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Automating embedded analysis capabilities
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multiphysics simulation, Part II: Application
to partial differential equations
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Abstract. A template-based generic programming approach was presented in Part I of this series of papers [Sci. Program. 20
(2012), 197-219] that separates the development effort of programming a physical model from that of computing additional
quantities, such as derivatives, needed for embedded analysis algorithms. In this paper, we describe the implementation details for
using the template-based generic programming approach for simulation and analysis of partial differential equations (PDEs). We
detail several of the hurdles that we have encountered, and some of the software infrastructure developed to overcome them. We
end with a demonstration where we present shape optimization and uncertainty quantification results for a 3D PDE application.
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1. Introduction

Computational science has the potential to provide
much more than numerical solutions to a set of equa-
tions. The set of analysis opportunities beyond simu-
lation include parameter studies, stability analysis, op-
timization and uncertainty quantification. These capa-
bilities demand more from the application code than
required for a single simulation, typically in the form
of extra derivative information. In addition, computa-
tional design and analysis will often entail modifica-
tion of the governing equations, such as refinement of
a model or a hierarchy of fidelities.

In our previous paper [19], we described the tem-
plate-based generic programming (TBGP) approach.
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That paper provides the conceptual framework upon
which this paper builds, and thus is a prerequisite for
the work described here. We showed how graph-based
assembly and template-based automatic differentiation
technology can work together to deliver a flexible as-
sembly engine, where model equations can be rapidly
composed from basic building blocks and where only
the residual needs to be explicitly programmed. The
approach is based on templating of the low-level scalar
operations within a simulation and instantiation of
this template code on various data types to effect the
code transformations needed for embedded analysis
through operator overloading. Often application of op-
erator overloading in this manner is assumed to intro-
duce significant run-time overhead into the simulation,
however we have demonstrated [19] that careful imple-
mentation of the overloaded operators [20] (using tech-
niques such as expression templates [28]) can com-
pletely eliminate this overhead. This results in a sin-
gle templated code base that must be developed, tested
and maintained,! that when combined with appropri-

IWe note that transforming a legacy implementation to use tem-
plates in this manner does involve significant effort (and thus we
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ate seeding and extracting of these specially-designed
overloaded data types (see [19] and Section 3 for defi-
nitions of these terms), allows all manner of additional
quantities to be generated with no additional software
development time.

In this paper, we extend the description of this ap-
proach to the simulation and analysis of partial dif-
ferential equations (PDEs). As discussed in the previ-
ous paper [19], a number of projects have implemented
embedded analysis capabilities that leverage a domain
specific language. Specifically for finite elements, the
FEniCS [14,15], Life/FEEL++ [17,22] and Sundance
[16] projects have demonstrated this capability with re-
spect to derivative evaluation.

PDEs provide additional challenges with regards
to data structures and scalability to large systems. In
this paper, we deal specifically with a Galerkin fi-
nite element approach, though the approach will fol-
low directly to other element-based assemblies, and
by analogy to stencil-based assemblies. In Section 2
we discuss where the template-based approach begins
and ends, and how it relates to the global and lo-
cal (element-based) data structures. In Section 3 we
present many details of the template-based approach
for finite element assembly, in particular the seed, com-
pute and extract phases. Section 4 addresses some
more advanced issues that we have dealt with in our
codes that use this approach. Specifically, this includes
the infrastructure for exposing model parameters, as
needed for continuation, bifurcation, optimization and
uncertainty quantification, approaches for dealing with
a templated code stack, and approaches for dealing
with code that can not be templated. Finally, in Sec-
tion 5 we demonstrate the whole process on an exam-
ple PDE application: the sliding electromagnetic con-
tact problem. We show results for shape optimization
and embedded uncertainty quantification.

Critical to the main message of this paper is the fact
that the infrastructure for computing the extra quan-
tities needed for these analysis capabilities has been
implemented independently from the work of imple-
menting the PDE model. This infrastructure includes
the seed and extract phases for the template-based ap-
proach. It also includes all of the solver libraries that
have been implemented in the Trilinos framework [11],
such as the linear, nonlinear, transient, optimization
and UQ solvers. Once in place, application codes for

would consider this approach most appropriate for new development
efforts), however the transformations necessary are just type specifi-
cations in function and variable declarations.

new PDEs can be readily generated, born with analytic
derivatives and embedded analysis capabilities.

The novel interface exposed to computational scien-
tists by allowing for templated data types to be passed
through the equation assembly has tremendous poten-
tial. While this interface has been exploited for deriva-
tives, operation counting, and polynomial propagation,
we expect that developers will find innovative ways to
exploit this interface beyond what we currently imag-
ine.

2. Approach for finite element codes

In the first paper in this series, we explained the
template-based generic programming approach and in-
cluded an illustrative demonstration on how it can
be applied to an ODE problem. In this section, we
present the basic details on how this approach is used
in the context of PDE applications. Some of our imple-
mentation details are restricted to discretization strate-
gies with element-based assembly kernels, such as fi-
nite element (FEM) and control volume finite ele-
ment (CVFEM) methods. Some details of the approach
would need to be adapted for stencil-based discretiza-
tions, such as finite difference methods or integral
equations, or for discontinuous-Galerkin methods.

Extending the approach from ODEs to PDEs gives
rise to many issues. The core design principle is still
the same, that the evaluation of the equations is sep-
arated into three phases: seed, compute, and extract.
The seed and extract phases need to be specialized
for each template type, where extra information in the
data types (such as derivative information) must be ini-
tialized and retrieved. The compute phase, where the
equations are implemented, can be written on a fully
generic fashion. There are also issues with regard to
data structures, sparse matrices, parallelism, the use
of discretization libraries and the potential dependency
on libraries for property data. These issues will be ad-
dressed in the following sections.

2.1. Element-based assembly

A primary issue that arises when using the template-
based generic programming (TBGP) approach for
PDE:s is the sparsity of the derivative dependencies.
The automatic differentiation approach to computing
the Jacobian matrix using the Sacado package requires
all relevant variables to be a Sacado::FAD (forward
automatic differentiation) data type, which includes a
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dense array of partial derivatives with respect to the in-
dependent variables in the problem. As problem sizes
can easily extend into to the millions and beyond, yet
nonzero entries per row stay bounded at O(100), it is
not feasible to adopt the same approach. A second is-
sue is the requirement for the ability to run the codes
on distributed-memory parallel architectures. Adding
message-passing layers within the AD infrastructure
would also be challenging.

These two issues are circumvented by invoking the
template-based generic programming at a local level.
For FEM methods, this is the single element. The entire
PDE assembly phase is performed by summing con-
tributions over individual elements. Within each ele-
ment, it is typically not a bad assumption that the lo-
cal Jacobian (often referred to as the element stiffness
matrix) is dense. So, for Jacobian matrices, the AD is
performed at the element level, where the array of par-
tial derivatives is sized to be the number of degrees
of freedom in an element. The dense contributions to
each row of the matrix is subsequently scattered to the
global sparse matrix structure. Similarly, other quan-
tities that can be computed with the template-based
generic programming approach can also be calculated
element by element, and summed into a global data
structure.”

The choice of implementing the template-based
generic programming at a local level also nullifies
the second issue to do with distributed memory par-
allelism. In a typical distributed memory implemen-
tation, information from neighboring elements (often
called ghost, overlap or halo data) is pre-fetched. The
templating infrastructure and seed—compute—extract
loop falls below the message-passing layer. In our im-
plementation, no communication is performed within
the templated code.

We note that the local element-based approach is not
the only solution to these problems. Through the use
of sparse derivative arrays or graph-based compres-
sion techniques (see [10] for an overview of both of
these approaches and references to the relevant litera-
ture) automatic differentiation can be applied directly
at the global level. Furthermore, message passing li-
braries for distributed memory parallelism can be aug-
mented to support communication of derivative quan-
tities. However, due to the extra level of indirection in-

ZNote that most AD tools including Sacado compute the residual
along with the Jacobian allowing these quantities to be computed
simultaneously. In general evaluation of the nth derivative also in-
volves simultaneous evaluation of derivatives of order O up ton — 1
as well.

troduced, the use of sparse derivative arrays can sig-
nificantly degrade performance. Moreover, compres-
sion techniques require first computing the derivative
sparsity pattern and then solving an NP-hard optimiza-
tion problem to compress the sparse derivative into a
(nearly) dense one. In practice only approximate so-
lutions to this optimization problem can be attained.
However the solution to this problem is in fact known
a priori, it is precisely equivalent to the local element-
based approach (assuming the element derivative is
dense). Thus we have found the local element-based
approach to be significantly simpler than a global one,
particularly so as PDE discretization software tools
that support templated data types have been developed,
such as the Intrepid package in Trilinos.

2.2. Data structures

The purpose of the PDE assembly engine is to fill
linear algebra objects — primarily vectors and sparse
matrices. These are the data structures used by the
solvers and analysis algorithms. For instance, a New-
ton based solver will need a residual vector and a
Jacobian matrix; a matrix-free algorithm will need a
Jacobian-vector directional derivative; an explicit time
integration algorithm will need the forcing vector f(z);
polynomial chaos propagation [8,9,29,30] creates a
vector of vectors of polynomial coefficients; a sensitiv-
ity solve computes multiple vectors (or a single multi-
vector or dense column matrix) of derivatives with re-
spect to a handful of design parameters. The input to
the PDE assembly is also vectors: the solution vector x,
a vector of design parameters p, and coefficient vectors
for polynomial expansions of parameters &.

It is critical to note that the TBGP machinery is NOT
applied to the linear algebra structures used by the
solvers and analysis algorithms. None of the operator-
overloading or expression templating infrastructure
comes into play at this level. The TBGP is applied lo-
cally on a single element in the assembly process used
to fill the linear algebra data structures. For example,
in our Trilinos-based implementations the vectors and
matrices are objects from the Epetra or Tpetra libraries.
These are convenient because of their built-in support
for distributed-memory parallelism and their compati-
bility with all the solvers in Trilinos (both linear solvers
and analysis algorithms). However, none of the subse-
quent implementation of the TBGP code is dependent
on this choice.

Inside the PDE assembly for finite element codes,
it is natural to have element-based storage layout. All
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of the computations of the discretized PDE equations
operate on multi-dimensional arrays (MDArrays) of
data which can be accesses with local element-level
indexing (local nodes, local quadrature points, local
equation number, etc.). The current MDArray domain
model is specified and implemented in the Shards
package in Trilinos [7].

While the TBGP computations occur locally within
an element, the assembly of element contributions to
the linear algebra objects is done on local blocks of ele-
ments called “worksets”. A workset is a homogeneous
set of elements that share the same local bookkeep-
ing and material information. While all the computa-
tions within each element in a workset are indepen-
dent, the ability to loop over a workset amortizes the
overhead of function calls and gives flexibility to ob-
tain speedups through vectorization, cache utilization,
threading, and compute-node based parallelism. By re-
stricting a workset of elements to be homogeneous, we
can avoid excessive conditional (“if”’) tests or indirect
addressing within the workset loops. The number of
elements in a workset, /N, can be chosen based on a
number of criteria including runtime performance op-
timization or memory limitations.

The other dimensions of the MDArrays can in-
clude number of local nodes V,, number of quadra-
ture points /g, number of local equations or unknowns
Neq, and number of spatial dimensions Ngy. For in-
stance, a nodal basis function MDArray has dimen-
sions [Ne, N, Nql, while the gradient of the solution
vector evaluated at quadrature points is dimensioned
[Ne, Ng, Neg» Nal.

All of the MDArrays are templated on the Scalar
data type, called ScalarT in our code examples. De-
pending on what specific Scalar type they are instan-
tiated with, they will not only hold the value, but can
also hold other information such as the derivatives (in
the case of Jacobian evaluations), sensitivities or poly-
nomial chaos coefficients.

At this point, we hope the reader has an understand-
ing of the template-based generic programming ap-
proach from the previous paper, with the seed-extract-
compute paradigm. This current Section 2 has moti-
vated the application of the TBGP approach at the lo-
cal or element level, and has defined the distinction be-
tween global linear algebra objects (matrices and vec-
tors that span the mesh and typically are of double data
type) and MDArrays (element-based data structures of
quantities that are templated on the Scalar type). With
this foundation, the main concept in this paper can be
now presented in the following Section 3.

3. Template-based element assembly

The template-based generic programming approach
requires a seed phase where the Scalar data types are
initialized appropriately. As described above in Sec-
tion 2, there are different data structures that need to
exist in the solution phase from the assembly phase.
Notably, a gather routine is needed to pull in global in-
formation (such as the solution vector from the nonlin-
ear solver) to the local element data structures (such as
the solution values at local nodes in an element). In our
design, we perform the gather and seed operations in
the same routine. When we pull global data into a local
data storage, we not only copy it into local storage, but
also seed the Scalar data types as needed. The seeding
is dependent on the Scalar data type, so the gather op-
eration must be template specialized code. For exam-
ple, for a Jacobian evaluation, the partial derivative ar-
ray associated with the solution vector is seeded with
the identity matrix.

The inverse is also true. At the end of the PDE as-
sembly there are element-based contributions to the
global residual vector and, depending on the Scalar
type, information for the Jacobian, polynomial chaos
expansion, or other evaluation types contained in the
data structure as well. These quantities need to be ex-
tracted from these data structures as well as scattered
back from the local to global data storage containers.
We combine the scatter and extract operations into a
single step, which again require template-specialized
code. For the Jacobian example, the derivative array
associated with the residual entries are rows of the ele-
ment stiffness matrix.

The compute phase operates solely on local MDAr-
ray data structures with data templated on the Scalar
type. This phase can be written entirely on the generic
template type.

We have attempted to capture this concept schemati-
cally in Fig. 1. The Gather/Seed phase must take global
data and, depending on the template type, seed the
local arrays appropriately. The compute phase, bro-
ken into five distinct evaluations in this cartoon (the
blue boxes), performs the element level finite element
calculations for the specific PDEs, and is written just
on the generic template type. (The uniqueness of the
Gather Coordinates box will be addressed later in Sec-
tion 4.5.) The Scatter/Extract phase takes the results of
the assembly and loads the data into the appropriate
global quantities, as dictated by the specific evaluation

type.
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Field Manager
Scatter (Extract) I
PDE Terms
FE Interpolation
Compute Derivs

Gather (Seed) II

‘Generic Template Type
used for Compute Phase

éTempIate Specializations for§
\Seed and Extract phases: |

Fig. 1. A schematic of the template based generic programming
model for PDEs. The Gather (Seed) evaluator takes global data and
copies it into local storage, seeding any embedded data types in tem-
plate specialized codes. The Scatter (extract) phase does the inverse.
The Compute phase can be written on the generic template type, op-
erating on local data. (Colors are visible in the online version of the
article; http://dx.doi.org/10.3233/SPR-2012-0351.)

The execution of the phases is initiated by the ap-
plication code and handled by the Phalanx package
[18] by traversing the evaluation kernels in the directed
acyclic graph. More details on the three phases for a
typical finite element assembly will be described in the
subsequent sections.

3.1. Finite element assembly process under TBGP

Framing the finite element assembly process in
terms of the template-based generic programming con-
cept is best explained by example. Here we apply the
Galerkin finite element method to a generic scalar mul-
tidimensional conservation equation (see, e.g., [6])

W+V-Q+s=0, (1

where u is the unknown being solved for (i.e., the de-
gree of freedom) and « its time derivative. The flux
Q and source term s are functions of u, time and po-
sition. While the exact form of the flux is not impor-
tant, we comment that if the flux is strongly convecting,
then additional terms such as SUPG [4,12] may be re-
quired to damp non-physical oscillations. To simplify
the analysis, we ignore such terms here. This is valid
for systems where convection is not dominant such as
low Reynolds number flows or heat conduction in a

solid. Equation (1) is put into variational form which,
after integration by parts and ignoring boundary con-
tributions for the sake of simplicity, yields the residual
equations

R, = / [¢"0 — Vo' - Q + ¢'s1dQ. ()
Q

In (2), Q is the domain over which the problem is
solved and ¢’ are the finite element basis functions.
The unknown, its time derivative, and its spatial deriva-
tive are computed using

Ny
U= Z oM, U= Z i, 3)

i=1 =1

N .

I LI

89:]- h Z 6xju ’ (4)
1=1

where ! are the unknown coefficients of the dis-
cretization of u, x; is the coordinate direction, and Ny
is the number of basis functions. The integrations in (2)
are performed using numerical quadrature,

A NE Nq . . .

Ry =" 16" — V' Q+ ¢ slwglj]
e=1¢g=1
=0, (5)

where Ng is the total number of elements in the do-
main, N, is the number of quadrature points in an ele-
ment for the integration order, |j| is the determinant of
the Jacobian of transformation from the physical space
to the element reference space, and wy the quadrature
weights.

With the finite element assembly algorithm defined
by (5), the process can be redefined in terms of the
gather—compute—scatter operations. The assembly al-
gorithm in (5) loops over the elements in the domain
and sums the partial contributions to form the resid-
ual equations, ]% The complete set of residual equa-
tions constitute the global residual, f. Reformulating
in terms of the workset concept, the assembly process
for evaluating a residual is defined as

Nw Nw
f@=3"fr="> Sk Rl (Go). ©)
k=1 k=1

Here Ny, is the number of worksets and fy, is the par-
tial residual associated with the finite element contri-
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void GatherSolution<EvaluationType::Residual>::

evaluateFields () {

// NOTE:: local_x is a 2D MDArray of dimension (numberOfElements,numberOfLocalNodes)

// of data type: double

for (int elem=0; elem < numberOfElements;

elem++)

for (int node=0; node < numberOfLocalNodes; node++)
local_x(elem,node) = global_x(ConnectivityMap (elem,node)) ;

Fig. 2. Seed and Gather code for Residual evaluation. The ConnectivityMap function is the degree of freedom, or connectivity map, that
gets the global ID from the element number and local node number. The Seed phase is trivial, just a copy of the value.

butions for the elements in workset k. G}, is the gather
operation that maps the global solution vector, x, to
the local solution vector for workset k. As mentioned
above, in the software implementation, the gather rou-
tine also performs the seeding of scalar types. SZ is
the scatter operation that maps the local element resid-
ual for elements of workset & into the global residual
contribution, f; = SZRZ,C. As noted above, in the
software implementation, the extraction process occurs
during the scatter. R@k are the element residual con-

tributions to Rﬁ that come from the elements in work-
set k as a function of the local workset solution vector
G kT,

Ne Nq
Rl => > [¢'4— V' Q+ ¢'slwgljl
e=1g=1
=0. (7)

N, is the number of elements in workset k.

The important point to note is that while all of the
code written above was used for evaluating a residual,
the bulk of the code can now be reused for other eval-
uation types such as Jacobians, parameter sensitivities,
stochastic residuals, etc. This is accomplished merely
by writing an additional specialization for the gather,
G, and scatter, Sg, operations only. All of the code
for the residual evaluation, Rik, is written once for a
generic template argument for the scalar type and is
reused for each evaluation type.

In the following sections, we now show examples
and further explain each of the assembly steps.

3.2. Seed and Gather phase: Template specialization
In this first phase, the approach is to do the gather

operation, GG}, (pulling quantities from a global vec-
tor) and the seed phase (initializing the template type

for the desired embedded operation) in the same block
of code. In this example, which is an adaptation of
working code, the Phalanx evaluator called Gather-
Solution is where this operation occurs, and within
the evaluateFields method in particular. As de-
scribed in the previous paper [19], the Trilinos package
Phalanx [18] is used to build the governing equations,
where separate pieces of the computation are broken
into Phalanx evaluator objects.

The field to be evaluated is called 1local_x, the
solution vector at the local nodes of each element. It
depends on global_x, which is the solution vec-
tor in the vector data layout. In Fig. 2, the Gather-
Solution class is specialized to the Residual
evaluation type. This routine simply copies the val-
ues from one data structure to another with the use
of a bookkeeping function ConnectivityMap. In
Fig. 3, the code for the GatherSolution class spe-
cialized to the Jacobian evaluation type is shown.
In addition to the gather operation to load the value
of x into the local data structure, there is also a seed
phase to initialize the partial derivatives with the iden-
tity matrix. Here, the independent variables are de-
fined by initializing the partial derivative array of the
Sacado::FAD automatic differentiation data type. Two
nested loops over the local nodes are used to set g%; to
1.0 when ¢ = 5 and to 0.0, otherwise.

As the number of output quantities to be produced
by the finite element assembly increases (such as those
defined by the rows in Table 1), so does the number
of template specialized implementations of the Gath-
erSolution object need to be written. The syntax
here is dependent on the implementation in the Sacado
package in Trilinos, but the concept of seeding auto-
matic differentiation calculations is general.

3.3. Compute phase: Generic template

The compute phase that computes the local contri-

butions, RZ,C’ for a PDE application operates on data
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void GatherSolution<EvaluationType::Jacobian>::

evaluateFields () {

// NOTE:: local_x is a 2D MDArray of dimension (numberOfElements,numberOfLocalNodes)

// of data type:

Sacado: :FAD with allocated space for

// numberOfLocalNodes partial derivatives.

for (int elem=0; elem < numberOfElements;

elem++) {

for (int node=0; node < numberOfLocalNodes; node++) {
local_x(elem,node) .val() = global_x(ConnectivityMap (elem,node)) ;
// Loop over all nodes again, and Seed dx/dx=I
for (int wrt_node=0; wrt_node < numberOfLocalNodes;

wrt_node++) {

if (node == wrt_node) local_x(elem,node) .dx(wrt_node) =
local_x(elem,node) .dx (wrt_node) =

else

o
o o

Fig. 3. Seed and Gather Code for Jacobian evaluation. The Gather operation is the same as the Residual calculation. The Seed phase involves
local_x, which is now an automatic differentiation data type. The method local_x.val () accesses the value, and local_x.dx ()
accessing the ith partial derivative. The example here assumes one equation and one unknown per local node.

Table 1

Embedded analysis algorithms require a variety of quantities to be computed in the PDE assembly

Evaluation Input vector(s) Other input Output vector Output matrix
Residual T p f
Steady Jacobian T p %

i i _ di ; daf | df
Transient Jacobian (3 = ) x,T D, B B ar T dz
Directional derivative x,v p % ‘v
Sensitivity T p %

Hessian- Vector z,v dz—f v
y p az2

Stochastic Galerkin residual z(§) 13 F

Stochastic Galerkin Jacobian z(§) I3 %

Notes: This table shows a list of linear algebra quantities that can be computed, as well as the required inputs.
In this table: x is the solution vector, & is the time derivative of x, v is one or more vectors chosen by the
analysis algorithm, p is one or more system parameters for continuation/optimization, £ is one or more random
variables, f is the residual vector of the discretized PDE system, and F' is the stochastic expansion of the

residual vector.

that exists in the local element-based data structures.
This code is written entirely on the generic evalua-
tion template type EvalT. One must just write the
code needed to evaluate the residual equation, but us-
ing the ScalarT data type corresponding to the eval-
uation type EvalT instead of raw double data type
(as shown in Section 7.1 of [19]). The overloaded data
type, together with specializations in the Seed and Ex-
tract phases, enable the same code to compute all man-
ner of quantities such as the outputs in Table 1.

In this section we give two examples of the eval -
uateFields method of a Phalanx evaluator class.

The first is shown in Fig. 4 which calculates a source
term in a heat equation,

s=a+ ﬂuz, (®)

where s is the source term from Eq. (1), « and [ are
parameters in this model, and w is the solution field.
The code presupposes that the field u has been com-
puted in another evaluator and is an MDArray over el-
ements and quadrature points. The factors « and g in
this example are scalar values that do not vary over the
domain. (We will discuss later in Section 4.1 how to
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void SourceTerm<EvalT>::

evaluateFields () {
// NOTE:: This evaluator depends on properties "alpha" and "beta"
// and scalar quantity "u" to compute the scalar source "g"
for (int elem=0; elem < numberOfElements; elem++) {

for (int gp=0;
source (elem, gp)

gp < numberOfQuadPoints; qp++) {

+= alpha + beta * u(elem,qgp) * u(elem,gp);

Fig. 4. Example of an evaluation kernel from the Compute phase. Note that the code is templated on the Generic EvalT evaluation type. This
code will propagate the auxiliary information contained in EvalT: : ScalarT data type for any of the embedded capabilities. No template

specialization is needed.

void HeatEquationResidual<EvalT>::

evaluateFields () {
// NOTE:: This evaluator depends on several precomputed fields,
// flux, source, Tdot (time derivative),
// wBF (Basis Function with quadrature and transformation weights)
// and wGradBF (gradient of Basis Functions with weights).
// The result is the TResidual field, the element contribution
// to the heat equation residual.

typedef Intrepid::FunctionSpaceTools FST;

FST::integrate<ScalarT> (TResidual,
FST: :integrate<ScalarT> (TResidual,

FST::integrate<ScalarT> (TResidual,

flux, wGradBF) ;
source, WwBF) ;

Tdot, wBF) ;

Fig. 5. Evaluator for the final assembly of the heat equations. The terms correspond to those in Eq. (9), in order. The variable TResidual is
being accumulated in each step. All variables are MDArrays. Depending on the template parameter EvalT and the corresponding data type

ScalarT, this same block of code is used for accumulating the residual, Jacobian, or any of the output quantities listed in Table 1.

expose « and 3 as parameters for design or analysis.)
Note again that this code is templated on the generic
EvalT evaluation type, and only one implementation
is needed.

For general PDE codes, it is common, and efficient,
to use discretization libraries to perform common op-
erations. For a finite element code, this includes ba-
sis function calculations, calculating the transforma-
tion between reference and physical elements, and sup-
plying quadrature schemes. To the extent that these op-
erations occur within the seed-compute-extract loop,
they must support templating for the TBGP approach
to work. In Trilinos, the Intrepid discretization library
[3] serves all these roles, and was written to be tem-
plated on the generic ScalarT data type.

Figure 5 shows an example evaluator method for
the final assembly of the residual equation for a heat
balance. This code uses the Integrate method of
the Intrepid finite element library to accumulate the
summations over quadrature points of each of the four
terms. The integrals are from the variational formula-
tion of the PDEs, where the terms are matched with
the Galerkin basis functions (adapted from Eq. (2) but
using common notation for heat transfer):

f=/ (Q-W)dm/ () dQ
Q Q

4 / (T6') a2, ©
Q
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void ScatterResidual<EvaluationType::Residual>::

evaluateFields () {

// NOTE:: local_f is a 2D MDArray of dimension (numberOfElements,numberOfLocalNodes)

// of data type: double

for (int elem=0; elem < numberOfElements;

elem++)

for (int node=0; node < numberOfLocalNodes; node++)

global_f (ConnectivityMap (elem,node))

= local_f (elem,node) ;

Fig. 6. Extract and Scatter Code for Residual evaluation. The ConnectivityMap function is also called the degree of freedom map, and gets the
global ID from the element number and local node number. The Extract phase is trivial for this Evaluation type, just a copy of the value.

where ¢’ are the basis functions. The three terms on
the right-hand side correspond to the diffusive, source
and accumulation terms.

The source term s in this equation can be a function
of the solution, a function of the position, or a sim-
ple constant. The dependencies must be defined in the
source term evaluator. However, these dependencies do
not need to be described in the heat equation residual.
This same piece of code will accurately propagate any
derivatives that were seeded in the gather phase, and
accumulated in the source term evaluator.

We should also note that it is possible to write
template-specialized code for the compute phase. If,
for instance, one would like to hand-code the Jacobian
fill for efficiency, or to leave out terms for a precondi-
tioner, once could simply write a function:

HeatEquationResidual<EvaluationType
::Jacobian>: :evaluateFields ()

where the generic template type EvalT is replaced by
the template specialized evaluation type of Jacobian.

3.4. Extract and Scatter phase: Template
specialization

This section closely mimics Section 3.2, but with the
transpose operations. Here, each local element’s con-
tributions to the finite element residual is scattered into
the global data structure. At the same time, if additional
information is stored in the templated data types, it is
extracted and scattered into the global linear algebra
objects.

In this example, the evaluator object called Scat-
terResidual is where this operation occurs, and
within the evaluateFields method in particular.
The culmination of all the compute steps above have
resulted in the computation of the field local_f,

which represents the local element’s contribution, Rfi L

to the global residual vector, but may also contain ad-
ditional information in the ScalarT data type.

In Fig. 6, the ScatterResidual class is spe-
cialized to the Residual evaluation type. This rou-
tine simply copies the values from the element data
structure to the global data structure with the use of
the same bookkeeping function ConnectivityMap
that was used in Section 3.2. In Fig. 7, the code
for the ScatterResidual class specialized to the
Jacobian evaluation type is shown. Here, the local,
dense, stiffness matrix is extracted from the Sacado::
FAD automatic differentiation data type. Two ]rclested

d

loops over the local nodes are used to extract dx? and
J

load them into the global sparse matrix.

A set of template specialized implementations of
the ScatterResidual object need to be writ-
ten to match those in the GatherSolution class.
Just two are shown here. These implementations are
specific to the interface to the global data struc-
tures being used, which here are encapsulated in the
ConnectivityMap () and AddSparseMatrix-
Entry () methods.

A central point to this paper, and the concept of
template-based generic programming, is that the im-
plementations in the Seed and Gather and the Extract
and Scatter sections can be written agnostic to the
physics being solved. While the work of correctly pro-
gramming these two phases for all evaluation types is
not at all trivial, the development effort is completely
orthogonal to the work of adding terms to PDEs. Once
a code is set up with implementations for a new eval-
uation type, it is there for any PDEs assembled in the
compute phase.

We note that while the examples shown here are triv-
ial, the design of the assembly engine is very general
and allows for complex multiphysics problems. In par-
ticular, unknowns are not all bound to the same basis.
Fully-coupled mixed basis problems have been demon-
strated with the Phalanx assembly engine. The design
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void ScatterResidual<EvaluationType::Jacobian>::

evaluateFields () {

// NOTE:: local_f is a 2D MDArray of dimension (numberOfElements,numberOfLocalNodes)

// of data type:

Sacado: :FAD with allocated space for

// numberOfLocalNodes partial derivatives.

for (int elem=0; elem < numberOfElements;

elem++) {

for (int node=0; node < numberOfLocalNodes; node++) {

int row=ConnectivityMap (elem,node) ;

for (int wrt_node=0; wrt_node < numberOfLocalNodes;

wrt_node++) {

int col=ConnectivityMap (elem,wrt_node) ;
double val = local_f (elem,node) .dx(wrt_node); //Extract df_i/dx_j

AddSparseMatrixEntry (row,col,val) ;

Fig. 7. Extract and Scatter Code for Jacobian evaluation. The Extract phase involves local_f, which is now an Automatic Differentiation data
type. The method dx (%) on this data type accesses the ith partial derivative. A (fictitious) method called AddSparseMatrixEntry(int row, int col,

df

int value) shows how this Jacobian information is scattered into the global and sparse g7 storage.

of each evaluator in the graph is completely controlled
by the user, thus allowing for any algorithm local to the
workset to be implemented.

We further note that for all of the evaluation routines
above, the loops were explicitly written in the evalua-
tor. In general, this is not ideal since it is likely to be
repeated across multiple evaluators and can introduce
additional points for error. These loops could be elim-
inated using utility functions or expression templates
[28]. This will be a future area of research. Further-
more, optimizing the ordering of the nested loops and
the corresponding data layouts of the field data and em-
bedded scalar types are also areas of future research.

Finally, we note that during the design of the Pha-
lanx package, great care was given to designing the li-
brary so that users with little C4+ template experi-
ence could easily add new physics. We feel this has
been extremely successful in that there exists over 10
distinct physics applications using the TBGP packages
in Trilinos. The drawback, however, is that the ini-
tial setup of the TBGP process requires a programmer
with a strong background with templates. In contrast,
DSL-based codes such as Sundance [16] and FEniCS
[14,15] automate the entire assembly process for users
lowering the barrier for adoption. We feel that the extra
work in setting up the TBGP machinery is worth the
effort as we have very quickly extended the embedded
analysis support to new types such as the stochastic
Galerkin methods.

4. Extensions to TBGP for finite element code
design

The basic implementation details for template-based
generic programming approach for finite element code
were described in the previous section. As we have
implemented this approach in application codes, we
have run across many issues, and implemented solu-
tions to them. Some of the most important of these are
described in the following sections.

4.1. Infrastructure for exposing
parameters/properties

One of the main selling points of the template-based
generic programming approach is the ability to per-
form design and analysis involving system parame-
ters. Continuation, sensitivity analysis, optimization,
and UQ all require that model parameters be manipu-
lated by the analysis algorithms. These parameters are
model specific, and commonly include a value of a
boundary condition, a dimensionless group such as the
Reynolds number, a model parameter such as an Ar-
rhenius rate coefficient, or a shape parameter such as
the radius of some cylindrical part. In this section we
briefly describe our infrastructure for exposing param-
eters.

Infrastructure for dealing with parameters should try
to meet the following design requirements: a simple
interface for model developers to expose new param-
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ScalarT& SourceTerm<EvalT>::getValue(std::string name)

{

if (name=="Alpha") return alpha;
elseif (name=="Beta") return beta;

Fig. 8. Example implementation of getValue method, which provides a hook for analysis algorithms to manipulate design parameters.

eters, integration into the template-base approach so
derivatives with respect to parameters are captured, and
seamless exposure of the parameters to design algo-
rithms such as optimization and UQ.

The approach that has been successful in our codes
has been to use the ParameterLibrary class in
the Sacado package of Trilinos. This utility stores the
available parameters by string name and value, and can
handle the multiple data types needed by the template-
based approach. The developer can register parameters
in the parameter library, identified by strings, by sim-
ply calling the register method during the construction
phase. To expose the o and 3 parameters in the above
Example 4 by labels “Alpha” and “Beta”, the construc-
tor for the SourceTerm evaluator simply needs to
add the lines:

parameterLibrary.
registerParameter ("Alpha", this) ;

parameterLibrary.
registerParameter ("Beta", this) ;

assuming that a parameterLibrary object is in
scope. At the end of the problem construction, the pa-
rameter library can be queried for a list of registered
parameters, and will include these two in addition to
those registered elsewhere.

The analysis algorithms can then manipulate the val-
ues of these parameters in the ParameterLibrary.
There is a choice of using a push or a pull paradigm:
when the value is changed in the parameter library, is
it immediately pushed to the evaluator where it will
eventually be used, or is it up to the model to pull
the parameter values from the parameter library when
needed. We have chosen the push approach, since with
this choice there is no performance penalty for expos-
ing numerous parameters as potential design variables.
Parameters are only pushed to one location, so param-
eters that are used in multiple evaluators must have a
root evaluator where they are registered and other eval-
uators must have a dependency on that one.

Any evaluator class that registers a parameter must
inherit from an abstract ParameterAccessor
class, which has a single method called ScalarT&

getValue (std: :string name). Any parame-
ter that gets registered with the ParameterLibrary
needs to send a pointer to a ParameterAccessor
class, so the parameter library can push new values
of the parameter when manipulated by an analysis al-
gorithm. In the example above, this is handled by the
this argument in the registration call.

For this example, the getValue method can be
simply implemented as shown in Fig. 8, assuming pa-
rameters alpha and beta are member data of generic
template type ScalarT. Sensitivities of the resid-
ual equation with respect to parameters are calculated
with automatic differentiation when evaluated with
the Tangent evaluation type. Like the Jacobian
evaluation type, the associated Scalar data type is a
Sacado::FAD type. However, the length of the deriva-
tive array is the number of parameters, and the seed
and extract phases require different specializations.

4.2. Shape optimization: A second scalar type

Quantities in the PDE assembly that might have
nonzero partial derivatives with respect to an indepen-
dent variable (whether it be a parameter or part of the
solution vector) must be a have a templated data type.
In this way, derivatives can be propagated using the ob-
ject overloading approach. Constants (such as 7) can
be hardwired to the RealType data type to avoid
the expense of propagating partial derivatives that we
know are zero.

For the bulk of our calculations, the coordinates of
the nodes in our finite element mesh are fixed. All the
quantities that are solely a function of the coordinates,
such as the basis function gradients and the mapping
from an element to the reference element, can be set to
RealType. However, when we began to do shape op-
timization, the coordinates of the node could now have
nonzero derivatives with respect to the shape parame-
ter in the Tangent (sensitivity) evaluation. To simply
make all quantities that are dependent on the coordi-
nates to be the ScalarT type would trigger an exces-
sive amount of computations, particularly for the Jaco-
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bian calculations, where the chain rule would be prop-
agating zeroes through a large part of the finite element
assembly.

The solution was to create a second generic data
type, MeshScalarT, for all the quantities that have
non-zero derivatives with respect to the coordinates,
but have no dependency on the solution vector. The
Traits class defined in the previous paper is extended to
include MeshScalarT as well as ScalarT as fol-
lows.

struct UserTraits
public PHX::TraitsBase {

// Scalar Types
typedef double RealType;
typedef Sacado::FAD FadType;

// Evaluation Types with default
// scalar type
struct Residual {
typedef RealType ScalarT;
typedef RealType MeshScalarT;};
struct Jacobian {
typedef FadType ScalarT;
typedef RealType MeshScalarT;};
struct Tangent ({
typedef FadType ScalarT;
typedef FadType MeshScalarT;};

If, in the future we decide to do a moving mesh
problem, such as thermo-elasticity, where the coordi-
nate vector for the heat equation does depend on the
current displacement field as calculated in the elas-
ticity equation, then the Jacobian evaluation could
be switched in this traits class to have typedef
FadType MeshScalarT. Automatically, the code
would calculate the accurate Jacobian for the fully cou-
pled moving mesh formulation.

While it can be complicated to pick the correct data
type for all quantities with this approach, the Sacado
implementation of these data types has a useful feature.
The code will not compile if you attempt to assign a
derivative data type to a real type. The casting away of
derivative information must be done explicitly, and can
not be done by accident. This is illustrated in the fol-

lowing code fragment, as annotated by the comments.

RealType r=1.0;
FadType f=2.5;

f =r; // Allowed. All derivatives
// set to zero.
r = £f; // Compiler will report

// an error.
4.3. Template infrastructure

Template-based generic programming places a num-
ber of additional requirements on the code base. Build-
ing and manipulating the objects can be intrusive. Ad-
ditionally the compile times can be excessive as more
and more template types are added to the infrastruc-
ture. Here we address these issues.

4.3.1. Extensible infrastructure

The infrastructure for a template-based assembly
process must be designed for extensibility. The addi-
tion of new evaluation types and/or scalar types should
be minimally invasive to the code. To support this re-
quirement, a template manager class has been devel-
oped to automate the construction and manipulation of
a templated class given a list of template types.

A template manager instantiates a particular class
for each template type using a user supplied factory
for the class. The instantiated objects are stored in a
std: : vector inside the manager. To be stored as a
vector, the class being instantiated must inherit from a
non-templated base class. Once the objects are instanti-
ated, the template manager provides functionality sim-
ilar to a std: : vector. It can return iterators to the
base class objects. It allows for random access based
on a template type using templated accessor methods,
returning an object of either the base or derived class.

The list of types a template manager must build
is fixed at compile time through the use of template
metaprogramming techniques [1] implemented in the
Boost MPL library [5] and Sacado [21]. These types
are defined in a “traits” class. This object is discussed
in detail in [19].

We note that the template manager described here
is a simplified version of the tuple manipulation tools
supplied by the Boost Fusion library [5]. In the future,
we plan to transition our code to using the Fusion li-
brary.

4.3.2. Compile time efficiency

For each class templated on an evaluation type, the
compiler must build the object code for each of the
template types. This can result in extremely long com-
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pile times even for very minor code changes. For that
reason explicit template instantiation is highly recom-
mended for all classes that are templated on an evalua-
tion type. In our experience, not all compilers can sup-
port explicit instantiation. Therefore both the inclusion
model and explicit template instantiation are supported
in our objects (see Chapter 6 of [27] for more details).

The downside to such a system is that for each class
that implements explicit instantiation, the declaration
and definition must be split into separate header files
and a third (file.cpp) file must also be added to the code
base.

4.4. Incorporating non-templated third-party code

In some situations, third-party code may provide
non-template based implementations of some analysis
evaluations. For example, it is straightforward to differ-
entiate some Fortran codes with source transformation
tools such as ADIFOR [2] to provide analytic evalua-
tions for first and higher derivatives. However clearly
the resulting derivative code does not use the template-
based procedure or the Sacado operator overloading li-
brary. Similarly some third-party libraries have hand-
coded derivatives. In either case, some mechanism is
necessary to translate the derivative evaluation gov-
erned by Sacado into one that is provided by the third-
party library. Providing such a translation is a relatively
straightforward procedure using the template special-
ization techniques already discussed. Briefly, a Pha-
lanx evaluator should be written that wraps the third-
party code into the Phalanx evaluation hierarchy. This
evaluator can then be specialized for each evaluation
type that the third-party library provides a mechanism
for evaluating. This specialization extracts the requisite
information from the corresponding scalar type (e.g.,
derivative values) and copies them into whatever data
structure is specified by the library for evaluating those
quantities. In some situations, the layout of the data in
the given scalar type matches the layout required by
the library, in which case a copy is not necessary (e.g.,
Sacado provides a forward AD data type with a layout
that matches the layout required by ADIFOR, in which
case a pointer to the derivative values is all that needs
to be extracted). However this is not always the case,
so in some situations a copy is necessary.

Such an approach will work for all evaluation types
that the third-party library provides some mechanism
for evaluating. However clearly situations can arise
where the library provides no mechanism for certain
evaluation types. In this case the specializations must

be written in such a way as to generate the required in-
formation non-intrusively. For example, if the library
does not provide derivatives, these can be approxi-
mated through a finite-differencing scheme. In a Ja-
cobian evaluation for example, the Jacobian special-
ization for the evaluator for this library would make
several calls to the library for each perturbation of the
input data for the library, combine these derivatives
with those from the inputs (dependent fields) for the
evaluator (using the chain rule) and place them in the
derivative arrays corresponding to the outputs (eval-
uated fields) of the evaluator. Similarly polynomial
chaos expansions of non-templated code can be com-
puted through non-intrusive spectral projection [23].

4.5. Mesh morphing and importing coordinate
derivatives

The shape optimization capability that will be dem-
onstrated in Section 5 requires sensitivities of the resid-
ual equation with respect to shape parameters. Our im-
plementation uses an external library for moving the
mesh coordinates as a function of shape parameters,
a.k.a. mesh morphing. This is an active research area,
and a paper has just been prepared detailing six differ-
ent approaches on a variety of applications [26].

Briefly, the desired capability is for the application
code to be able to manipulate shape parameters, such
as a length or curvature of part of a solid model, and
for the mesh morphing utility to provide a mesh that
conforms to that geometry. To avoid changes in data
structures and discontinuities in an objective function
calculation, it is desirable for the mesh topology, or
connectivity, to stay fixed. The algorithm must find a
balance between maintaining good mesh quality and
preserving the grading of the original mesh, such as
anisotropy in the mesh designed to capture a boundary
layer. Large shape changes that require remeshing are
beyond the scope of this work, and would need to be
accommodated by remeshing and restarting the opti-
mization run.

A variety of mesh morphing algorithms have been
developed and investigated. At one end of the spectrum
is the smoothing approach, where the surface nodes
are moved to accommodate the new shape parame-
ters and the resulting mesh is smoothed until the el-
ements regain acceptable quality. At the other end of
the spectrum is the FEMWARP algorithm [25], where
a finite element projection is used to warp the mesh,
requiring a global linear solve to determine the new
node locations. In this paper, we have used a weighted
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residual method, where the new node coordinates are
based on how boundary nodes in their neighborhood
have moved. We chose to always morph the mesh
from the original meshed configuration to the chosen
configuration, even if an intermediate mesh was al-
ready computed at nearby shape parameters, so that the
new mesh was uniquely defined by the shape parame-
ters.

Since the mesh morphing algorithm is not a local
calculation on each element but operates across the en-
tire mesh at one time, the derivatives cannot be cal-
culated within a Phalanx evaluator using the template-
based approach, nor using the methods described in
Section 4.4.

Our approach for calculating sensitivities of the
residual vector f with respect to shape parameters p is
to use the chain rule,

o _ of 0x )
dp 00X Op

where X is the coordinate vector. Outside of the seed-
compute-extract section of templated code, we pre-
calculate the mesh sensitivities %—X with a finite differ-
ence algorithm around the mesh morphing algorithm.
This multi-vector is fed into the residual calculation as
global data.

As part of the typical assembly, there is a gather-
Coordinates evaluator that takes the coordinate
vector from the mesh database and gathers it into
the local element-based MDArray data structure. For
shape sensitivities, the coordinate vector is a Sacado::
FAD data type, and the gather operation not only im-
ports the values of the coordinates, but also seeds
the derivative components from the pre-calculated %%
vectors. This is shown schematically in Fig. 1, where
the GatherCoordinates box is shown to have a
template specialized version for shape optimization in
addition to a generic implementation for all other eval-
uation types. When the rest of the calculation proceeds,
the directional derivative of g—)]; in the direction of %—X
is computed. The same implementation for extracting
2_1}; works for this case as when p is a set of model pa-
rameters as described in Section 4.1.

5. Demonstration: Sliding electromagnetic contact
The template-based generic programming approach

is demonstrated here on a prototype 3D PDE applica-
tion: the sliding electromagnetic contact problem. The

T=0 T=0

V

$=1 $=0

Fig. 9. A front view of the geometry for the sliding electromagnetic
contact application. The imposed gradient in potential 1) causes elec-
tric current, Joule heating, and a magnetic field that propels the slider
(which is not currently modeled). (The colors are visible in the online
version of the article; http://dx.doi.org/10.3233/SPR-2012-0351.)

geometry of this problem is shown in Fig. 9, where,
for the nominal design, this 2D geometry is simply ex-
truded into the third dimension. A slider (light blue)
is situated between two conductors (green and yel-
low) with some given shapes of the contact pads (thin
red and blue regions). When a potential difference ()
over the device is prescribed, an electrical current flows
through system in the general direction of the dashed
red line. The electrical current generates a magnetic
field that in turn propels the slider forward. In addition,
the current generates heat.

The design problem to be investigated is to find the
shape of the slider, with a given volume, that mini-
mizes the maximum temperature achieved inside of it.

5.1. Governing equations and objective function

In this demonstration, we simplify the system by
decoupling the magnetics, and solve a quasi-steady
model where the slider velocity v is given. The model
is then reduced to two coupled PDEs. The first is a po-
tential equation for the electric potential ¢). The second
is a heat balance that accounts for conduction, convec-
tion, and Joule heating source term that depends on the
current V:

—V .oV =0, (11)
—V kYT —v-VT = o(Vi))>. (12)

The electrical conductivity, o, varies as a function of
the local temperature field based on a simplified ver-
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sion of Knoepfel’s model [13],
o(T) = oo/[1 + B(T — Ty)l, (13)

where og can take different values in the slider, the
conductor, and in the pads (0(})7 ). This dependency re-
sults in a coupled pair of equations.

By choosing the frame of reference that stays with
the slider, we impose a fixed convective velocity vy
in the beams, and v = O in the slider. The Dirich-
let boundary conditions for the potential and tempera-
ture are shown in Fig. 9, with all others being natural
boundary conditions. Since these equations and geom-
etry are symmetric about the mid-plane (a vertical line
in this figure), we only solve for half of the geometry
and impose ¢ = 0.5 along this axis.

This PDE model was implemented using Phalanx
evaluators. By specifying the dependencies with the
evaluators, such as o(7’), the evaluation tree is auto-
matically constructed. The full graph for this problem
is shown in Fig. 10. As with the ODE example in the
previous paper [19], only the Gather and Scatter func-
tions need to be written with template specialization
for the Seed and Extract phases. All the intermediate
Compute quantities can be written once on a generic
evaluation type.

As an example of how to interpret this graph: the
oval marked Ty computes the temperature field at the
quadrature points using the Basis Functions and Ty, the
Temperature field at the nodes (implementing Eq. (3));
Ty is subsequently used to compute « and o in another
evaluator (which implements Eq. (13)).

The objective function g, which is to be minimized
by the design problem, is simply

9@, T) = [T oo- (14)

The design parameters p modify the shape of the
slider. Its shape is fixed to match the rectangular pads
at each end, and its volume is fixed to be that of the
rectangular box between them. In between, the shape
is allowed to vary parabolically. For a one-parameter
optimization problem, the matched parabolic profiles
of the top and bottom of the slider are free to vary
by a single maximum deflection parameter. Because of
the symmetry of the problem, this defines the parabola.
For two-parameter optimization problem, these two
parabolas are allowed to vary independently and a
third, the bulge of the slider out of the plane of the fig-
ure, is adjusted so that the volume constraint is met.

Scatter Eqs(11,12)

P

Basis Functions

Fig. 10. The dependency graph for the Phalanx evaluators that build
the thermo-electric equation set is shown. Each box represents a sep-
arate class. The quantities at the bottom must be computed before
those above. Derivatives are automatically propagated by the chain
rule using the Sacado Automatic Differentiation data types. Here X
is the coordinate vector, 7" the temperature, and v/ the potential, and
subscript 7 and g indicating to node and quadrature point data.

5.2. Gradient-based optimization

The optimization problem is solved using a gradient-
based optimization algorithm from the Dakota frame-
work. Dakota can be built as part of Trilinos using the
build system and adaptors in the TriKota package.

The goal is to minimize the objective function g(p)
from Eq. (14) as a function of the shape parameters p.
In addition, the problem is constrained so that the dis-
cretized PDEs are satisfied, f(z) = 0 where f repre-
sents the finite element residuals for the equation set
specified in Eqs (11) and (12) and the solution vector x
is the combined vector of the discretized potential and
temperature fields. The shape parameters do not appear
explicitly in the objective function, or even in the gov-
erning Eqs (11) and (12), but instead effect the geom-
etry of the problem. They appear in the discretization,
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and can be written as f(z, X(p))), where X is the vec-
tor of coordinates of nodes in the mesh.

In addition to the objective function g(p), the gradi-
ent-based algorithm depends on the reduced gradient
of the objective function with respect to the parame-
ters. The formula for this term can be expanded as,

dg 99 ogTof~'ofdx

=== X (15)

dp  9dp Oz oz

Each of these terms is computed in a different way.
Starting at the end, the multi-vector X, = % is com-
puted with finite differences around the mesh morph-
ing algorithm, as described in Section 4.5. The sensi-
tivity of the residual vector with respect to the shape
parameters is the directional derivative % in the di-
rection X. This is computed using Automatic Dif-
ferentiation using the infrastructure described in Sec-
tion 4.5, where the Sacado automatic derivative data
type for the coordinate vector X is seeded with the
derivative vectors X;,. The result is a multi-vector fi,.

The Jacobian matrix % is computed with automatic
differentiation. All the Sacado data types are allocated
with derivative arrays of length 16, which is the num-
ber of independent variables in a hexahedral element
with trilinear basis functions and two degrees of free-
dom per node. The local element solution vector x is
seeded with % = 1 when ¢ = j. The action of the

inverse of the J. écobian on fp is performed with a pre-
conditioned iterative linear solver using the Belos and
Ifpack packages in Trilinos.

The gradient of the objective function % is com-
puted by hand, since g is the max operator on the half
of x corresponding to the temperature unknown. The
non-differentiability of the max operator with respect
to changes in parameter can in general be an issue.
However, no problems were encountered in this appli-
cation since the location of the maximum did nor move
significantly over iterations. Finally, the term g—g was
identically zero because the parameters did not appear
explicitly in the objective function.

First, a one-parameter optimization problem was run
to find the parabolic deflection of the top and bottom of
the slider that minimized the maximum temperature. In
addition to the gradient-based optimization algorithm
described above, a continuation run was performed us-
ing the LOCA package [24] in Trilinos. The results
are shown in Fig. 11. The continuation run shows the
smooth response surface for a wide range if deflec-
tions, both positive and negative. The optimization it-
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-0.008-0.006-0.004-0.002 0 0.002 0.004 0.006 0.008

Bend Offset

Tmax

Fig. 11. Results for a continuation run with LOCA and a mini-
mization run using Dakota, for a one-parameter shape optimization
problem. (Colors are visible in the online version of the article;
http://dx.doi.org/10.3233/SPR-2012-0351.)

Tempercture
26

Fig. 12. Initial mesh configuration and steady-state temperature pro-
files for the two-parameter optimization problem. The deflections of
the top and bottom surface of the slider are varied independently, and
the deflection (bulge) out of the plane is chosen to constrain the vol-
ume to that of a rectangular brick. (Colors are visible in the online
version of the article; http://dx.doi.org/10.3233/SPR-2012-0351.)

eration rapidly converges to the minimum. The opti-
mum occurs for a small positive value of the deflec-
tion parameter, corresponding to a shape that is slightly
arched upwards but rather near the nominal shape of a
rectangular box.

A two-parameter optimization run was also per-
formed, where the top and bottom parabolas were freed
to vary independently, and the bulge of the slider was
adjusted to conserve the volume of the mesh. Figure 12
shows the initial configuration, with a rather arched
bottom surface, and nearly flat upper surfaces, and a
moderate bulge. The optimal shape is shown in Fig. 13.
As with the one-parameter case, the optimal shape was
found to be close to a rectangular box. The temperature
contouring of the two figures, which share a color map,
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Temperature
26

Fig. 13. Final configuration and color map for the two-parameter
optimization problem. The maximum temperature was significantly
decreased. (Colors are visible in the online version of the article;
http://dx.doi.org/10.3233/SPR-2012-0351.)

shows a noticeable reduction in the temperature at the
optimal shape.

5.3. UQ results

In addition to optimization runs, embedded un-
certainty quantification was performed on the same
model. The ScalarT data type for the stochastic
Galerkin residual evaluation hold polynomial coeffi-
cients for the expansion of all quantities with a spec-
tral basis. By nesting the stochastic Galerkin and Au-
tomatic Differentiation data types, a Jacobian for the
stochastic Galerkin expansions can also be calculated.
The Seed and Extract phases of this computation, as
well as the subsequent nonlinear solve of the stochastic
FEM system required significant development. How-
ever, with the template-based generic programming ap-
proach, this work is completely orthogonal to the im-
plementation of the PDEs. So, there was no additional
coding needed to perform embedded UQ for this ap-
plication over that needed for the residuals for the gov-
erning equations (11) and(12).

As a demonstration, we chose the electrical conduc-
tivity in the pad crg as the uncertain variable. The pad
region is the thin rectangular region at the edge of the
slider with fixed shape. In this run, og was chosen to be
a uniform distribution within 15 of the nominal value
of 35,

ob = [35.0Py(&) + 15.0P(9)]. (16)

Here, the P variables are Legendre polynomials. The
computation was run with degree-3 polynomial basis.

solution_ Y
25.872817

Fig. 14. The results of an embedded uncertainty quantification using
Stokhos. The electrical conductivity in the thin pad region is given
as a distribution. In this figure, the temperature profile for the mean
solution is shown. (Colors are visible in the online version of the
article; http://dx.doi.org/10.3233/SPR-2012-0351.)

A Newton iteration was performed on the nonlinear
system from the discretized 4D domain (3D FEM in
space + 1 Stochastic Dimension with a spectral basis).
The resulting probability distribution on the maximum
temperature unknown was computed to be

Tntax = 25.87Py(€) + 0.61P,(€)
— 0.17P5(€) + 0.04P5(). (17)

Figure 14 shows the mean temperature profile for this
distribution. Figure 15 shows the variation of the tem-
perature with respect to this parameter. (Note the re-
duced range of the color bar.) The results show that the
variation of the electrical conductivity in the pad re-
gion has a large effect on the temperature in the mid-
dle of the slider (which has a large dependence on the
total current), and not in the pad region itself (which is
strongly controlled by the convective cooling from the
beam due to the moving frame of reference).

6. Conclusions

In this paper, we have related our experience in us-
ing the template-based generic programming (TBGP)
approach for PDEs in a finite element code. We have
used this approach at a local element level, where the
dependencies for Jacobian evaluations are small and
dense. By combining the Gather phase of a finite ele-
ment calculation with the Seed phase of the TBGP ap-
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solution_ Y
0.3735989

Fig. 15. The variation in the temperature field is shown, for the
same embedded uncertainty quantification calculation as the previ-
ous figure. (Colors are visible in the online version of the article;
http://dx.doi.org/10.3233/SPR-2012-0351.)

proach, and the Scatter with Extract, the infrastructure
for TBGP is well contained. Once this infrastructure is
in place, transformational analysis capabilities such as
optimization and embedded UQ are immediately avail-
able for any new PDE modes that are implemented.

We have also presented some of the implementa-
tion details in our approach. This includes infrastruc-
ture for dealing with parameters, for dealing with a
templated code stack, and dealing with non-templated
code. We demonstrated this approach on an exam-
ple sliding electromagnetic contact problem, which
is a pair of coupled nonlinear steady-state equations.
We performed optimization algorithms with embedded
gradients, and also embedded Stochastic Finite Ele-
ment calculations.

As this paper is to appear in a special issue along
with other Trilinos capabilities, we would like to men-
tion explicitly which Trilinos packages were used in
these calculations. This paper centered on the use of
Phalanx assembly engine, Sacado for automatic differ-
entiation, and Stokhos for embedded UQ. For linear al-
gebra, we used the Epetra data structures, Ifpack pre-
conditioners, and Belos iterative solver. The linear al-
gebra was accessed through the Stratimikos linear al-
gebra strategy layer using the Thyra abstraction layer.
The STK Mesh package was used for the parallel mesh
database, and the STK 10 packages, together with loss,
Exodus, and SEACAS were used for IO and partition-
ing of the mesh. The Intrepid package was used for
the finite element discretization, operating on multidi-
mensional arrays from the Shards package. The utility

packages Teuchos was used for parameter list specifi-
cation and reference-counted memory management.

The Piro package managed the solver and analy-
sis algorithms, and makes heavy use of the EpetraExt
Model Evaluator abstraction. Piro in turn calls the NOX
nonlinear solver, the LOCA library of continuation al-
gorithms, the TriKota interface to the Dakota opti-
mization algorithms, and Stokhos for presenting the
stochastic Galerkin system as a single nonlinear prob-
lem. These results also relied on several products out-
side of Trilinos, including the Cubit mesh generator
and associated mesh morphing software, the Dakota
framework, ParaView visualization package and netcdf
mesh I/O library.
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