaller
number of data elements) by a set of parallel hyper-
planes represented by �hA, such that all the data ele-
ments in each data block are only accessed by the same
thread. Here �hA is a 1 × n unit vector in the form of
(0, 0, . . . , 0, 1, 0, . . . , 0), where 1 appears at the vth po-
sition, and such a partitioning is illustrated in Fig. 5.
Let L and U refer, respectively, to the lower and upper
bounds along the vth dimension of the array, and x be
the number of iteration blocks in the iteration space.
Then, from this figure, we can also see that, the data
block size along the vth dimension can be expressed as
(U − L)/x.

Based on the above observation, let us first derive
an expression that D must satisfy for the target array
in cases where it has only one (original) reference �r.
First, note that, any two iterations�i′1 and�i′2 that reside
on a hyperplane defined by a hyperplane vector �hI (in
the transformed iteration space) should satisfy:

�hI
(
�i′1 −�i′2

)
= 0. (1)

Let Eu be the matrix that is obtained from an m ×m
identity matrix by deleting the uth row. Since �hI us a
1 × m unit vector, i.e., �hI = (0, 0, . . . , 0, 1, 0, . . . , 0),
where 1 appears at the uth position, each row vector of
Eu is a solution for�i′1 −�i′2.

Second, since the two data elements �a′1 and �a′2 ac-
cessed by these two iterations through �r′ always re-
side on the same hyperplane defined by �hA (in the
transformed data space), similar to Eq. (1), we have
�hA(�a′1 −�a′2) = 0. Assuming �r = Q�i+�o and �r′ = D�r,
we further have:

�hADQ
(
�i′1 −�i′2

)
= 0. (2)



70 W. Ding et al. / Compiler-directed file layout optimization for hierarchical storage systems

In other words, any two iterations�i′1 and�i′2 that satisfy
Eq. (1) must also satisfy Eq. (2). As a result, we have:

�hADQEu = 0, (3)

Eq. (3) essentially gives the equation that D should sat-
isfy when there only exists one reference for the tar-
get array. Since �hA, Q and Eu are known, Eq. (3) is
actually a homogeneous linear system, which can be
solved by using Integer Gaussian Elimination [38].

We can further conclude that, in case where there are
multiple references to the target array, we have:

�hADQ1Eu = 0,

�hADQ2Eu = 0,

...

�hADQkEu = 0, (4)

where have Q1,Q2, . . . ,Qk are different array access
matrices for these references. Equation (4) consists
of k homogeneous linear systems to solve. Clearly,
a unique D that satisfies all these homogeneous lin-
ear systems may not exist. Our strategy is to assign
a weight to each access matrix to determine the most
beneficial linear system to solve first, which in turn,
satisfies the majority of references. Specifically, as-
suming that there are s references in a given set of mul-
tiple loop nests that have the same access matrix Qi,
then the weight of Qi, denoted as W (Qi), is the sum
of the number of times that each of these references is
accessed, which can be expressed as:

W (Qi) =
s∑

j=1

nj , (5)

where nj is estimated by the product of the trip counts
(the number of iterations) of the loops that enclose the
said reference.

4.2. Step II: Storage hierarchy aware file layout
determination

At this point, array partitioning has identified the
data regions locally accessed by different computation
blocks (or threads) on compute nodes. Note however
that it does not determine a linear file layout for each
array to be stored in disks. Therefore, our second step
is to create a linear layout for each array based on array

partitioning. An important feature of this step is that it
explicitly considers the storage-cache hierarchy in the
target I/O architecture and forms a linear file layout
that minimizes the number of file blocks used by all
threads at any given time as well as conflicts between
threads in shared storage caches, thus reducing expen-
sive I/O cache misses. The created (linear) file layout
can also help improve the effectiveness of hardware
I/O prefetching if supported by the underlying system.

The key point to form this file layout is to construct a
layout pattern according to the storage cache hierarchy
in the target architecture. Specifically, this layout pat-
tern is a thread-interleaved pattern built in a top-down
fashion, i.e., from compute nodes to I/O nodes and then
to storage nodes that connect to disks, with the consid-
eration of cache capacities at different layers.4 To make
it easy to follow, we use the architecture depicted in
Fig. 6(c) and an already-partitioned two-dimensional
array for four threads/computation blocks to describe
our strategy. In Fig. 6(c), we assume that there are
four compute nodes, each running a thread; however,
no storage caching is employed in each compute node.
Therefore, we omit compute nodes and only depict two
layers, where SC1 holds two I/O nodes (each connect-
ing to two compute nodes) and SC2 holds one storage
node that connects to disks. Suppose that the storage
cache capacities at SC1 and SC2 are S1 and S2, respec-
tively, and we have S1 < S2. We now discuss how to
form the layout pattern under these assumptions.

First, we construct a SC1 pattern 〈P1,P2〉 of size
S1. This pattern has two contiguous file chunks, each
of which has size S1/2. The first file chunk contains
S1/2 data elements accessed by thread P1, and the sec-

Fig. 6. (a) and (b) are two layout patterns for the sample architec-
ture shown in (c), in which the rectangles denote caches and cir-
cles represent processors. Only storage and I/O nodes are shown
for clarity. (Colors are visible in the online version of the article;
http://dx.doi.org/10.3233/SPR-130365.)

4We assume the capacities of different caches that belong to the
same layer are the same.



W. Ding et al. / Compiler-directed file layout optimization for hierarchical storage systems 71

ond file chunk contains S1/2 data elements accessed
by thread P2. Clearly, if we place the data elements
accessed by P1 and P2 in this way, each of them uti-
lizes half of the shared SC1 cache space for this ar-
ray access, which helps reduce the conflict misses be-
tween P1 and P2 at runtime. Similarly, we can also
construct a SC1 pattern 〈P3,P4〉 for P3 and P4. Next,
we construct a SC2 pattern 〈P1,P2,P3,P4〉 of size S2,
by first repeating the SC1 patterns 〈P1,P2〉 until size
S2/2, and then repeating the SC1 pattern 〈P3,P4〉 for
the rest. Clearly, if we place the data elements accessed
by P1, P2, P3 and P4 in this way, the space contention
among these threads in the shared SC2 cache can be al-
leviated. This SC2 pattern is the layout pattern we are
looking for, and it will be applied repeatedly to create
a linear file layout for the entire array.

After forming these layout patterns, we now dis-
cuss how to use these patterns to perform array index
transformation. The key point is to find the starting ad-
dress of each file chunk corresponds to a thread. Let
us take thread P1 in Fig. 6(c) for example. Assuming
that its base address is base1, the starting address of
its xth file chunk (x starts from 0) can be calculated as
base1 + b1 + b2, where base1 is the starting address of
corresponds to P1, b1 and b2 are the starting addresses
of patterns 〈P1,P2,P3,P4〉 and 〈P1,P2〉 that contain
the xth file chunk, respectively. Let t1 be the number
of times that 〈P1,P2〉 repeats inside 〈P1,P2,P3,P4〉,
i.e., t1 = S2/2S1, then we have b1 = (x%t1)S1 and
b2 = (x/t1)S2.

The starting address of the xth file chunk of other
threads can be calculated in the same way. In general,
in a symmetric n-layer cache hierarchy with evenly-
distributed threads across compute nodes, let Si be the
storage cache capacity at the ith layer, Ni be the num-
ber of caches that a SCi cache connects to at layer
(i − 1) (e.g., N2 = 2 in Fig. 6(c), since an SC2 cache
is connected to two SC1 caches), l be the number of
threads per SC1 cache (or compute node), and ti rep-
resent the number of times a SCi pattern repeats in-
side a SC(i + 1) pattern (ti = Si+1/(Ni+1Si)). We
have bi = ((x/(t1 · · · ti−1))%ti)Si, where 1 � i �
n − 1, and bn = (x/(t1 · · · tn−1))Sn. The starting ad-
dress of the xth file chunk of Pt can be calculated as:
baset + bn + bn−1 + · · ·+ b2 + b1. The pseudo-code
for this storage cache hierarchy-aware file layout for-
mation/indexing is given in Algorithm 1.

4.3. Discussion

We next discuss the limitations of our work. First, in
the proposed approach, we treat all out-of-core data as
temporary. In other words, the mapping of array data

Algorithm 1. Inter-node file layout optimization

1: INPUT: k threads and with n level storage caches.
2: OUTPUT : File layout for each array.
3: for each array Ai do
4: determine its transformation matrix Ti by using

Eq. (4).
5: for j = 0 → k − 1 do
6: basej = Addr(A(. . . , au−1, (j + 1)(U −

L)/x, au+1, . . .));
7: for each data elements �a accessed by thread j do
8: if counter == S1/p then
9: xj++;

10: b1 ← (xj%t1)S1;

11:
...

12: bn−1 ← ((xj/(t1 · · · tn−2))%tn−1)Sn−1;
13: bn ← (xj/(t1 · · · tn−1))Sn;
14: addrj ← basej + bn + bn−1 + · · ·+ b1;
15: Addr(�a) ← addrj ;
16: counter ← 0;
17: else
18: addrj++; counter++;
19: end if
20: end for
21: end for
22: end for

to file stream only exist in the image and is optimized
for a particular number of threads and storage hierar-
chy. Therefore, the data is not readable by other appli-
cations. One possible way to solve this problem is to
add two more layout transformations to our approach
(one for input and one for output arrays). Specifically,
the input arrays can be transformed – at the beginning
of the program – from a canonical layout (e.g., row
major) and the output arrays – at the end of the pro-
gram – can be transformed either into a canonical lay-
out or into a layout that is desired by the application
that will use those arrays as input.

Second, in the proposed approach, recompilation is
needed when the system-parameters are changed, such
as storage cache hierarchy, cache size, and number of
I/O caches. However, we are working on an extension
that generates layout for a “template hierarchy” instead
of a specific (concrete) hierarchy. For example, all hi-
erarchies with the same number of high-level caches
connected to a low-level cache can be considered as
belonging to the same “template”, and a single com-
pilation for all architectures that belong to the same
template would suffice (with some performance loss,
of course).



72 W. Ding et al. / Compiler-directed file layout optimization for hierarchical storage systems

5. Experiments

5.1. Setup and applications

We performed our experiments using a Linux clus-
ter that runs MPI-IO [17] on top of the PVFS paral-
lel file system [7]. PVFS is a parallel file system that
stripes file data across multiple disks in different nodes
in a cluster. It accommodates multiple user interfaces,
which include MPI-IO, traditional Linux interface, and
the native PVFS library interface. While as explained
earlier, our approach is quite general and determines a
file layout for any given storage cache hierarchy, in our
experimental evaluation we focus on a three-tier sys-
tem (of the type shown in Fig. 1), and assume that only
I/O and storage layers have caches. The major con-
figuration parameters used in our experimental eval-
uation and their default values are given in Table 1.
Later in our experiments, we change the values of some
of these parameters and carry out a sensitivity analy-
sis. We used a set of 16 multi-threaded scientific ap-
plications that manipulate disk-resident data. Brief de-
scriptions and important characteristics of these appli-
cations are listed in Table 2. These applications are
collected from different sources and their common
characteristic is that they are I/O-intensive. Apsi, ap-
plu, swim and mgrid are out-of-core versions of well-
known SPECOMP [39] applications, and similarly, bt
and sp are out-of-core versions of the corresponding
NAS benchmarks [34]. S3asim and qio are frequently
used I/O benchmarks [35]. cc-ver-1 and cc-ver-2 are
two different implementations for protein structure
prediction, and afores is the I/O template for an alter-
native fuel combustion simulation code (these codes
are locally maintained). Twer is a twister simulation
kernel, and hf, sar and contour are implementations of
the Hartree–Fock method, synthetic aperture radar ker-
nel, and contour display, respectively. These applica-
tions use different programming interfaces (e.g., MPI-
IO, PnetCDF, HDF5); but, all use PVFS beneath this
interface. The cache statistics and execution times pre-
sented in the last three columns of Table 2 are for
the “original applications” without any file-layout op-
timization (but caches are used in both I/O node and
storage node layers), when using the setup shown in
Table 1. Also, in this default execution, each thread of
the application is assigned to a single compute node,
and we thus have a total of 64 threads (although our
approach can also work with multiple threads per com-
pute nodes).

Table 1

Major system parameters and their default values for our target
architecture

Parameter Value

Number of compute nodes 64

Number of I/O nodes 16

Number of storage nodes 4

Data striping Uses all 4 storage nodes

Stripe size 128 kB

Storage capacity/disk 40 GB

RPM 10,000

Data block size 128 KB

Cache capacity/node (I/O, storage) (1 GB, 2 GB)

Note: The system architecture is similar to the one shown in Fig. 1
(except for the number of nodes at different layers).

Table 2

Our applications, storage cache misses, and execution times (under
the “default execution”)

Application
name

Miss rate Execution
time

I/O caches Storage caches (%)

(%) (%)

cc-ver-1 6.1 4.4 3 min 21 s

s3asim 7.4 6.6 3 min 36 s

twer 29.0 44.9 5 min 27 s

bt 16.2 29.4 1 min 44 s

cc-ver-2 27.9 21.6 4 min 59 s

astro 52.2 61.3 6 min 18 s

wupwise 36.4 52.5 3 min 24 s

contour 31.9 64.2 4 min 07 s

mgrid 13.3 38.4 5 min 31 s

swim 34.8 19.9 2 min 57 s

afores 26.7 24.5 7 min 12 s

sar 22.6 57.9 6 min 14 s

hf 39.1 41.6 5 min 41 s

qio 18.2 26.8 2 min 28 s

applu 44.2 26.1 4 min 05 s

sp 46.4 37.0 8 min 50 s

We implemented our storage caches at I/O and stor-
age nodes. For this purpose, a portion of the main
memory in each node is reserved to keep copies of
the frequently-used data. The unit of granularity for
managing these caches is a data block whose value is
the same as the stripe size (at the storage node level).
These storage caches are managed using the LRU pol-
icy and are inclusive. Note that, while the results we
present below depend on the specific caching policy
employed (e.g., LRU; inclusive), our approach itself
can work with any storage caching policy, that is, it is
orthogonal to how the storage caches in the system are



W. Ding et al. / Compiler-directed file layout optimization for hierarchical storage systems 73

managed. Later in this section we also present results
with two state-of-the-art exclusive caching policies.

We implemented our file layout optimization algo-
rithm using the SUIF compiler framework [40]. Our
optimization increased compilation times of the orig-
inal applications by about 36% on average, and the
highest compilation time observed was about 50 sec-
onds. For each application program in our experimen-
tal suite, in addition to the “default execution” which
uses the “original file layouts”, we performed exper-
iments with our proposed inter-node file layout opti-
mization.

Before we start presenting our experimental evalu-
ation, we want to discuss how our approach improved
file layouts of different data arrays manipulated by
these multi-threaded benchmark codes. The number
of disk-resident arrays in our codes ranges from 3 (in

benchmark afores) to 17 (in benchmark twer). When
considering all the codes tested, our approach was able
to optimize about 72% of these arrays on average. In
particular, we were able to optimize the layouts of all
arrays in benchmark s3asim.

5.2. Results with the default values of our
experimental parameters

Our first set of results, given in Fig. 7(a), present
the execution times normalized with respect to the de-
fault execution described above. Based on the results
collected, our applications can be divided into three
groups. In the first group, which contains cc-ver-1,
s3asim and twer, are applications that do not benefit
from inter-node file layout optimization. The underly-

Fig. 7. Experimental results. (a) Execution time results. (b) Results with different thread-to-compute node mappings. (c) Sensitivity to cache
capacities. (d) Sensitivity to node counts at different layers. (e) Sensitivity to block size. (f) Sensitivity to the number of layers targeted. (g) Com-
parison against alternate schemes [26] (first bar) and [27] (second bar). (h) Comparison against prior hierarchical cache management schemes
[47] (KARMA) and [44] (DEMOTE-LRU). (Colors are visible in the online version of the article; http://dx.doi.org/10.3233/SPR-130365.)



74 W. Ding et al. / Compiler-directed file layout optimization for hierarchical storage systems

Table 3

The cache misses after our approach has been applied

Name I/O caches Storage caches

cc-ver-1 0.88 0.91

s3asim 0.92 0.94

twer 0.94 0.98

bt 0.52 0.59

cc-ver-2 0.62 0.71

astro 0.54 0.51

wupwise 0.58 0.66

contour 0.63 0.59

mgrid 0.71 0.74

swim 0.59 0.64

afores 0.63 0.76

sar 0.67 0.72

hf 0.48 0.58

qio 0.43 0.61

applu 0.57 0.59

sp 0.63 0.66

Notes: The values are normalized with respect to the corresponding
values in Table 2.

ing reason for this can change from one application
to another. For example, cc-ver-1 and s3asim already
have very good cache hit rates in their default execu-
tion; there is simply no scope for additional perfor-
mance improvement. In comparison, in twer, overly-
conflicting requests from different threads at different
points in execution prevent the compiler from choos-
ing a good file layout. The applications in the sec-
ond group, which contains bt, cc-ver-2, astro, wup-
wise, contour and mgrid, benefit reasonable well from
the inter-node layout optimization (with improvements
ranging between 8% and 13%). In the third group,
which includes applications swim, afores, sar, hf, qio,
applu and sp, the inter-node layout optimization brings
significant benefits (between 21% and 26%). When
all applications are considered our compiler-based file
layout optimization scheme brings an average execu-
tion time improvement of 23.7%. To explain these re-
sults, we present in Table 3 the normalized misses in
I/O and shared caches.

5.3. Sensitivity experiments

Our goal in this section is to present and discuss
results from our sensitivity experiments. In each ex-
periment presented below, only one parameter value is
modified; the remaining parameters retain their default
values given in Table 1.

In our first set of sensitivity experiments, we try
different thread-to-compute node mappings. In the re-

sults plotted in Fig. 7(b), Mapping I denotes our de-
fault thread mapping used in our experiments so far
(and is reproduced here for ease of comparison). On
the other hand, Mapping II, Mapping III and Mapping
IV represent different (alternate) thread mappings. Dif-
ferent mappings of threads to compute nodes (which
are actually different random permutations of threads
to compute nodes) are not expected to generate sig-
nificantly different results from one another in these
applications, mostly due to the data parallel nature of
computations. In three applications however, namely,
cc-ver-2, afores and sar, where the parallel computa-
tions mostly implement a master-slave model rather
than a data-parallel model, thread mapping makes a
difference. Even in these cases however, the difference
among different thread mappings remains within 6%,
indicating that the behavior of our approach is largely
independent of the underlying thread-to-compute node
mapping employed. In other words, our approach suc-
cessfully tailors the file layout to any given parallel
data access pattern.

Next, we measure the sensitivity of our schemes to
the cache capacities employed at different layers. Re-
call from Table 1 that, by default, we have 1 GB and
2 GB caches in the I/O and storage layers, respectively.
It can be observed from Fig. 7(c) that, when the cache
sizes are small, our approach brings more improve-
ments. This is because a smaller cache capacity makes
it more critical to exploit data locality. The next param-
eter we study is the number of nodes at different layers
of the storage hierarchy. Recall from Table 1 that we
have 64 compute nodes, 16 I/O nodes, and 4 storage
nodes in our default configuration. We use (64, 16, 4)
to refer to this default configuration. Figure 7(d) plots
the execution time improvements under different con-
figurations. Note that individual cache capacities are as
shown in Table 1. One observation we can make from
these results is that our approach is more successful
when there is more pressure on I/O and storage caches,
that is, when they are shared by more client and I/O
nodes, respectively. This is because the careful man-
agement of available cache space becomes more im-
portant under high sharing.

We next study the sensitivity of our savings to the
data block size. Recall that, the data block is the cache
space management unit, and is also the stripe size used
in our experiments. The results in Fig. 7(e) indicate that
working with smaller block sizes tends to improve the
performance benefits brought by our approach. This is
expected as a smaller block size allows a finer gran-
ular management of available cache space, which in



W. Ding et al. / Compiler-directed file layout optimization for hierarchical storage systems 75

turn leads to better file layouts for the disk-resident
datasets.

The graph in Fig. 7(f) plots the normalized execu-
tion times when our approach is applied targeting I/O
nodes only (the first bar), storage nodes only (the sec-
ond bar), and both layers (the version evaluated so far;
the third bar). One can clearly observe from these re-
sults that targeting the entire storage hierarchy is crit-
ical. In other words, targeting individual layers in the
storage hierarchy is not sufficient. In fact, targeting
only I/O node layer and storage node layer result in av-
erage performance improvements of 9.1% and 13.0%,
respectively, which are much lower than the case where
we target both the layers (23.7%).

5.4. Comparison against prior work

In this section, we first compare our approach to
two previously-proposed compiler-guided data local-
ity optimization strategies. The first of these strategies
[26] implements an intelligent loop iteration distribu-
tion strategy that targets at exploiting locality in hier-
archical storage caches. Specifically, the scheme de-
scribed in [26] implements an iterative strategy, which
clusters loop iterations based on the topology of the un-
derlying storage cache hierarchy and how client nodes
share caches that reside at different layers of the hierar-
chy. Note that this is a computation restructuring strat-
egy, as opposed to our approach, which is a data (file)
layout optimization strategy. The second strategy [27]
proposes a file layout optimization method (in addition
to computation restructuring) for I/O intensive applica-
tions, but does not target explicitly hierarchical storage
systems. This strategy basically implements a profiler-
based dimension reindexing method, using which, for
example, the compiler can convert a row-major file
layout to a column-major one. In our implementation
of this strategy, using profiling, we exhaustively tried
all possible dimension reindexings (e.g., for a three-
dimensional disk-resident array, six possible file lay-
outs) and selected the one that generated the best ex-
ecution time. The normalized execution times (again,
with respect to the default execution) achieved with
these schemes are presented in Fig. 7(g), along with
the results obtained when using our proposed approach
(inter). We can make two observations from these re-
sults. First, our layout based approach is more suc-
cessful than the computation mapping. This is primar-
ily because most disk-intensive scientific applications
implement data parallel computations where computa-
tion mapping is not the most critical factor. The result

is that computation mapping achieves about 7.6% im-
provement (compared to 23.7% obtained using our ap-
proach). Our second observation is that the prior file
layout optimization [27] leads to an improvement of
7.1% on average. The reason why this value is much
below than what is obtained with our approach is be-
cause the layouts determined by our approach cannot
simply be expressed as a dimension reindexing or a
combination of several dimension reindexings applied
one after another. As explained earlier, our approach
determines a file layout by considering parallel data
accesses coming from all compute nodes (and the un-
derlying storage cache hierarchy), which is something
cannot be achieved through dimension reindexing.

So far in our experimental analysis, we tested our
approach under an LRU based hierarchical cache man-
agement policy with inclusive caches. It is important to
note that our strategy determines an optimized file lay-
out considering accesses coming from parallel threads.
Therefore, in principle, this strategy can be used along
with any cache hierarchy management strategy. To
check this, we also implemented two previously pro-
posed hierarchical cache management schemes ([47]
and [44]) and tested them under our file layout opti-
mization strategy. KARMA [47] implements exclusive
caching by using application hints at all layers to clas-
sify all cached blocks into disjoint sets and partition the
cache according to this classification. DEMOTE-LRU
[44] also implements exclusive caching where clients
do block demotions, and the storage array employs the
traditional LRU cache management for both demoted
and recently read blocks. In our experiments, we ap-
plied these caching schemes only to the I/O and stor-
age layers, which are also the layers targeted by our ap-
proach. In the results presented in Fig. 7(h), the second
bar for each application indicates the execution time
achieved when our approach is used with [47], normal-
ized to the result obtained when using [47] without our
approach. Similarly, the third bar represents indicates
the execution time achieved when our approach is used
with [44], normalized to the result obtained when us-
ing [44] without our approach. As can be seen from
these results, the effectiveness of our layout optimiza-
tion strategy increases when using these alternate stor-
age hierarchy management schemes. In fact, the aver-
age improvements in execution cycles are 30.1% with
[47] and 28.6% with [44]. The reason why our ap-
proach increases the effectiveness of KARMA is be-
cause more localized data accesses enables KARMA
to generate more accurate hints. On the other hand,
our approach improves the effectiveness of DEMOTE-
LRU (as compared to LRU) because it leads to better
demotions.



76 W. Ding et al. / Compiler-directed file layout optimization for hierarchical storage systems

6. Related work

We now discuss previous work related to our file lay-
out optimization.

6.1. Multi-level caching

Most prior work [10,37,41,45] focuses on improving
behavior of storage (or second-level) cache manage-
ment because the behavior of the second-level cache
is often hard to characterize, making cache manage-
ment schemes inadequate. Particularly, Zhou et al. [50]
show that LRU is not suitable for managing stor-
age cache. To address LRU’s poor performance, sev-
eral techniques, such as multi-queue replacement [49],
eviction-based placement policies [8] and CLOCK-
pro [20] have been proposed. Choi et al. propose a
fine-grained file-level characterization of chunk ref-
erences in buffer management [10]. Vilayannur et
al. present selective caching because caching of cer-
tain block is not always beneficial [41]. Sarhan and
Das propose to use the on-disk buffers for caching in-
tervals between successive streams, while multimedia-
on-demand servers improves resource sharing by in-
telligent request schedulers [37]. Our approach com-
plements any existing caching policies with improved
cache locality because of file layout transformation.

Recently, many studies [3,9,16,21,28,44,46] looked
into cache management for multi-level storage hier-
archies. The main motivation for these studies is that
the modern networked storage systems have a hier-
archy of caches, and special care needs to be taken
in order to manage those cache hierarchies efficiently.
A key idea is how to reduce negative interference while
keeping most valuable blocks in shared cache [46].
Techniques to extract and predict the most valuable
blocks include transforming application-level require-
ment into I/O reservations [3], correlating program
counters with program context [16], exploiting refer-
ence regularities [28], locality of file chunks of non-
uniform strength [23], and automatic application ref-
erence pattern detection [9]. Wong and Wilkes [44]
explore the exclusive cache policies against the preva-
lent inclusive ones. These studies are system-level ap-
proaches and are, therefore, orthogonal to our ap-
proach.

6.2. Exploiting data access pattern

Another set of research efforts aim to use ac-
cess pattern history or other hints for I/O perfor-
mance improvement [6,14,22,24,33,36,42,47,48]. Pro-

posed techniques infer or predict future access pat-
terns using a guest OS’s buffer cache information [24],
chunk access history [48], hints from an application
(or client) [6,33,36,47], and temporal and spatial local-
ity in buffer cache [14,22]. The inferred access pattern
can then be used for dynamic and/or adaptive cache
management policies. Our approach would increase ef-
fectiveness of access pattern extraction mainly because
transformed file layouts could help improve cache lo-
cality.

6.3. I/O prefetching

Prefetching and its effects on shared storage caches
have also been extensively studied [5,11,13,15,29,31,
32]. These studies showed inefficiencies of existing
replacement algorithms [5,11], and proposed several
techniques such as managing prefetch memory for on-
line servers [31], Diskseen [11], self-tuning adaptive
cache management policy [15], combined prefetch-
ing and caching for systems with multiple disks [29].
More recent studies proposed studied the problems
in sequential prefetching and proposed adaptive asyn-
chronous algorithms [13] and TaP [32]. All these stud-
ies investigate how to prevent prefetched pages from
being evicted before being used. These studies are sim-
ilar to ours because the main goal is to improve stor-
age cache performance, but they are not explicitly tar-
get multi-level storage cache hierarchies. Unlike these
studies, our approach is based on compiler analysis and
file layout changes.

6.4. Compiler support for out-of-core computations

The compiler techniques have been extensively ex-
plored in I/O and studied blocking/tiling [43], out-of-
core compilation that efficiently block data movement
between storage and memory [4,25], etc. Kandemir et
al. [27] propose a compiler-based approach to optimize
cache behavior in the I/O server only. Chang and Gib-
son used speculative execution technique as an exten-
sion of TIP [36]. The work most relevant to our study
was conducted by Kandemir et al. [26], who used a
compiler to map computation for multi-level storage
cache hierarchies. Our approach is similar to this com-
putation mapping in that we also use a compiler anal-
ysis, but our approach is to optimize file layouts rather
than restructuring computations. technique is more fo-
cused on file layout optimization. To the best of our
knowledge, this is the first work that uses a compiler
to optimize file layout to optimize the performance of
multi-level storage cache hierarchies.



W. Ding et al. / Compiler-directed file layout optimization for hierarchical storage systems 77

7. Concluding remarks

The main contribution of this paper is a compiler-
driven file layout optimization strategy that targets hi-
erarchical storage caches. By analyzing a given appli-
cation code, the proposed strategy determines paral-
lel accesses to shared disk-resident arrays and changes
the mapping between the array elements and linear
file space such that the data elements accessed by a
thread are stored in consecutive file locations minimiz-
ing the number of data blocks needed in the shared
cache space. We tested the effectiveness of the pro-
posed compiler algorithm using 16 I/O intensive ap-
plications and different hierarchical storage configura-
tions. The collected experimental data are very promis-
ing and indicate that our approach generates significant
performance improvements under various multi-layer
cache management policies. Our results also show that
the proposed approach outperforms prior code and file
layout optimization based strategies.

Acknowledgements

This work is supported in part by NSF grants CNS
1017882, CNS 1152479, CCF 0937949, CCF 0833126
and DOE grant DE-SC0002156.

References

[1] N. Ali, P. Carns, K. Iskra, D. Kimpe, S. Lang, R. Latham,
R. Ross, L. Ward and P. Sadayappan, Scalable I/O forward-
ing framework for high-performance computing systems, in:
Proceedings of the IEEE International Conference on Cluster
Computing, 2009, pp. 1–10.

[2] C. Bastoul, A. Cohen, S. Girbal, S. Sharma, O. Temam,
A. Group and I. Rocquencourt, Putting polyhedral loop trans-
formations to work, in: Workshop on Languages and Compil-
ers for Parallel Computing, 2003, pp. 209–225.

[3] D.O. Bigelow, S. Iyer, T. Kaldewey, R.C. Pineiro, A. Povzner,
S.A. Brandt, R.A. Golding, T.M. Wong and C. Maltzahn, End-
to-end performance management for scalable distributed stor-
age, in: Proceedings of the 2nd International Workshop on
Petascale Data Storage, 2007, pp. 30–34.

[4] R. Bordawekar, A. Choudhary, K. Kennedy, C. Koelbel and
M. Paleczny, A model and bordawekar-ooc for out-of-core data
parallel programs, in: Proceedings of the fifth ACM SIGPLAN
Symposium on Principles and Practice of Parallel Program-
ming, 1995, pp. 1–10.

[5] A.R. Butt, C. Gniady and Y.C. Hu, The performance im-
pact of kernel prefetching on buffer cache replacement algo-
rithms, in: Proceedings of the ACM International Conference
on Measurement and Modeling of Computer Systems, 2005,
pp. 157–168.

[6] P. Cao, E.W. Felten and K. Li, Implementation and perfor-
mance of application-controlled file caching, in: Proceedings
of the USENIX Conference on Operating Systems Design and
Implementation, 1994.

[7] P.H. Carns, W.B. Ligon, III, R.B. Ross and R. Thakur, PVFS:
A parallel file system for Linux clusters, in: Proceedings
of the 4th Annual Linux Showcase and Conference, 2000,
pp. 391–430.

[8] Z. Chen, Y. Zhou and K. Li, Eviction based cache placement
for storage caches, in: Proceedings of the USENIX Annual
Technical Conference, 2003.

[9] J. Choi, S.H. Noh, S.L. Min and Y. Cho, An implementation
study of a detection-based adaptive block replacement scheme,
in: Proceedings of the USENIX Annual Technical Conference,
1999, pp. 18–18.

[10] J. Choi, S.H. Noh, S.L. Min and Y. Cho, Towards application/
file-level characterization of block references: a case for fine-
grained buffer management, SIGMETRICS Perform. Eval. Rev.
28 (2000), 286–295.

[11] X. Ding, S. Jiang, F. Chen, K. Davis and X. Zhang, DiskSeen:
exploiting disk layout and access history to enhance I/O
prefetch, in: Proceedings of the USENIX Annual Technical
Conference, 2007, pp. 20:1–20:14.

[12] B.S. Gill, On multi-level exclusive caching: offline optimality
and why promotions are better than demotions, in: Proceed-
ings of the 6th USENIX Conference on File and Storage Tech-
nologies, 2008.

[13] B.S. Gill, L. Angel and D. Bathen, AMP: Adaptive multi-
stream prefetching in a shared cache, in: Proceedings of the
Fifth USENIX Symposium on File and Storage Technologies,
2007, pp. 185–198.

[14] B.S. Gill, M. Ko, B. Debnath and W. Belluomini, STOW:
a spatially and temporally optimized write caching algorithm,
in: Proceedings of the USENIX Annual Technical Conference,
2009, p. 26.

[15] B.S. Gill and D.S. Modha, SARC: sequential prefetching in
adaptive replacement cache, in: Proceedings of the Annual
Conference on USENIX Annual Technical Conference, 2005,
pp. 33–33.

[16] C. Gniady, A.R. Butt and Y.C. Hu, Program-counter-based pat-
tern classification in buffer caching, in: Proceedings of the 6th
Conference on Symposium on Operating Systems Design & Im-
plementation, 2004, pp. 27–27.

[17] W. Gropp, E. Lusk and R. Thakur, Using MPI-2: Advanced
Features of the Message-Passing Interface, MIT Press, Cam-
bridge, MA, 1999.

[18] IBM Blue Gene/P, available at: http://www.ibm.com/watson.
[19] Jaguar, available at: http://www.nccs.gov/jaguar/.
[20] S. Jiang, F. Chen and X. Zhang, CLOCK-Pro: an effective im-

provement of the clock replacement, in: Proceedings of the
USENIX Annual Technical Conference, 2005, p. 35.

[21] S. Jiang, K. Davis and X. Zhang, Coordinated multilevel buffer
cache management with consistent access locality quantifica-
tion, IEEE Transactions on Computers 56(1) (2007), 95–108.

[22] S. Jiang, X. Ding, F. Chen, E. Tan and X. Zhang, Dulo: an ef-
fective buffer cache management scheme to exploit both tem-
poral and spatial locality, in: Proceedings of the 4th Confer-
ence on USENIX Conference on File and Storage Technolo-
gies, 2005.

[23] S. Jiang and X. Zhang, Ulc: a file block placement and re-
placement protocol to effectively exploit hierarchical locality



78 W. Ding et al. / Compiler-directed file layout optimization for hierarchical storage systems

in multi-level buffer caches, in: Proceedings of the 24th Inter-
national Conference on Distributed Computing Systems, 2004,
pp. 168–177.

[24] S.T. Jones, A.C. Arpaci-Dusseau and R.H. Arpaci-Dusseau,
Geiger: monitoring the buffer cache in a virtual machine envi-
ronment, in: Proceedings of the 12th International Conference
on Architectural Support for Programming Languages and Op-
erating Systems, 2006, pp. 14–24.

[25] M. Kandemir, A. Choudhary, J. Ramanujam and R. Bor-
dawekar, Compilation techniques for out-of-core parallel com-
putations, Parallel Comput. 24 (1998), 597–628.

[26] M. Kandemir, S.P. Muralidhara, M. Karakoy and S.W. Son,
Computation mapping for multi-level storage cache hierar-
chies, in: Proceedings of the 19th ACM International Sym-
posium on High Performance Distributed Computing, 2010,
pp. 179–190.

[27] M. Kandemir, S.W. Son and M. Karakoy, Improving I/O per-
formance of applications through compiler-directed code re-
structuring, in: Proceedings of the 6th USENIX Conference on
File and Storage Technologies, 2008, pp. 11:1–11:16.

[28] J.M. Kim, J. Choi, J. Kim, S.H. Noh, S.L. Min, Y. Cho and
C.S. Kim, A low-overhead high-performance unified buffer
management scheme that exploits sequential and looping ref-
erences, in: Proceedings of the 4th Conference on Symposium
on Operating System Design and Implementation, 2000.

[29] T. Kimbrel, A. Tomkins, R.H. Patterson, B. Bershad, P. Cao,
E.W. Felten, G.A. Gibson, A.R. Karlin and K. Li, A trace-
driven comparison of algorithms for parallel prefetching and
caching, in: Proceedings of the Second USENIX Symposium
on Operating Systems Design and Implementation, 1996,
pp. 19–34.

[30] S. Leung and J. Zahorjan, Optimizing data locality by array
restructuring, Technical report, Department of Computer Sci-
ence and Eng., University of Washington, 1995.

[31] C. Li and K. Shen, Managing prefetch memory for data-
intensive online servers, in: Proceedings of the 4th Confer-
ence on USENIX Conference on File and Storage Technolo-
gies, 2005.

[32] M. Li, E. Varki, S. Bhatia and A. Merchant, TaP: table-based
prefetching for storage caches, in: Proceedings of the 6th
USENIX Conference on File and Storage Technologies, 2008.

[33] X. Li, A. Aboulnaga, K. Salem, A. Sachedina and S. Gao,
Second-tier cache management using write hints, in: Proceed-
ings of the 4th Conference on USENIX Conference on File and
Storage Technologies, 2005.

[34] NAS Parallel Benchmarks, available at: http://www.nas.nasa.
gov/Resources/Software/npb.html.

[35] Parallel I/O Benchmarks, available at: http://www.mcs.anl.
gov/˜thakur/pio-benchmarks.html.

[36] R.H. Patterson, G.A. Gibson, E. Ginting, D. Stodolsky and
J. Zelenka, Informed prefetching and caching, in: Proceedings
of the Fifteenth ACM Symposium on Operating Systems Prin-
ciples, 1995, pp. 79–95.

[37] N. Sarhan and C. Das, An integrated resource sharing pol-
icy for multimedia storage servers based on network-attached
disks, in: Proceedings of the 23rd International Conference on
Distributed Computing Systems, 2003, pp. 136–143.

[38] A. Schrijver, Theory of Linear and Integer Programming, Wi-
ley, 1998.

[39] SPEComp, available at: http://www.spec.org/omp/.

[40] The SUIF 2 Compiler System, available at: http://suif.stanford.
edu/suif/suif2/.

[41] M. Vilayannur, A. Sivasubramaniam, M. Kandemir, R. Thakur
and R. Ross, Discretionary caching for I/O on clusters, in: Pro-
ceedings of the 3rd IEEE/ACM International Symposium on
Cluster Computing and the Grid, 2003, pp. 96–103.

[42] M. Wachs, M. Abd-El-Malek, E. Thereska and G.R. Ganger,
ARGON: performance insulation for shared storage servers,
in: Proceedings of the 5th USENIX Conference on File and
Storage Technologies, 2007.

[43] M.J. Wolfe, High Performance Compilers for Parallel Com-
puting, Addison-Wesley/Longman, 1995.

[44] T.M. Wong and J. Wilkes, My cache or yours? Making storage
more exclusive, in: Proceedings of the General Track of the
USENIX Annual Technical Conference, 2002, pp. 161–175.

[45] C.H. Xia, D. Towsley and C. Zhang, Distributed resource man-
agement and admission control of stream processing systems
with max utility, in: Proceedings of the 27th International Con-
ference on Distributed Computing Systems, 2007.

[46] G. Yadgar, M. Factor, K. Li and A. Schuster, MC2: Multiple
clients on a multilevel cache, in: Proceedings of the 2008 The
28th International Conference on Distributed Computing Sys-
tems, 2008, pp. 722–730.

[47] G. Yadgar, M. Factor and A. Schuster, KARMA: know-it-all
replacement for a multilevel cache, in: Proceedings of the 5th
USENIX Conference on File and Storage Technologies, 2007.

[48] J. Yoon, S.L. Min and Y. Cho, Buffer cache management: Pre-
dicting the future from the past, in: Proceedings of the Inter-
national Symposium on Parallel Architectures, Algorithms and
Networks, 2002.

[49] Y. Zhou, Z. Chen and K. Li, Second-level buffer cache
management, IEEE Trans. Parallel Distrib. Syst. 15 (2004),
505–519.

[50] Y. Zhou, J. Philbin and K. Li, The multi-queue replacement
algorithm for second level buffer caches, in: Proceedings of the
USENIX Annual Technical Conference, 2001, pp. 91–104.



Submit your manuscripts at
http://www.hindawi.com

Computer Games 
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed 
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied 
Computational 
Intelligence and Soft 
Computing

 Advances in 

Artificial 
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Journal of

Computer Networks 
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in 

Multimedia

 International Journal of 

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational 
Intelligence and 
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014


