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Abstract. PyTrilinos is a set of Python interfaces to compiled Trilinos packages. This collection supports serial and parallel dense
linear algebra, serial and parallel sparse linear algebra, direct and iterative linear solution techniques, algebraic and multilevel
preconditioners, nonlinear solvers and continuation algorithms, eigensolvers and partitioning algorithms. Also included are a
variety of related utility functions and classes, including distributed I/O, coloring algorithms and matrix generation. PyTrilinos
vector objects are compatible with the popular NumPy Python package. As a Python front end to compiled libraries, PyTrilinos
takes advantage of the flexibility and ease of use of Python, and the efficiency of the underlying C++, C and Fortran numerical
kernels. This paper covers recent, previously unpublished advances in the PyTrilinos package.
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1. Introduction

Python is an increasingly popular language for sci-
entific computing. NumPy [17] (Numerical Python)
provides an extremely convenient, high-level interface
to homogeneous, contiguous (and non-contiguous) ar-
rays of data. SciPy [19] (Scientific Python) is built on
top of NumPy and provides a Python interface to many
of the most popular scientific libraries available. Mat-
plotlib [14] provides high-quality plotting capabilities.
Parallelism is available via a long list of open source
modules. Robust solvers are provided by the Python
interfaces to PETSc [2] and Trilinos [13]. The SciPy
Conference [20] continues to grow in popularity, and
the presence of several Python sessions at scientific
computing conferences such as SuperComputing [23]
and the SIAM Conference on Computational Science
and Engineering [22] attest to the strong interest in us-
ing Python for scientific programming. In fact, Python
is now seen as a credible open source competitor to
MATLAB [16], perhaps the single most popular plat-
form for small to medium scale scientific computing.
This is in part because Python and MATLAB share cer-
tain traits in common: they are both high-level, inter-
preted, interactive and dynamic.

At the other end of the scientific computing spec-
trum are compiled codes written in Fortran, C and
C++ that run on massively parallel architectures to

solve large, multiscale, multiphysics problems. These
codes utilize low-level languages in an attempt to
achieve near-optimal processing efficiencies. While
the success at achieving this goal is debatable, there is
no question that compiled languages are more efficient
than interpreted languages such as Python.

As the complexity of simulations increases, how-
ever, more and more code is devoted to setup and to
initialization of a series of subproblems that must all
interface together to describe the larger scientific prob-
lem. This “command and control” software can dom-
inate the numerical kernels in terms of total lines of
code, while the kernels themselves still dominate run-
time execution. Low-level languages are notoriously
ill-suited to these types of bookkeeping tasks. It is
therefore easy to make the case that low-level lan-
guages should handle the numerically intense kernels
and high-level languages should be utilized for com-
mand and control.

This perhaps explains the rise in popularity of
Python for scientific computing. As a high level,
object-oriented language, it is very well suited to the
high-level description of scientific problems, to pro-
vide the modularity so often sought by scientists ask-
ing “what if” questions, and to glue together the vari-
ous components (often developed in different low-level
languages) of a successful scientific simulation. A well
designed scientific Python code will hand off the nu-
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merically intense computations to optimized compiled
code, while maintaining usability, readability and de-
velopmental scalability at the highest level.

PyTrilinos provides just such a capability. It sup-
ports massively parallel vector and multivector objects
and massively parallel operators such as sparse matri-
ces. PyTrilinos also supports solver algorithms that uti-
lize these objects, enabling the development of com-
plex codes with convenient Python interfaces and ef-
ficient Trilinos algorithms. For example, FiPy [11,12]
and FEniCS [10] are both Python-based partial differ-
ential equation solvers that provide PyTrilinos solvers
as an option and HYPO4D [5] is currently being refac-
tored to use Python and PyTrilinos. This paper details
recent advances in the PyTrilinos package, including
its new documentation system, recently added Trili-
nos modules, a focus on improvements to the Teuchos
module, and model evaluators. We finish with a vision
for interfaces to second-generation Trilinos packages.

2. Review

The first PyTrilinos article [18], published in 2008,
described the status of the project circa 2007. In or-
der to put recent advances in context, we begin with
two reviews: first, a review of the historical origin of
PyTrilinos, and second, a review of the topics covered
and conclusions drawn in the first PyTrilinos article.

2.1. The origin of PyTrilinos

The author – lead developer of PyTrilinos – was in-
troduced to Python for scientific computing by a col-
league. The project was to develop a framework for
testing new ideas for fully implicit multiphysics cou-
pling using Jacobian Free Newton Krylov (JFNK) [15].
The JFNK idea starts with Newton’s algorithm to find
x such that nonlinear function F(x) = 0, where succes-
sive iterates are computed by

F(xn) = −F′(xn)Δxn, (1)

xn+1 = xn + Δxn, (2)

where F′ is the Jacobian of F. Equation (1) is a linear
system that must be solved for Δxn and JFNK utilizes
Krylov space methods to iterate to a solution. Krylov
methods share the characteristic that we need only be
able to compute the matrix vector product for arbitrary
vector v, in this case F′(x)v. This quantity, known as

the directional derivative, can be approximated without
computing and storing the Jacobian via

F′(x)v ≈ F(x + δv) − F(x)
δ

(3)

for appropriate values of δ. For a coupled problem, we
can set F = (FT

1 , FT
2 , . . .)T and x = (xT

1 , xT
2 , . . .)T, and

Eqs (1)–(3) then represent a coupled solver.
The coupled solver idea was inherently object-

oriented: there would be a collection of (simple at first)
physics modules (to compute F1, F2, . . .) that could be
plugged into a higher-level solver object capable of
building a fully coupled system, depicted in Fig. 1,
that could be solved by JFNK. It would require ab-
stract concepts such a “unknowns” made concrete and
a bookkeeping system to keep track of them, and by ex-
tension, keep track of how the different physics mod-
ules were coupled to each other.

This research was being conducted at a time when
Sandia was one of the few American laboratories that
had ventured into object-oriented programming for sci-
entific computing. One of the early lessons learned was
that object oriented design was non-trivial. It was easy
to make things more complicated than necessary, and
it was easy to miss design elements that could eventu-
ally become crucial. It was common to refactor a de-
sign once, twice, or three times before settling on a de-
sign that supported the necessary set of features. Often
(but not always) a refactor would require completely
throwing away the previous iteration. In this environ-
ment, the following statement was hard to argue with:
“If you are going to throw away early iterations, why
not write them in Python, which is quicker and easier
to write than C++?”.

So it was under this philosophy that the decision was
made to write the first version of our multiphysics cou-
pler in Python. The result was somewhat revelatory: we
developed a simple mesh class, field classes that repre-
sented both knowns and unknowns, a physics module
base class and two concrete physics module derived
classes, a multiphysics coupler base class and an ex-
plicit derived solver, all in one day using Python. The
physics modules represented the two Brusselator equa-
tions,

∂X

∂t
= D1 ∇2X + a − (b + 1)X + X2Y , (4)

∂Y

∂t
= D2 ∇2Y + bX − X2Y , (5)

which in this initial case were 1D diffusion equations
with nonlinear forcing functions. The explicit solver
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Fig. 1. Conceptual design of the coupled solver. The unknowns typically represent different fields. The physics modules represent equations.
Not all equations utilize all unknowns. The coupled solver solve() method requires each physics module to compute its residual via its
computeResidual() method. (Colors are visible in the online version of the article; http://dx.doi.org/10.3233/SPR-2012-0346.)

implemented simple, explicit forward Euler time step-
ping, which was a first step towards the implicit solvers
that we were ultimately interested in. After an addi-
tional half day of debugging, we were getting results.
Python had proven itself as a development tool beyond
our expectations.

The next step was to derive a solver class that
implemented implicit solves such as backward Euler
or Crank–Nicolson. This required a nonlinear solver
implemented or wrapped in python that was robust
enough to handle a large number of unknowns. There
were none available at that time. We knew we wanted
to test these multiphysics coupling ideas with Trili-
nos, so that the resulting capabilities could be folded
into the larger project. So we had a choice: wrap the
needed components of Trilinos to be accessible from
Python, or rewrite the coupling framework in C++.
Our initial experience with Python had been so favor-
able that PyTrilinos was born. This required a Python
interface to NOX, the nonlinear solver package. NOX
utilizes the concept of an abstract interface, but the pri-
mary concrete interface was for Epetra, and so Epe-
tra also required a Python interface. NOX uses other
Trilinos packages: AztecOO for Krylov space iterative
linear solvers, IFPACK for preconditioning, etc. How-
ever, Python interfaces for these packages were not ini-
tially necessary.

Ultimately, the purpose of this framework was to test
various preconditioning and scaling strategies within
the context of a JFNK solver applied to coupled multi-
physics. The lessons learned from those tests were im-
plemented in various Trilinos packages as well as full
scale applications. The Python framework was suffi-
cient for running these tests and so a top-level C++
version was never written. Conclusions drawn from the
experience include:

• The time for development of scientific code can
be significantly shortened using Python.

• If you know you are in an iterative phase of code
development, it is reasonable to view a future
refactor as an opportunity to change to a compiled
language, if that is what is warranted.

• Scientific codes typically require sophisticated
inputs. Often, facilities for supporting this input
begin to look like limited scripting languages.
A better approach is to start with a full-featured
scripting language such as Python.

• For our design, the numerical kernels ended
up being computeResidual() methods in
Python classes derived from the PhysicsMod-
ule base class. The C++ NOX solver would ac-
tually call back to these Python methods during
the solve. See Section 2.2 for a discussion of how
to improve performance for this use case.
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• While our requirement was for a nonlinear solver,
the utility of Python interfaces was apparent for
other Trilinos packages such as linear solvers,
preconditioners, eigensolvers, etc.

2.2. Review of PyTrilinos capabilities

Here we review the capabilities covered in ref-
erence [18]. The “wrapper code” necessary to pro-
vide the PyTrilinos interface is generated almost en-
tirely by SWIG [8], the Simple Wrapper and Inter-
face Generator. Other tools could have been chosen
to facilitate this wrapping, including SIDL/Babel [7],
Boost.Python [6], and more recently, Cython [21]. All
three of these tools require a manually written interface
definition, which can fall out of sync with the wrap-
per source if the source interface changes. This is per-
haps the primary advantage of using SWIG to wrap
Trilinos, which is a very large code base that is under
active development. The default SWIG behavior is to
produce Python interfaces with a near one-to-one map-
ping to its C or C++ source code. It was decided early
in the PyTrilinos project that this was an appropriate
approach for a code base as large as Trilinos.

The decision to use SWIG has largely been justified
by the resulting development experience, with two ex-
ceptions. The first exception is the handling of tem-
plated C++ code. This was not an issue with first
generation Trilinos code, but current Trilinos devel-
opment is almost entirely templated, and so it must
be addressed. Section 7 covers this issue in more de-
tail. The second exception is nested classes, which
is the one C++ construct that SWIG does not sup-
port. Nested classes are utilized in the ModelEvalu-
ator classes of the (wrapped) EpetraExt package and
the (not-yet-wrapped) Thyra package. This feature of
SWIG required a significant workaround that undercut
many of the advantages of SWIG. Additionally, a com-
mon design pattern is iterators for containers, which
are also typically implemented as nested classes. In
this case, the answer is to modify the Python interface
to utilize Python iterators. This is usually straightfor-
ward and results in a cleaner Python interface.

Because of its strong compatibility with NumPy
(Numerical Python), PyTrilinos plays a role in a suite
of mathematical and scientific Python tools that can be
interpreted as an open source competitor to MATLAB.
This suite has the advantage of being free, of lever-
aging a more powerful scripting language, and of ex-
panded interoperability with other languages. PyTrili-
nos adds to this suite of tools implicit solver capabili-

ties designed from the ground up for massively parallel
computing.

At the time of publication of [18], PyTrilinos pro-
vided interfaces to linear algebra services packages
Epetra and EpetraExt; tools and testing packages Teu-
chos, Triutils, Galeri and New_Package; direct and it-
erative linear solver packages Amesos and AztecOO;
preconditioning packages IFPACK and ML; nonlin-
ear solver package NOX; and continuation algorithms
package LOCA. Since this publication, PyTrilinos has
released wrappers to eigensolver package Anasazi and
complex linear algebra services package Komplex. The
most recent releases of Trilinos – version 10.10 was re-
leased in February 2012 – includes a new PyTrilinos
package Isorropia, which provides parallel partitioning
algorithms. Support for New_Package has been dis-
continued, as the purpose of this package is to provide
a template for adding new packages to Trilinos, and its
utility for new PyTrilinos packages was limited.

The PyTrilinos approach to enabling parallelism is
to support the development of scripts that can be run in
parallel in the standard way for a given parallel archi-
tecture. For example, a parallel script can be run in an
MPI environment on four processors using

$ mpiexec -np 4 python myscript.py

The myscript.py script will in turn import ei-
ther the Teuchos or Epetra module (or both). Both
of these modules ensure that MPI_Init() has been
called (with the latest releases of Trilinos, care has
been taken to ensure that this behavior is compatible
with other MPI Python interfaces such as pyMPI, Py-
Par or mpi4py). Teuchos and Epetra provide abstract
communicator classes as well as concrete implementa-
tions of these classes in the form of serial communi-
cators and Message Passing Interface (MPI) commu-
nicators (and potentially others in the future). These
communicators are then used as the foundation for
building other Trilinos objects, providing parallelism-
awareness to all Trilinos objects that need it. The
Teuchos and Epetra modules also know to register
the MPI_Finalize() command with the Python
atexit module when Teuchos or Epetra was respon-
sible for calling MPI_Init(), thus ensuring a proper
clean up. On the other hand, if MPI_Init() was
called before Teuchos or Epetra was imported, e.g., by
mpi4py, then PyTrilinos assumes that the user is re-
sponsible for finalization.

Reference [18] contains comparisons between Py-
Trilinos and MATLAB for basic operations that are
common to both. The high-level conclusions are that
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MATLAB is more efficient at performing dense ma-
trix vector multiplies and that PyTrilinos – and Trili-
nos – are more efficient at both sparse matrix vector
multiplies and sparse matrix assignment. These results
reflect the different primary design objectives of the
various tools. It should be noted that this performance
conclusion is drawn for comparisons that were made
for operations in which the python interface introduced
insignificant overhead compared to the C++ Trilinos
interface.

Accordingly, PyTrilinos was also compared to Trili-
nos itself. The primary usage differences are several:
Python’s dynamic object model versus the static typ-
ing of C++; memory management concerns present
in C++ but not in Python; no header files in Python;
and high-level containers in Python versus low-level C
arrays. The performance differences depend ultimately
upon the granularity of the algorithm being tested. Fine
grained algorithms that do a lot of work (especially
loops) in Python suffer significant performance penal-
ties. Coarse grained algorithms that hand off the bulk
of the work to compiled routines can exhibit imper-
ceptible performance hits in both serial and parallel.
Strategies for utilizing compiled code within a Python
script include:

• Use high-level classes with pre-compiled ker-
nels. For example, the Epetra.CrsMatrix
class has a pre-compiled Multiply method
for performing sparse matrix–vector multiplica-
tion. Filling the matrix values is a one-time ini-
tialization that would be performed in Python
with a loop, but the multiplications (e.g., per-
formed repeatedly within a solver algorithm)
would be compiled. This is in contrast to deriv-
ing from the lower-level Epetra.RowMatrix
base class and supplying a Multiply method in
Python.

• Use NumPy array slice syntax to perform opera-
tions on ranges of data without an explicit Python
loop. For example, to compute the finite differ-
ence approximation to σ = ∂u/∂x on a uniform
grid of mesh size h, we can fill all interior values
of sigma with

sigma[1:-1] = (u[2:] - u[:-2])
/ (2*h)

which is much more efficient than looping over
the elements of sigma and u in Python.

• Use weave to compile embedded C/C++ code in
Python. For cases where loops in Python cannot
be avoided, one option is convert the computa-

tional kernel to a Python string of C/C++ code
and use the SciPy module weave to compile and
use the code fragment. In these cases, the proto-
type should be written in Python, and only after
determining that it constitutes a performance bot-
tleneck, should weave be employed.

• Write a Python extension module to handle com-
putationally intensive algorithms. Options include
coding to the Python C API, or using the pre-
viously mentioned wrapper tools SWIG, SIDL/
Babel, Boost.Python, f2py or Cython to automat-
ically generate compiled Python extensions based
on C, C++ or Fortran code.

The advantages of PyTrilinos include rapid proto-
typing and brevity, due to the clean nature of Python
syntax; and modularity and reusability, due to the scal-
able design of Python modules. Other advantages in-
clude explorative computing because of the dynamic
and interactive nature of Python; and integration, due
to the success of Python for gluing heterogenous soft-
ware together. PyTrilinos can improve software quality
via unit and regression testing in Python. And finally,
Python can provide high-level scripting for data input,
which is highly desirable for scientific computing.

There are several disadvantages to PyTrilinos. The
first is that portability can raise issues, as compiling
wrappers on multiple platforms is non-trivial to main-
tain. Furthermore, shared library support on massively
parallel computers is inconsistent and sometimes non-
existent. The lack of compile-time checks forces run-
time error checking, which is only one of several per-
formance considerations. And finally, there exists an
awkward mapping of C++ template code to Python
(see Section 7 for more details on this last issue).

3. Documentation

Trilinos Release 9.0 (PyTrilinos version 4.1) in-
cluded a significant improvement to PyTrilinos doc-
umentation. The most important form of documen-
tation for Python modules is the docstring. Wher-
ever the first line of code within a Python func-
tion, method, class or module is a string, that string
is interpreted as documentation for that code ele-
ment. Many Python documentation tools, including the
Python help() function, access these docstrings for
their content. SWIG provides some very basic doc-
string generation capabilities, but this is limited to doc-
strings that contain the code element name (function,
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method, class or module), and argument types and
names (where appropriate). For example, prior to Trili-
nos Release 9.0, PyTrilinos documentation looked like
the following:

>>> from PyTrilinos import Epetra
>>> help(Epetra.CrsMatrix.Scale)
Help on method Scale in module
PyTrilinos.Epetra:

Scale(self, *args) unbound
PyTrilinos.Epetra.CrsMatrix method
Scale(self, double ScalarConstant)
-> int

A Python programmer would thus know that the
Scale method expects a double precision (Python
float) argument and returns an int. Such docstrings
are certainly better than nothing, but often fall far short
of describing the code sufficiently to help program-
mers use it appropriately. In the code-generation envi-
ronment of SWIG, it is possible to provide static doc-
umentation directives, but difficult to provide these ac-
curately for every function, method, class and module
for a large and changing project such as Trilinos.

Furthermore, static documentation would be unde-
sirable because Trilinos developers provide signifi-
cant documentation of code elements via Doxygen [9].
Doxygen is a tool that parses C/C++ code and in-
terprets specially designated comments as documen-
tation. Doxygen uses this information in conjunction
with the code parse tree to generate high-quality doc-
umentation in a variety of forms including web pages
and PDF files.

Doxygen can write its code parse tree and associated
documentation strings to an XML file. This capability
allowed Prabhu Ramachandran of the Indian Institute
of Technology to write a Python script that parses this
XML data and then writes a SWIG interface file that
provides directives that generate automatic docstrings.
The end result is that the PyTrilinos build system will
generate Python code that includes docstrings that mir-
ror their corresponding C++ Doxygen documentation.
For example, the help request above now yields

>>> from PyTrilinos import Epetra
>>> help(Epetra.CrsMatrix.Scale)
Help on method Scale in module
PyTrilinos.Epetra:
Scale(self, *args) unbound
PyTrilinos.Epetra.CrsMatrix method
Scale(self, double ScalarConstant)
-> int

int
Epetra_CrsMatrix::
Scale(double ScalarConstant)

Multiply all values in the matrix
by a constant value (in place:
A <- ScalarConstant * A).

Parameters:
-----------

ScalarConstant: - (In) Value to
use.

Integer error code, set to 0
if successful.

None.

All values of this have been
multiplied by ScalarConstant.

which provides the Python signature(s), the underlying
C++ signature(s), argument and return value descrip-
tions and method description.

These docstrings can be overridden on a case-by-
case basis where the Python interface differs from
the C++ interface. This results in an extremely use-
ful, interactive and scalable documentation system for
PyTrilinos.

4. Recently added packages

This section describes those packages that have been
added to PyTrilinos since the publication of [18].

4.1. Anasazi

Anasazi [1] is the Trilinos eigensolver package
and was one of the first Trilinos packages to uti-
lize templates. Templates in Anasazi allow a single
code base to work for different linear algebra pack-
ages provided by Trilinos. These different packages
include Epetra, the first production-level linear al-
gebra Trilinos package (limited to double precision
scalars and integer ordinals); Tpetra, a templated ver-
sion of Epetra that allows general numeric types for
scalars and ordinals; and Thyra, a linear algebra pack-
age that defines basic interoperability mechanisms be-
tween different types of numerical software. Thus,
Anasazi can handle different scalar types (float,
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from PyTrilinos import Epetra, Galeri, Anasazi
comm = Epetra.PyComm()

# Obtain the map and CRS matrix from the Galeri module
nx, ny = 10, 10
galeriList = { "n": nx*ny, "nx":nx, "ny":ny }
map = Galeri.CreateMap("Linear", comm, galeriList)
matrix = Galeri.CreateCrsMatrix("Laplace2D", map, galeriList)

# Build the eigenproblem and Anasazi solver manager
printer = Anasazi.BasicOutputManager()
ivec = Epetra.MultiVector(map, 5)
ivec.Random()
problem = Anasazi.BasicEigenproblem(matrix, ivec)
problem.setHermitian(True)
problem.setNEV(4)
anasaziList = {"Which" : "LM",

"Block Size" : 5,
"Num Blocks" : 8,
"Maximum Restarts" : 100,
"Convergence Tolerance" : 1.0e-8}

solverMgr = Anasazi.BlockDavidsonSolMgr(problem, anasaziList)

# Solve the eigenproblem and output the results
returnCode = solverMgr.solve()
sol = problem.getSolution()
if comm.MyPID() == 0: print sol.Evals()

Fig. 2. Example PyTrilinos script using the Anasazi module.

double, complex, complex double, etc.), dif-
ferent multivector types (Epetra_MultiVector,
Tpetra::MultiVector and a variety of Thyra
multivectors, etc.) and operator types (Epetra_
Operator, Tpetra::Operator, etc.). Of the
available C++ Anasazi data types, PyTrilinos cur-
rently supports only Epetra, and so the Python inter-
face to Anasazi in PyTrilinos accepts only Epetra ob-
jects.

Perhaps the most important customization to the
Python interface to Anasazi is the conversion of re-
turned eigenvalues from C++ type

std::vector< Anasazi::Value
< ScalarType > >

to a NumPy array of complex double precision val-
ues. PyTrilinos completes the coverage of Anasazi data
types with support for the Anasazi::Eigensolu-
tion and Anasazi::MultiVec classes.
PyTrilinos.Anasazi also provides output and

sort managers, as well as operator, eigenproblem and
status test classes to give full coverage of the pack-

age. The list of supported eigensolvers includes block
Davidson, block Krylov–Schur and locally optimal
block preconditioned conjugate gradient (LOBPCG).

Figure 2 shows a simple example script for solving
the first four eigenvalues of a matrix obtained from fi-
nite differencing the 2D Laplace operator on a 10 × 10
grid using Block Davidson.

Running this script produces the following output:

[ 7.83797189+0.j 7.60149301+0.j
7.60149301+0.j 7.36501413+0.j ]

with corresponding errors (calculation not shown):

[ 3.6934e-13 4.1688e-12 1.7741e-12
7.7208e-09 ]

4.2. Komplex

Komplex is a workaround package to provide sup-
port for complex linear algebra problems using the
double-precision real-valued-only Epetra package.
This involves storing two vectors of the same type and
distribution, one representing the real part and one rep-
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from PyTrilinos import Epetra, AztecOO, Komplex
comm = Epetra.PyComm()
c = 10
n = c * comm.NumProc()
map = Epetra.Map(n, 0, comm)

# Build the problem matrix
Ar = Epetra.CrsMatrix(Epetra.Copy, map, 1)
Ai = Epetra.CrsMatrix(Epetra.Copy, map, 1)
for gid in map.MyGlobalElements():

Ar.InsertGlobalValues(gid, [c*(1 + float(gid)/n),], [gid,])
Ai.InsertGlobalValues(gid, [c*(1 - float(gid)/n),], [gid,])

Ar.FillComplete()
Ai.FillComplete()

# Build the solution vector and the RHS
xr = Epetra.Vector(map)
xi = Epetra.Vector(map)
br = Epetra.Vector(map)
bi = Epetra.Vector(map)
for gid in map.MyGlobalElements():

lid = map.LID(gid)
br[lid] = Ar[gid,gid] * -1.0
bi[lid] = Ai[gid,gid] * -1.0

# Build the complex problem
problem = Komplex.LinearProblem(1, 0, Ar, 1, 0, Ai, xr, xi, br, bi)

# Set up the solver and iterate to a solution
solver = AztecOO.AztecOO(problem.KomplexProblem())
aztecOOList = {"Solver" : "GMRES",

"Precond" : "None",
"Output" : 16 }

solver.SetParameters(aztecOOList, True)
solver.Iterate(n, 1e-5)
if comm.MyPID() == 0: print "Real part"
print xr
if comm.MyPID() == 0: print "Imaginary part"
print xi

Fig. 3. Example PyTrilinos script using the Komplex module.

resenting the imaginary part. For dense or sparse ma-
trices, two matrices are stored, again for the real and
imaginary parts. This is enabled with the definition of
a single class, Komplex_LinearProblem, which
translates to a Python class Komplex.Linear-
Problem. Figure 3 shows a simple example of using
the Komplex module.

4.3. Isorropia

Isorropia is a Trilinos package that can repartition
Epetra (and other type) vectors and matrices. This ca-

pability can be crucial for simulation problems where
adaptive meshing can add or delete mesh points un-
equally across processors. Isorropia repartitioning can
therefore load balance dynamically changing prob-
lems. Isorropia is built on top of the Zoltan package
and provides object-oriented interfaces to Zoltan spe-
cialized for Epetra, Tpetra and potentially other future
linear algebra packages.

In 2010–2011, Sandia National Laboratories partic-
ipated in a Harvey Mudd College Clinic that teamed
Sandia researchers with four Harvey Mudd undergrad-
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uate students to conduct research on new matrix parti-
tioning methods. One of the benefits of this project was
the development of a Python interface to Isorropia so
that the students could rapidly develop a Python-based
visualizer for the matrix partitions they were produc-
ing.
PyTrilinos.Isorropia mirrors the C++

Isorropia package in that is has a top-level module with
abstract base classes for operators, colorers, partition-
ers, redistributors, cost describers, orderers and level
schedulers. It also supports an Epetra submodule that
contains concrete implementations of these classes im-
plemented for Epetra data objects.

The students developed their project within their
own repository, and the SWIG wrappers they produced
depended somewhat on the modifications they made
to the Isorropia code. While this new Isorropia code
is being ported to the main Trilinos branch slowly, the
Python wrappers to Isorropia have been ported nearly
in their entirety, minus the dependencies on the newer
code.

Figure 4 shows a short script that demonstrates us-
age of some of the Isorropia classes:

Note that the buildGraph() function utilizes a
Python loop to fill the graph, which can be inefficient.
It would be desirable to be able to fill this graph (and
matrices as well) using more efficient NumPy-style

from PyTrilinos import Teuchos, Epetra, Isorropia

def buildGraph(comm, nRows):
"Return the graph of a tridiagonal matrix"
map = Epetra.Map(nRows, 0, comm)
graph = Epetra.CrsGraph(Epetra.Copy, map, 3)
for gid in map.MyGlobalElements():

if gid == 0:
indices = [0, 1]

elif gid == nRows-1:
indices = [nRows-2, nRows-1]

else:
indices = [gid-1, gid, gid+1]

graph.InsertGlobalIndices(gid, indices)
graph.FillComplete()
return graph

# Initialize the sparse matrix graph
comm = Epetra.PyComm()
nRows = 10 * comm.NumProc()
crsg = buildGraph(comm, nRows)

# Assign colors to the graph rows
colorer = Isorropia.Epetra.Colorer(crsg)
print colorer.elemsWithColor(0)

# Build a partitioner
pList = {"Partitioning Method": "Random"}
partitioner = Isorropia.Epetra.Partitioner(crsg, pList)
partitioner.partition(True)
print partitioner

# Use the partitioner to build a redistributor and redistribute the graph
redis = Isorropia.Epetra.Redistributor(partitioner)
newCrsg = redis.redistribute(crsg)
print redis
print newCrsg

Fig. 4. Example PyTrilinos script using the Isorropia module.
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Fig. 5. Graphical representation of the Cage12 matrix partitioned on an 8-processor system using a two-dimensional partitioning algorithm.
Figure produced by the IsorropiaVisualizer.py script provided with the PyTrilinos distribution. (Colors are visible in the online version
of the article; http://dx.doi.org/10.3233/SPR-2012-0346.)

slice or fancy indexing. This capability has been pro-
posed for future versions of PyTrilinos.

Another feature of the PyTrilinos Isorropia package
is that it installs a script for visualizing partitioned ma-
trices. Figure 5 represents output from this script run
on the Cage12 matrix [24] distributed on 8 processors
using the Recursive Coordinate Bisection (RCB) algo-
rithm [4].

5. Improvements to the Teuchos module

As the primary tools package for Trilinos, Teuchos
has many useful capabilities. Some of these capabili-
ties are already provided by standard Python libraries,
e.g., command-line option and argument processing,
and so are not wrapped in PyTrilinos. Thus the list
of Python interfaces to Teuchos tools is small relative
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to the package’s overall capabilities. It includes com-
municators, reference-counted pointers and parameter
lists, including XML support.

5.1. Teuchos communicators

Teuchos communicators are analogous to Epetra
communicators: a virtual base class for the purpose
of polymorphism, and serial and MPI concrete imple-
mentations to enable these two modes of operation.
Unlike an Epetra communicator, Teuchos communica-
tors are templated on an ordinal type and include some
advanced programming techniques not allowed under
the self-imposed restrictions for Epetra. There is also a
default Teuchos communicator based on an ordinal of
type int. PyTrilinos now supports Teuchos communi-
cators.

5.2. Teuchos reference-counted pointers

The new reference-counted pointer support is per-
haps the most important improvement to PyTrilinos in-
volving Teuchos (although this improvement is largely
invisible to the PyTrilinos user). The Teuchos::RCP
class (where RCP stands for reference-counted point-
er) is very similar to the boost::shared_ptr
class with a few differences (see Section 5.14 of [3]).
These differences include built-in debugging support
for RCP, the association and retrieval of extra data
and other added functionality for RCPs, strong and
weak references supported by a single RCP class ver-
sus separate shared_ptr and weak_ptr classes,
and slightly lower storage and runtime overhead for
shared_ptrs. By developing RCP, Trilinos devel-
opers avoid a dependency on Boost and more directly
control memory management issues. In the experience
of developing PyTrilinos (which has some admittedly
complicated use cases), the debugging features of RCP
have been invaluable.

Reference-counted pointers are a memory manage-
ment technique that allows objects to be allocated dy-
namically, to be referenced by other objects, to en-
sure existence in the presence of such references and
to delay deallocation until the last object that holds
such a reference has been destroyed. In pure Python,
reference counting is performed automatically with-
out any effort from the programmer whatsoever. In the
Python/C API, the programmer must pay careful atten-
tion to reference counting issues, and call incrementing
and decrementing macros at the proper times to ensure
proper memory management. In C++, classes such as

boost::shared_ptr and Teuchos::RCP keep
reference counts current automatically via construc-
tors, copy constructors and destructors.

More and more Trilinos packages are adopting the
RCP as a means of secure memory management. This
has presented a problem for PyTrilinos. The philoso-
phy of maintaining interfaces with nearly one-to-one
mapping between C++ and Python is hard to justify
in the face of RCPs. Python programmers would be
asked, in what would appear to be a mostly random in-
terface, to sometimes pass an object to a function and
other times create a new object, encapsulated in the
RCP class, in order to pass to a function. This would
be nothing but a source of frustration for Python pro-
grammers, who have always been protected from the
issue of memory management.

The proper way to implement shared pointers, there-
fore, is to hide them completely from the Python in-
terface. To their credit, SWIG developers have recog-
nized this and have provided an experimental capabil-
ity to generate interfaces with this property. But it was
not until the release of SWIG version 2.0 that all the
bugs were addressed in the Python code generator.

The basic idea is this: if a C++ class defines a type
that is at some time accessed as a reference-counted
pointer, then all instances of that object within the
Python extension module should be stored (internally)
as a reference-counted pointer. The default internal
storage method used by SWIG is with a raw pointer
that relies upon Python reference counts to determine
when the object is deallocated. By changing the stor-
age technique, this implies that the conversion code
for accessing an instance within the generated wrapper
code must be specialized in all cases. In fact, the bulk
of the shared pointer support in SWIG is a set of new
typemaps that define these new conversions.

In order to provide the desired support for Teuchos
::RCP that SWIG now provides for shared_ptr
classes (in both the boost and std namespaces), we
had to define some macros prior to enabling shared
pointer support by applying the %include direc-
tive to the SWIG boost_shared_ptr.i interface
file. These macros cause the interface file to refer
to Teuchos::RCP rather than shared_ptr. This
was far more straightforward than might be expected.
We had to override the output typemaps in order to
use the ownership flag that the RCP constructor pro-
vides, and we had to provide director input and out-
put typemaps, which the SWIG library currently does
not implement (see Section 6 for a discussion of SWIG
directors).
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The end result is that the Python programmer us-
ing PyTrilinos will never have to write code that
refers to a Teuchos::RCP. Inevitably, a PyTrili-
nos user will encounter documentation that refers to
objects encapsulated by Teuchos::RCP (e.g., the
automatically-generated docstrings include the C++
signatures of the underlying methods). For this reason,
it is very useful for a PyTrilinos user to understand
that method arguments or return values that are of
type Teuchos::RCP<object> in C++, are sim-
ply handled as type object in Python. This results in
a simplified Python interface relative to the C++ in-
terface with increased readability and no loss of capa-
bility.

5.3. Teuchos parameter lists

At the time of [18], Teuchos::Parameter-
Lists were supported. Wherever a Parameter-
List was expected as input, the Python programmer
could provide a Python dictionary in its place. Wher-
ever a ParameterList was returned as output,
a new type of object, a PyDictParameterList,
was returned in Python. This has been simplified
and improved somewhat. Python dictionaries are still
accepted as input, but now the ParameterList
class has been wrapped properly, with the addition
of several methods and operators so that it also be-
haves like a Python dictionary. This allows access
to some ParameterList capabilities that Python
dictionaries do not possess, such as the usage flags,
while still allowing Python programmers to specify
ParameterLists using highly convenient dictio-
nary syntax.

Another addition to the Teuchos Python module
are wrappers for XML classes XMLObject, XMLPa-
rameterListReader, XMLParameterList-
Writer,XMLInputSource,FileInputSource
and StringInputSource, which together provide
full I/O capabilities for ParameterLists in XML
format.

6. EpetraExt model evaluator

A model evaluator is a concept implemented in both
EpetraExt and Thyra that provides a consistent inter-
face for a variety of different models: nonlinear equa-
tions, explicit ordinary differential equations (ODEs),
implicit ODEs and discrete algebraic equations, un-
constrained optimization, equality constrained opti-

mization, general constrained optimization and func-
tion derivatives and sensitivities. Often, scientists will
want to evaluate a model in more than one of these sup-
ported modes, and so a single interface becomes ex-
tremely useful. Several Trilinos solver packages now
accept model evaluators, so this approach provides a
high degree of functionality. The ModelEvaluator
class in EpetraExt is now supported in PyTrilinos.

The ModelEvaluator class is a virtual base
class with a pure virtual modelEval() method that
must be implemented by a derived class. A solver or
optimization object that has a ModelEvaluator inter-
face will call this modelEval() method whenever a
model evaluation is required.

SWIG supports the use case of writing such a de-
rived class in Python, including the modelEval()
method. This is known as cross-language polymor-
phism and works as follows: SWIG generates a C++
class that inherits from the ModelEvaluator class
that provides compilable code for all virtual meth-
ods. Such a class is known as a director class and
such methods are known as director methods. This
is because the class is wrapped with a Python in-
terface and that interface is checked dynamically for
implementations of the director methods (such as
modelEval()). If such Python methods are found,
the underlying C++ methods direct execution to the
Python code. If not, the default C++ implementation
will be called, or for a pure virtual method, an excep-
tion raised.

The Python interface for the EpetraExt Model-
Evaluator class was a challenge to develop be-
cause the ModelEvaluator makes heavy use of
nested classes. This is the one case of C++ code that
is not supported by SWIG. There are workarounds
for this situation suggested by SWIG developers, but
the ModelEvaluator class is complex enough that
it resisted these workarounds. The ultimate solution
was to redefine the nested classes as non-nested pure
Python classes and then write typemaps that convert
these Python arguments to the appropriate underlying
C++ types.
ModelEvaluator classes are useful only if there

are corresponding solver objects which support the
ModelEvaluator interface. To date only the NOX non-
linear solver package supports the ModelEvaluator in-
terface within PyTrilinos.

7. Vision for second-generation packages

First-generation Trilinos packages are designed
around the Epetra package, which provides distributed
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linear algebra classes such as vectors, multivectors,
operators, and sparse matrices. Development of Epe-
tra began over a decade ago, when variations in C++
compilers from platform to platform were consider-
able. For this reason, Epetra was designed without tem-
plates or namespaces, to maximize portability. As a re-
sult, Epetra scalar data is always double and ordi-
nals are always int. In the intervening decade, needs
have inevitably arisen for complex and single preci-
sion scalar data (especially for GPUs) and long ordi-
nal data (as platforms and global problem sizes have
grown). To address these needs, a second-generation
linear algebra services package, Tpetra (Templated Pe-
tra) has been developed, with template arguments for
scalar data, local ordinals and global ordinals.

PyTrilinos provides wrappers to a significant subset
of first-generation packages. This includes Teuchos,
which has evolved to support both first and second-
generation packages, and Anasazi, which was designed
from its origins to both utilize templates and interface
to Epetra. But Tpetra does not yet have a PyTrilinos in-
terface, and so most of the second-generation packages
do not either.

C++ templates present a challenge to designing
Python interfaces that wrap such code. This stems from
the fact that C++ implements templates with a heavy
dependence on syntax while the same concept is im-
plemented dynamically in Python without syntax. In
other words, because Python function and method ar-
guments do not specify types, any argument type will
work as long there is support for all of the operators
and functions applied to that argument. Thus Python
“templates” are implicit and implemented at run time,
while C++ templates are explicit and implemented at
compile time. As a Python interface to compiled code,
Python extensions must link to a finite set of concrete
instantiations of C++ template code, which makes this
use case far less generic than pure Python is.

The SWIG method for generating wrapper code
for templates is to parse template code internally
but only produce wrappers for concrete instantiations,
each one requiring a unique name. As a simple ex-
ample of this, consider an attempt to wrap the C++
Tpetra::Vector class. We will focus on a subset
of a significant simplification of the class that will ex-
pose wrapping issues of concern:

namespace Tpetra {
template< class T >
class Vector {

Vector(size_type n = 0);
};

}

We can instantiate Tpetra::Vector with any type
T, and this will produce an array of data of type T. We
would like a Python interface that gives us access to
this class with a variety of types supported. To wrap
this class with SWIG, one might include the following
in the SWIG interface file:

%template(Vector_int )
Tpetra::Vector<int>;

%template(Vector_long )
Tpetra::Vector<long>;

%template(Vector_float )
Tpetra::Vector<float>;

%template(Vector_double)
Tpetra::Vector<double>;

This would produce a Python extension module with
definitions for four independent classes:

from PyTrilinos import Tpetra
n = 10
vi = Tpetra.Vector_int(n)
vl = Tpetra.Vector_long(n)
vf = Tpetra.Vector_float(n)
vd = Tpetra.Vector_double(n)

This interface is decidedly not “Pythonic”. It is also
not scalable; C++ code that utilizes multiple template
parameters would quickly result in names that are too
long or too cryptic to be usable or readable.

A preferable interface would consist of a single
Python class named Vector. This would require the ad-
dition of a technique to specify the scalar data type.
The NumPy module has already addressed this issue
with the utilization of dtype arguments, and so a sim-
ilar solution would be both familiar to scientific Python
programmers and compatible with NumPy:

from PyTrilinos import Tpetra
n = 10
vi = Tpetra.Vector(n, dtype="i")
vl = Tpetra.Vector(n, dtype="l")
vf = Tpetra.Vector(n, dtype="f")
vd = Tpetra.Vector(n, dtype="d")

To accomplish this in SWIG would require the devel-
opment of a complete new class in C++ that is not it-
self templated, but is capable of internally storing sev-
eral templated Vector classes of different (predefined)
types, only one of which would be active with allo-
cated data. With this paradigm, SWIG loses some of its
advantages. We are no longer targeting a nearly one-
to-one interface between C++ and Python and must
spend considerable effort designing a new interface.
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This interface definition makes other wrapping tools,
such as SIDL/Babel, Boost.Python or Cython much
more attractive. Cython in particular might be partic-
ularly adept at helping to develop “Pythonic” inter-
faces.

At the time of final submission of this paper,
Enthought, Inc. has been awarded a Department of
Energy (DOE) Small Business Innovation Research
(SBIR) Phase I grant researching and developing this
very issue in consultation with Sandia. Cython will be
used to develop the Python interface to Tpetra::
Vector and other elements of the Tpetra package.
This raises the question of whether interfaces de-
veloped with SWIG can be compatible with inter-
faces developed with Cython. If so, Cython will be
an attractive approach for wrapping second-generation
Trilinos packages. If not, the sheer inertia of SWIG-
wrapped PyTrilinos packages may dictate continuing
to use SWIG to generate the Python interfaces. The
SBIR research should answer this and related ques-
tions.

8. Concluding remarks

The Trilinos Project is now over a decade old and
has seen massive growth in that time. Beginning with
three packages for linear algebra services, iterative
solvers and preconditioners, Trilinos has grown to now
encompass 50 packages in its current release, with
more planned for the future. It has grown from a
suite of solver technologies to a suite of simulation
tools, now including meshing, discretizations, parti-
tioning, load balancing, automatic differentiation, opti-
mization and much more. As C++ compilers have ma-
tured, more advanced programming techniques have
been employed. As lessons have been learned re-
garding object-oriented design for scientific comput-
ing, those lessons have been deployed in the code
base.

These advances, coupled with the need for stable
interfaces, have inevitably led to the development of
second-generation packages such as Tpetra, Belos and
Ifpack2. PyTrilinos provides Python interfaces to first-
generation packages, with an emphasis on Epetra and
those packages that process Epetra objects. As the
second-generation packages mature, we expect pres-
sure to mount to provide Python interfaces to them.
Tpetra vectors, with their support of multiple data
types, are more powerful than Epetra vectors, with
their restriction to double precision. This makes Tpe-

tra vectors more like NumPy arrays, with the added
capability of distribution over parallel computing ar-
chitectures. Thus Tpetra and the packages that use it
are obvious candidates for Python wrappers. So while
PyTrilinos currently provides an impressive set of ca-
pabilities, it is also at a crossroads, facing a large new
set of potential capabilities to provide in the form of
second-generation Trilinos packages. The good news
is that initial funding has been obtained to enable this
upgrade.
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