
Scientific Programming 20 (2012) 257–273 257
DOI 10.3233/SPR-2012-0347
IOS Press

Playa: High-performance programmable
linear algebra

Victoria E. Howle ∗, Robert C. Kirby, Kevin Long, Brian Brennan and Kimberly Kennedy
Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX, USA
E-mails: {victoria.howle, robert.c.kirby, kevin.long, brian.brennan, kimberly.r.kennedy}@ttu.edu

Abstract. This paper introduces Playa, a high-level user interface layer for composing algorithms for complex multiphysics
problems out of objects from other Trilinos packages. Among other features, Playa provides very high-performance overloaded
operators implemented through an expression template mechanism. In this paper, we give an overview of the central Playa objects
from a user’s perspective, show application to a sequence of increasingly complex solver algorithms, provide timing results for
Playa’s overloaded operators and other functions, and briefly survey some of the implementation issues involved.

Keywords: Numerical linear algebra, high-level software, expression templates

1. Introduction

The Trilinos library provides high-level interfaces
to portable, efficient linear and nonlinear algebra.
The data structures and algorithms hide the details
of distributed memory, and increasingly through Tpe-
tra, shared memory parallelism. Packages such as
AztecOO, Belos and Amesos provide robust imple-
mentations of iterative and direct linear solver meth-
ods, with packages such as Ifpack and ML providing
algebraic preconditioners. Building on the successes of
these packages for increasingly complex coupled mul-
tiphysics problems requires even higher-level abstrac-
tions for more involved linear algebraic algorithms.
During our work on Sundance [17], a high-level Trili-
nos package for automating the construction of fi-
nite element operators, we have found need of many
extended capabilities built on top of these packages.
These capabilities have been put together in a new
Trilinos package Playa.

Playa lakes are novel geographical features of the
South Plains of eastern New Mexico and West Texas.
They are shallow, often seasonal, lakes supporting a
diverse ecosystem that includes native and migratory
species. In the same way, we hope to provide a thin
layer of support on top of existing Trilinos packages
to support new algorithmic research on coupled prob-
lems, optimization, and other challenging topics.

*Corresponding author: Victoria E. Howle, Department of Math-
ematics and Statistics, Texas Tech University, Lubbock, TX 79409,
USA. E-mail: victoria.howle@ttu.edu.

1.1. Design example

We begin with a short code example. Many of the
Playa features evident in this example will be described
later in the paper. The purpose here is simply to illus-
trate some of the important features of Playa for po-
tential end users. In this example, we show a simple
implementation of the Conjugate Gradients algorithm
in Playa. For simplicity and brevity, preconditioning
and error checking are omitted, and parameters such as
the stopping tolerance and maximum number of itera-
tions are hard coded. The human readability of Playa
code can be seen by comparing this code to a standard
pseudo-code statement of the Conjugate Gradients al-
gorithm such as that in [20], Algorithm 38.1.

Upon exiting the CG loop, the solution is in the
x vector. An industrial-strength CG solver would cer-
tainly need preconditioning and error checking, and
could be packaged up as a LinearSolver object.
But this example illustrates the clean Playa interface.

1.2. Design goals

Frequently, even successful HPC codes start from
a bottom-up approach that emphasizes performance
without significant consideration for higher-level pro-
grammability. This complicates research and develop-
ment of algorithms that do not map into simple combi-
nations of library calls. In Playa, we have started with a
top-down design that aims to combine programmabil-

1058-9244/12/$27.50 © 2012 – IOS Press and the authors. All rights reserved

258 V.E. Howle et al. / Playa: High-performance programmable linear algebra

Code Example 1. Simple implementation of unpre-
conditioned CG in Playa

Vector <double> x = b . copy () ; / / deep copy

Vector <double> r = b − A∗x ;

Vector <double> p = r . copy () ;

Vector <double> Ap = A∗p ;

double t o l = 1.0e−12;

i n t maxI ter = 100;

for (i n t i =0; i <maxI ter ; i ++)

{

double rSqOld = r ∗ r ; / / dot product

double pAp = p∗Ap ;

double alpha = rSqOld / pAp ;

x += alpha ∗p ; / / x = x + alpha ∗p

r −= alpha ∗Ap ; / / r = r − alpha ∗Ap

double rSq = r ∗ r ; / / dot product

double rNorm = s q r t (rSq) ;

Out : : r oo t () << " i t e r = " << setw (6) << i

<< setw (20) << rNorm << endl ;

i f (rNorm < t o l) break ;

double beta = rSq / rSqOld ;

p = r + beta ∗p ;

Ap = A∗p ; / / save t h i s ; we ’ l l use i t tw ice

}

ity and flexibility on top of existing high-performance
libraries.

We stress interoperability of vectors, matrices, and
solver libraries via a VectorType class. Also, on top
of this interoperability framework lies a handle layer
that manages memory without requiring the user to
explicitly manipulate pointers or some kind of smart
pointer. The high-level syntax afforded by this han-
dle layer allows us to present an efficient expres-
sion template engine [13,21] that not only performs
standard matrix and vector operations, but also sup-
ports deferred evaluation of transposition and inversion
(through an existing linear solver).

This interoperability is also featured in some exist-
ing Trilinos packages. While the Thyra library [4] pro-
vides a relatively low-level interoperability suite be-
tween different code types, Playa targets the user-level
experience. Also aiming for generality, Belos provides
Krylov methods for very general kinds of operators
via traits. We aim at a similar level of flexibility, al-
though are oriented towards general programmability

rather than optimally architecting Krylov methods. We
provide a compatibility layer so that very complex,
implicitly-defined Playa operators may be efficiently
used within Belos solvers.

Another goal is the support of coupled systems that
arise in multiphysics applications. Such problems fre-
quently give rise to linear systems that have a block
structure, in which operators are themselves arrays of
operators. In some cases, this blocking can be recur-
sive (multiply-layered). Playa provides extensive sup-
port for this case, and we will present examples of
forming (implicit) Schur complements and block struc-
tured preconditioners for some model problems in fluid
mechanics.

Besides these features, we provide a mechanism by
which various Trilinos solvers are united in a com-
mon framework and specified at run-time through a
ParameterList. This allows solver decisions to
be deferred to run-time, and users have access to a
wide range of Trilinos packages via XML files with-
out having to explicitly remember the calling conven-
tions within C++. Currently solvers from Amesos,
Belos and AztecOO are supported, as are precondition-
ers from Ifpack and ML. We have found this ability
to switch between solvers without penalty or need to
write or compile new C++ quite useful.

1.3. Related software

Playa shares similarities with several existing pack-
ages. Within Trilinos, Thyra [4] also provides interop-
erability between various Trilinos packages, blocked
operators, and various utilities. Relative to Thyra,
Playa’s class hierarchy is sparser. Also, the handle
layer with expression templates on top is distinctive,
and our interoperability mechanisms, such as abstract
interfaces for loading vectors and matrices, should al-
low Playa to be more easily extended to support addi-
tional linear algebra packages in the future. Also within
Trilinos, Teko [19] contains similar features for block-
ing and some advanced utility features for construct-
ing block preconditioners, although their focus is more
limited to block-structured solver research. High-level
PDE packages such as DOLFIN [15] and Deal.II [2]
also provide some kind of interoperability, although
these packages essentially wrap PETSc and Trilinos,
along with other libraries, behind a common abstract
API. Playa provides a high-level architecture for linear
algebra, while aiming at reuse of underlying libraries.

V.E. Howle et al. / Playa: High-performance programmable linear algebra 259

1.4. Organization of this paper

In Section 2, we first give a user-level introduction
to some of the key features of Playa, including handles
and memory management through reference-counted
pointers and an overview of some of the principal user-
level classes. In Section 3, we walk through a few rel-
atively simple examples in Playa with a view to giv-
ing the users a more concrete sense of the advantages
of Playa. These advantages may not be so appealing
if they came at the price of efficiency. In Section 4,
we provide some timing results comparing Playa and
Epetra on a range of different platforms to demonstrate
that our high-level interface does not degrade the per-
formance of basic linear algebra operations. Finally,
in Section 5, we provide more detailed implementa-
tion information. These details are critical to the effi-
ciency and the ease of use of Playa, and some users will
want to know these details and understand how Playa
achieves efficiency. However, understanding these im-
plementation issues for the typical user to effectively
use Playa.

2. User-level view of Playa

In this section we survey the core Playa object suite
from a user’s point of view, deferring most implemen-
tation details until Section 5.

Code fragments and references to class names will
be written in typewriter font. For brevity and clar-
ity, class names used in English sentences rather than
code will often have template arguments suppressed
where convenient, for example, although Playa vec-
tor objects are templated on scalar type we will often
speak of a Vector instead of a Vector<Scalar>.

2.1. Memory management: Reference-counted
pointers and handles

One implementation issue that should be discussed
early is memory management. Playa makes extensive
use of the templated reference-counted pointer (RCP)
tools available through Teuchos [3]. Consequently, in
any standard use case, the user will have transparent,
safe, and robust memory management ensured when
using Playa objects.

Playa further hides memory management issues
from the user by wrapping RCPs in handle classes, so
that typical Playa objects will have value syntax rather
than pointer syntax. We’ll refer to RCP-based han-

dles as reference-counted handles, or RCH. Beyond the
user-level convenience of value syntax, RCH also pro-
vide a common point of entry for certain maintenance
tasks that should be done neither by the user nor by
concrete instances of derived types. These issues will
be discussed in more detail below, after the relevant
classes have been introduced. One consequence of the
use of reference-counting is that by default, copies of
Playa objects are shallow. That means that an assign-
ment such as

Vector <double> y = x ;

does not create a new copy of the vector x, complete
with new data. Rather, it creates a new RCH to the
same data. One advantage of this is obvious: vectors
can be large, so we want to avoid making unnecessary
copies. But note that any modification to y will also
trigger the same modification to x, because x and y are
referring to exactly the same data in memory. The po-
tential for confusion and unintended side effects is ob-
vious. Less obvious is that in certain important circum-
stances, such side effects are exactly what is needed for
a clean user interface to efficient low-level code. Deep
copies require use of the copy() member function.

2.1.1. Issues with handles and polymorphism
An issue with handles to polymorphic hierarchies is

the decision of which member functions of possible
subtypes are to be propagated to the handle-level inter-
face. For example, as will be discussed in more detail
below, vectors can have block structure.

One resolution to this issue is to force explicit user-
level dynamic casts to specialized subtypes. Another
is to propagate specialized methods up to the handle
layer. In the design of Playa, we try to avoid user-level
dynamic casts whenever possible. Our rough guide-
line for deciding which methods appear in the com-
mon user interface is that implementation-dependent
methods (such as a method specific to a particular vec-
tor representation such as Epetra) should not appear
in the common interface, however, methods specific
to a mathematically-distinct type of object (such as a
block vector) can. Dynamic casts must still be done, of
course, but are done by the handle layer itself; this both
hides such issues from the user and provides a common
point of entry for error detection and handling.

One additional issue arises with error handling and
dynamic typing. The dynamic polymorphism used in
Playa requires run-time error handling. While many
other portions of Trilinos rely on compile-time error
checking, this comes at the expense of a much larger
type system that some users find difficult to navigate.

260 V.E. Howle et al. / Playa: High-performance programmable linear algebra

2.2. Key classes

The principal user-level classes in Playa are listed
here:

• Vector objects represent mathematical vectors.
In addition to the fundamental operations of vec-
tor addition and scalar–vector multiplication, ar-
bitrary user-defined transformation and reduction
operations can be implemented through applica-
tion of templated functors.

• LinearOperator objects represent linear
functions that map vector inputs to vector outputs.

• LinearSolver objects represent algorithms
for solving linear systems.

• VectorSpace is an abstract factory that pro-
duces Vector objects. This provides a consistent
user interface for creating vectors without the
client code needing to know anything about what
sort of vector object is being created.

• VectorType is an abstract factory that pro-
duces VectorSpace objects of a user-specified
type, dimension, and internal data layout. A client
such as a finite element code uses a VectorType
to create a VectorSpace once the dimension and
distribution of its discrete space has been deter-
mined.

Each of these five classes is a RCH to an underlying
base class of the appropriate type: Vector is a RCH to
a VectorBase and so on.

2.3. Vector spaces

A user will rarely construct a vector directly; the
reason for this is that different vector implementations
have different data requirements making it difficult
to provide a uniform vector constructor; furthermore,
vectors are often created inside solver algorithms hid-
den from the solver rather than in user-space code such
as main(). Polymorphic object creation is a common
design problem with a common solution: the factory
class [9]. The realization that a vector space object
could function as a factory class for vectors was due
to Gockenbach and Symes [10] who incorporated it in
their influential Hilbert Class Library (HCL). Descen-
dents of the HCL including TSF [16], TSFCore [5],
Thyra [6] and now Playa, have continued the use of
this pattern.

With this design pattern, vectors are built indirectly
by calling the createMember() member function
of VectorSpace. Each VectorSpace object con-

tains the data needed to build vector objects, and the
implementation of the createMember() function
will use that data to invoke a constructor call.

Every Vector retains a RCH to the space that cre-
ated it. Among other things, this can be used for check-
ing compatibility in vector–vector and operator–vector
operations. To support such compatibility checking,
the VectorSpace class provides overloaded == and
!= operators as member functions.

The VectorSpace class also provides member
functions that describe block structure, element index-
ing and data layout.

2.3.1. Block structure
In optimization and physics-based preconditioning,

it is common to segregate variables into blocks. Mathe-
matically, this is a factoring of a problem’s vector space
setting into a Cartesian product of smaller spaces. Seg-
regation into blocks can be done recursively; i.e., each
block of a block space could itself be a block space.
Iteration over blocks requires a means of indexing into
a space’s block structure. This can be done in several
ways. The simplest is to identify a block by its index
into the current level, that is, without recursion into
sub-block structure. To identify a block at an arbitrary
depth, a double-ended queue (deque) of indices can be
used. Finally, the index deque can be encapsulated in a
BlockIterator object, allowing in-order traversal
of any arbitrary block structure in a single loop.

The user interface of the VectorSpace object
provides member functions that describe that space’s
block structure, and also a member function that cre-
ates a BlockIterator appropriate to that space.
A BlockIterator can then be used to identify
blocks in any Vector created by the space in ques-
tion, or block rows (or columns) of any LinearOp-
erator having the space in question as its range (or
domain).

2.4. Vectors

Vector is the user-level vector object. As such, it
supports through member functions many commonly-
used mathematical operations such as linear combina-
tions, dot products, and norms. Adding new vector op-
erations in a scalable way is discussed in Section 5.

2.4.1. Overloaded operations
Whenever possible, Playa uses overloaded operators

to represent vector operations; for example, the opera-

V.E. Howle et al. / Playa: High-performance programmable linear algebra 261

tion

x = x + βy + γz,

where x, y, z are vectors and β, γ scalars would be
written

x += beta ∗y + gamma∗z ;

using overloaded scalar–vector multiplication, vector
addition and add-into operators. It is well known that
naive implementations of overloaded vector operations
are unacceptably slow due to creation of temporary
objects (see, e.g., [18]); nonetheless, efficient operator
overloading implementations have been devised [13,
22]. Our fast implementation of overloaded opera-
tions on polymorphic vectors will be described in Sec-
tion 5, and timings demonstrating negligible perfor-
mance penalty will be shown in Section 4.

2.4.2. Access to vector data
Access to vector data is desired in several con-

texts. First and most importantly, during operations
such as the fill step in a finite element code, a simu-
lator will write data into specified elements in a vec-
tor, and in coefficient evaluation the same simulator
will read field data stored in a vector. A complicating
factor in the read use case is the need to access non-
local “ghost” elements. In Playa, these operations are
not part of the Vector interface; rather, specialized
LoadableVector and GhostView interfaces are
used. The interface between vector and simulator will
not be discussed further in this paper.

A second use case for data access is the occasional
desire for quick and simple access to a vector element
through an operation such as

cout << ‘ ‘ x [3] = ‘ ‘ << x [3] << endl ;

Universally efficient implementation of such “bracket”
operators is not possible with polymorphic vector
types, so it is rarely a good idea to program mathemati-
cal operations through user-level element access. How-
ever, for debugging and prototyping, it is often most ef-
ficient in terms of programmer time to have such oper-
ations available; therefore, Playa supports element read
and write through bracket operators. The indices used
to specify elements here are always local to a given
processor. In the case of block vector spaces, a natu-
ral local indexing for the entire block vector is defined
recursively using the block dimensions and the local
indexing in the blocks.

2.5. Operators

The LinearOperator RCH is the user-level
class representation of linear operators, including not
only various matrix representations (including block
matrices) but also implicit operators whose action on a
vector is to be computed without explicit construction
of a matrix representation.

The overloaded +, −, ∗ operators have their conven-
tional meaning of addition, subtraction, and composi-
tion of operators, respectively, but those operations are
done in an implicit sense. The action of a composed
operator ABx is computed implicitly by first comput-
ing y = Bx, then computing Ay. There is no need
to form the matrix AB. Similarly, (A ± B)x can be
evaluated implicitly by computing y = Ax, z = Bx,
then doing y ± z. Action of a scaled operator αAx is
done implicitly as α(Ax). Any combination of these
can be specified using overloaded operators, for exam-
ple:

LinearOperator <double> C = A + B;

LinearOperator <double> D = 2.0 ∗A − 0.5 ∗B + 1.2 ∗C;

LinearOperator <double> E = A∗B;

Certain simple operators have implicit representa-
tion. A diagonal operator can be represented with noth-
ing but a vector of diagonal elements. Application of
the zero operator returns the zero vector of the range
space of the operator. The identity operator simply re-
turns a copy of the operand. Playa provides functions
to construct all of these simple operators.

Finally, it is often useful to have implicit object
representations of transposes and inverses. Most good
sparse matrix packages have the ability to compute
ATx without explicitly forming AT. Given that, togeth-
er with implicit composition, we can do (AB)Tx =
BTATx implicitly as well, and with implicit addition
we can do (A ± B)Tx = ATx ± BTx. The trans-
pose() member function creates an operator object
that knows to apply these rules. Note that the trans-
pose() function is a member function of the Lin-
earOperator class and not of the Vector class.
Playa makes no distinction between row and column
vectors, so transpose() does not make any sense
in the context of Vector objects. An inner product of
two vectors u and v, for example, would be written as
u*v.

The operation y = A−1x is computed implicit by
solving the system Ay = x. It is necessary to specify
the solver algorithm that will be used to solve the sys-
tem, by means of providing a LinearSolver object

262 V.E. Howle et al. / Playa: High-performance programmable linear algebra

as an argument to the inverse function.

LinearOperator <double> AInv = inverse (A, so l ve r) ;

The operation of solving Ax = b for x can then be
encapsulated nominally as multiplication x = A−1b.
This notational simplification is important in compos-
ing algorithms such as block preconditioners, where
the application of a preconditioner might involve sev-
eral solves on subsystems.

Each LinearOperator has VectorSpace
members indicating the domain and range of the op-
erator. Block structure in the domain and/or range is
naturally propagated to the operators. These blocks
may be manipulated with basic getBlock() and
setBlock() operations, and a nonmember make-
BlockOperator() methods produces empty block
operators for user-defined construction.

2.6. Linear solvers

Linear solvers are represented by the Linear-
Solver RCH. The most often used member function
of LinearSolver is solve(). Examples of solver
subtypes include wrappers for Amesos, Aztec and Be-
los solvers. It is also easy to write new solvers using
Playa objects; several examples of this will be shown
in Section 3.

Not every solver algorithm will be compatible with
every operator instance; for example, an implicit in-
verse operator will not normally be able provide the
elementwise information needed for use in a direct
solver. Such incompatibilities are checked for at run-
time, and if encountered, an exception is thrown.

2.6.1. Preconditioners and preconditioner factories
Playa’s representation of a preconditioner is an ob-

ject that contains two operators that can be applied as
left and right preconditioners. Also necessary are in-
trospection functions that indicate whether a given pre-
conditioner has left and right operators.

Creation of actual preconditioner objects is usually
not done directly by the user, but indirectly by a solver:
a natural use case for the factory pattern. Consequently,
the user will normally specify a Preconditioner-
Factory object which when given a LinearOper-
ator instance, can build a Preconditioner ob-
ject of the appropriate type.

Examples of simple Playa preconditioner factories
include factories to construct incomplete factorization
preconditioners through Ifpack and algebraic multi-
grid preconditioners through ML. Several examples
of building physics-based block preconditioners are
shown in the examples in Section 3.

2.7. Key concrete adapters

To use the high-level capabilities of Playa to drive
calculations with a specified low-level data representa-
tion (e.g., Epetra), one must write a small set of adapter
classes that implement the Playa VectorTypeBase,
VectorSpaceBase and VectorBase interfaces.

At present the workhorse of Trilinos-based simula-
tion is still Epetra, and so the most widely-used Playa
concrete adapters are for Epetra objects. We also pro-
vide adapters for serial dense matrices and vectors. The
abstraction is general enough to incorporate Tpetra op-
erators and vectors as well as other libraries such as
PETSc.

3. Playa examples

In this section, we highlight some of the important
features of Playa through a few more examples starting
with the power method and inverse power method, then
progressing to the solution and preconditioning of the
linear systems arising in the incompressible Navier–
Stokes equations and preconditioners for this problem,
and finally to a more complicated block preconditioner
for a coupled fluid-thermal problem.

3.1. Power iteration and inverse power iteration

We define a simple function implementing the power
method for calculating the largest eigenvalue and cor-
responding eigenvector of a matrix A. With polymor-
phic operator objects, a power method code can be con-
verted to an inverse power method code simply by call-
ing the method with A−1 rather than A. In Code Ex-
ample 2, we call the power method with a linear opera-
tor A to calculate its largest eigenvalue and eigenvector
and with an implicit A−1, resulting in an application of
the inverse power method and returning the reciprocal
of the lowest eigenvalue and corresponding eigenvec-
tor of A. The implicit inverse operator evaluates A−1y
using a LinearSolver to solve the system Ax = y.
The implementation of the power iteration method is
shown in Code Example 3.

This example, like the Conjugate Gradients exam-
ple in the Introduction, has concentrated on the use
of matrix and vector objects rather than the creation
of these objects, since they will be built by an appli-
cation code. However, in writing advanced precondi-
tioning, optimization, and solver algorithms, compos-
ing implicit operations will be critical.

V.E. Howle et al. / Playa: High-performance programmable linear algebra 263

Code Example 2. Power method and inverse power
method in Playa

/ / A i s a L inearOperator p rev ious l y def ined .

/ / x i s a Vector p rev ious l y def ined .

/ / Power method wi th A

double lambda_largest = powerMethod (A, x) ;

/ / Inverse power method using i m p l i c i t A inverse

L inearSolver <double> so lve r =

L inea rSo l ve rBu i l de r : : c rea teSo lver ("amesos . xml ") ;

L inearOperator <double> Ainv = inverse (A, so l ve r) ;

double lambda_smallest =

(1 .0 / powerMethod (Ainv , x)) ;

Code Example 3. Power method in Playa

double powerMethod (const LinearOperator <double>&

A, Vector <double>& x)

{

/ / Normalize i n i t i a l ev guess x .

x = 1.0 / x . norm2 () ∗x ;

/ / Set parameters f o r power method .

i n t maxI ters = 500;

double t o l = 1.0e−10;

double mu;

double muPrev ;

for (i n t i =0; i <maxI ters ; i ++)

{

Vector <double> Ax = A∗x ;

mu = (x∗Ax) / (x∗x) ;

cout << " I t e r a t i o n " << i << " mu = "

<< s e t p r e c i s i o n (10) << mu << endl ;

i f (fabs (mu − muPrev) < t o l) break ;

muPrev = mu;

double AxNorm = Ax . norm2 () ;

x = 1.0 / AxNorm∗Ax ;

}

return mu;

}

3.2. Incompressible Navier–Stokes

The previous sections illustrated some simple appli-
cations of Playa and its potential for ease of
programmability. Now we combine these tools with
block-structured operations to develop complex pre-
conditioners using incompressible Navier–Stokes as an
example.

3.2.1. Schur complement
Using Playa’s blocking and expression template ca-

pabilities, it is straightforward to form Schur comple-
ments of matrices. In this example, we solve the in-
compressible Navier–Stokes equations via the Schur
complement. Consider the incompressible Navier–
Stokes equations,

−νΔu + u · ∇u + ∇p = f , ∇ · u = 0, (1)

posed on some domain Ω ⊂ R
d for d = 2, 3 and

equipped with appropriate boundary conditions. Here,
u is the d-dimensional velocity field, p is the pressure,
and ν is the kinematic viscosity, which is inversely pro-
portional to the Reynolds number.

Linearization and (Div-stable) discretization of (1)
leads to a linear system of the form

(
F BT

−B 0

)(
u
p

)
=

(
f1
f2

)
, (2)

where B and BT are matrices corresponding to discrete
divergence and gradient operators, and F operates on
the discrete velocity space.

Key in a Schur complement solve is the use of an
implicit inverse for F −1 and deferred evaluation of
the product BF −1BT. These features are illustrated
in Code Example 4. In this example, we assume that
the LinearProblem prob has been previously de-
fined with Sundance, the operator K is a block 2 × 2
linear operator as in (2), and the solver for the F ma-
trix has been defined elsewhere in Sundance. The lin-
ear systems can be written as the following Schur com-
plement system

(BF −1BT)p = BF −1f1 + f2, (3)

which we solve for p. The current velocity u is then
formed from the system

Fu = f1 − BTp. (4)

In Code Example 4, we build the Schur complement
operator making use of deferred evaluation and im-
plicit inverses. This code fragment would be part of a
nonlinear solver loop such as a Newton or a fixed point
iteration.

3.2.2. PCD block preconditioner
We can also form complicated block preconditioners

such as the pressure convection–diffusion (PCD) pre-

264 V.E. Howle et al. / Playa: High-performance programmable linear algebra

Code Example 4. Schur complement solve in Playa

/ / The LinearProblem prob has a l ready been def ined

/ / i n Sundance .

/ / K i s the block 2x2 opera to r and rhs i s the

/ / blocked r i g h t −hand side from equat ion (2) .

L inearOperator <double> K = prob . getOperator () ;

Vector <double> rhs = prob . getSingleRHS () ;

/ / Ex t rac t the subblocks from K to use i n forming S

LinearOperator <double> F = K. getBlock (0 ,0) ;

L inearOperator <double> Bt = K. getBlock (0 ,1) ;

L inearOperator <double> B = K. getBlock (1 ,0) ;

/ / Def ine an i m p l i c i t inverse on F . The

/ / L inearSo lver FSolver

/ / has been def ined ou ts ide the non l inear loop .

L inearOperator <double> FInv = inverse (F , FSolver) ;

/ / Bu i l d the Schur complement (de fe r red

/ / eva lua t i on) .

L inearOperator <double> S = B∗ FInv ∗ Bt ;

/ / Get the RHS subblocks f o r the Schur so lve

Vector <double> urhs = rhs . getBlock (0) ;

Vector <double> prhs = rhs . getBlock (1) ;

/ / Bu i l d the RHS f o r the Schur complement system .

Vector <double> yp = B. range () . createMember () ;

yp = prhs + B∗ FInv ∗ urhs ;

/ / Solve the Schur complement system f o r pressure .

/ / The Schur complement L inearSo lver has been

/ / def ined elsewhere .

Vector <double> pnew = B. range () . createMember () ;

SolverState <double> SState =

SSolver . so lve (S, yp , pnew) ;

/ / Ca lcu la te the new v e l o c i t y as i n equat ion (4) .

Vector <double> uNew = B. domain () . createMember () ;

uNew = FInv ∗ (urhs − Bt ∗ pnew) ;

conditioner [8,12] for solution of the incompressible
Navier–Stokes equations. This preconditioner has the
block form

P −1
N =

(
F −1 0

0 I

) (
I −BT

0 I

)(
I 0
0 S̃−1

)
(5)

which results from a block LU factorization of the ma-
trix in (2). Here S̃ is an approximation to the Schur
complement S. In PCD, we have S̃−1 = M −1

p FpA
−1
p ,

where Ap is a discrete Laplacian operator on the pres-

sure space, Fp is a discrete convection–diffusion oper-
ator on the pressure space, and Mp is a pressure mass
matrix. The operators Ap, Fp and Mp are needed by the
PCD preconditioner from the user; we can easily gen-
erate these operators with Sundance. An application of
the preconditioner thus requires linear solves with the
operators Ap, Mp and F .

Playa’s support of block structure, deferred eval-
uation, and implicit inverses lead to relatively sim-
ple code for this complicated block preconditioner.
The resulting Playa code looks very much like “hand-
written” equations. The PCD preconditioner has been
implemented in Playa and derives from the Precon-
ditionerFactory class. Code Example 5 illus-
trate these features.

Since the Navier–Stokes equations are nonlinear, we
need a nonlinear solver in this PCD example and in the
previous Schur complement example. We used New-
ton’s method in our implementations. One can code the
Newton system directly or use the nonlinear operator
class NLOp in Sundance. The NLOp class encapsulates
a discrete nonlinear problem and can be passed to a
nonlinear solver such as NOX [14].

3.3. Bénard convection

We conclude this section with an even more com-
plicated block preconditioner developed for a coupled
fluid-thermal problem. Consider the Bénard convec-
tion problem

−Δu + u · ∇u + ∇p = − Ra
Pr

ĝT ,

∇ · u = 0, (6)

− 1
Pr

∇T + u · ∇T = 0,

posed on some domain Ω along with boundary condi-
tions, where the Rayleigh number Ra measures the ra-
tio of energy from buoyant forces to viscous dissipa-
tion and heat conduction, the Prandtl number Pr mea-
sures the ratio of viscosity to heat conduction, and ĝ
denotes a unit vector along the axis in which gravity
acts.

Linearizing at the level of the weak form, gives rise
to a linear variational problem for the Newton step for
Navier–Stokes. The linear system for a Newton step
for the convection problem takes the form

(
F BT M1

−B 0 0
M2 0 K

) (
u
p
T

)
=

(
f1
f2
f3

)
, (7)

V.E. Howle et al. / Playa: High-performance programmable linear algebra 265

Code Example 5. PCD preconditioner in Playa

/ / L inearSo lvers and the LinearProblems to form

/ / Fp , Ap and Mp

/ / were def ined when the PCDPrecondi t ionerFactory

/ / was cons t ruc ted .

/ / This code takes the 2x2 block opera to r K o f

/ / equat ion (2)

/ / and re tu rns a PCD r i g h t p recond i t i one r .

Precond i t ioner <double>

PCDPrecondi t ionerFactory : :

c rea tePrecond i t i one r (const LinearOperator <double>&

K) const

{

/ / Get subblocks from K and Fp , Mp and Ap l i n e a r

/ / opera tors

/ / f o r PCD. Set up i m p l i c i t inverses on F , Mp

/ / and Ap .

LinearOperator <double> F = K. getBlock (0 ,0) ;

L inearOperator <double> FInv =

inverse (F , FSolver_) ;

L inearOperator <double> Bt = K. getBlock (0 ,1) ;

L inearOperator <double> Fp =

FpProb_ . getOperator () ;

L inearOperator <double> Mp =

MpProb_ . getOperator () ;

L inearOperator <double> MpInv =

inverse (Mp, MpSolver_) ;

L inearOperator <double> Ap =

ApProb_ . getOperator () ;

L inearOperator <double> ApInv =

inverse (Ap , ApSolver_) ;

/ / Bu i l d i d e n t i t y opera tors .

L inearOperator <double> Iu =

i d e n t i t y O p e r a t o r (F . domain ()) ;

L inearOperator <double> Ip =

i d e n t i t y O p e r a t o r (Bt . domain ()) ;

/ / Bu i l d PCD approximat ion to inverse Schur

/ / complement .

/ / Using defer red eva lua t ion and i m p l i c i t

/ / inverses .

L inearOperator <double> XInv = MpInv∗Fp∗ ApInv ;

/ / Make three 2x2 block opera tors f o r the PCD

/ / p recond i t i one r

VectorSpace<double> rowSpace = K. range () ;

VectorSpace<double> colSpace = K. domain () ;

L inearOperator <double> Q1 = makeBlockOperator (

colSpace , rowSpace) ;

L inearOperator <double> Q2 = makeBlockOperator (

colSpace , rowSpace) ;

L inearOperator <double> Q3 = makeBlockOperator (

colSpace , rowSpace) ;

/ / PCD cont inued :

/ / Populate the th ree block opera tors t h a t make

/ / up the PCD precond i t i one r .

Q1. setB lock (0 , 0 , FInv) ;

Q1. setB lock (1 , 1 , Ip) ;

Q1. endB lockF i l l () ;

Q2. setB lock (0 , 0 , Iu) ;

Q2. setB lock (0 , 1 , −1.0∗ Bt) ;

Q2. setB lock (1 , 1 , Ip) ;

Q2. endB lockF i l l () ;

Q3. setB lock (0 , 0 , Iu) ;

Q3. setB lock (1 , 1 , −1.0∗ XInv) ;

Q3. endB lockF i l l () ;

/ / The PCD precond i t i one r i s the product o f

/ / these three 2x2 systems .

LinearOperator <double> PInv = Q1 ∗ Q2 ∗ Q3;

/ / Return a PCD r i g h t p recond i t i one r .

return new Gener icRightPrecond i t ioner <double>

(PInv) ;

}

where the matrices F and B are the same as in lin-
earized Navier–Stokes (2). The matrix M1 arises from
the term (Ra

Pr T , vg), where g is the Cartesian direction
in which gravity acts (y in 2D, z in 3D). In 2D, if the
velocity variables in each direction are segregated, this
has the form of MT

1 = (0, MT), where M is a rectan-
gular mass matrix. The matrix M2 arises from the Ja-
cobian term (u· ∇T0, r), where T0 is the temperature in
the current Newton iterate. The matrix K comes from
1

Pr (∇T , ∇r) + (u0 · ∇T , r), so it is a standard linear
convection–diffusion operator.

A recently developed block preconditioner for this
system [11] is given by

P −1 =
(

N −1 0
0 I

) (
I −M̃1
0 I

)

×
(

I 0
0 K−1

)
, (8)

where N is the 2 × 2 block system from the Navier–
Stokes equations (2). Applying the preconditioner re-
quires the (preconditioned) solution of the linearized
Navier–Stokes system N and of the scalar convection–
diffusion system K.

Implementation of this preconditioner in Playa uses
many of the same techniques as described in the pre-

266 V.E. Howle et al. / Playa: High-performance programmable linear algebra

vious examples. In particular, we make use of deferred
evaluation, implicit inverses, and block operators. For
this preconditioner, there is the added complication of
a nested block structure. The (0, 0) block of the precon-
ditioner (8) is itself a block operator. Playa supports
nested block structure, so implementation of this pre-
conditioner was straightforward. In Code Example 6,
we show a fragment of code for building the nested
2 × 2 operators for the preconditioner.

Code Example 6. Nested blocks in Playa

/ / Set up nested block opera to r given subblock

/ / components (a l ready b u i l t) .

/ / Make spaces f o r inne r 2x2 block system .

i n t nBlocks = 2 ;

Array <VectorSpace<double>> space2x2inner (nBlocks) ;

space2x2inner [0] = F . domain () ;

space2x2inner [1] = Bt . domain () ;

VectorSpace<double> blkSp2x2inner =

blockSpace (space2x2inner) ;

L inearOperator <double> N = makeBlockOperator (

blkSp2x2inner , b lkSp2x2inner) ;

N. setB lock (0 ,0 ,F) ;

N. setB lock (0 ,1 , Bt) ;

N. setB lock (1 ,0 ,B) ;

N. setB lock (1 ,1 ,C) ;

N. endB lockF i l l () ;

/ / Make 2x2 Jacobian mat r i x [N MM1; MM2 K]

Array <VectorSpace<double>> space2x2outer (nBlocks) ;

space2x2outer [0] = N. domain () ;

space2x2outer [1] = M1. domain () ;

VectorSpace<double> blkSp2x2outer =

blockSpace (space2x2outer) ;

L inearOperator <double> blockJ = makeBlockOperator (

blkSp2x2outer , b lkSp2x2outer) ;

L inearOperator <double> MM1 = makeBlockOperator (M1.

domain () , b lkSp2x2inner) ;

L inearOperator <double> MM2 = makeBlockOperator (

blkSp2x2inner ,M1. domain ()) ;

MM1. setBlock (0 ,0 ,M1) ;

MM1. endB lockF i l l () ;

MM2. setBlock (0 ,0 ,M2) ;

MM2. endB lockF i l l () ;

b lockJ . setBlock (0 ,0 ,N) ;

b lockJ . setBlock (0 ,1 ,MM1) ;

b lockJ . setBlock (1 ,0 ,MM2) ;

b lockJ . setBlock (1 ,1 ,K) ;

b lockJ . endB lockF i l l () ;

/ / Nested Blocks i n Playa (cont .)

/ / Make nested 2x2 p recond i t i one r opera tors

/ / P^{ −1} = [Ninv 0 ; 0 I] [I −MM1; 0 I] [I 0 ; 0

/ / Kinv]

L inearOperator <double> Iu =

i d e n t i t y O p e r a t o r (F . domain ()) ;

L inearOperator <double> Ip =

i d e n t i t y O p e r a t o r (Bt . domain ()) ;

L inearOperator <double> I t =

i d e n t i t y O p e r a t o r (M1. domain ()) ;

L inearOperator <double> Iup =

i d e n t i t y O p e r a t o r (N. domain ()) ;

L inearOperator <double> Ninv =

inverse (N, NSSolver) ;

L inearOperator <double> P1 = makeBlockOperator (

blkSp2x2outer , b lkSp2x2outer) ;

L inearOperator <double> P2 = makeBlockOperator (

blkSp2x2outer , b lkSp2x2outer) ;

L inearOperator <double> P3 = makeBlockOperator (

blkSp2x2outer , b lkSp2x2outer) ;

P1 . setB lock (0 ,0 , Ninv) ;

P1 . setB lock (1 ,1 , I t) ;

P1 . endB lockF i l l () ;

P2 . setB lock (0 , 0 , Iup) ;

P2 . setB lock (0 , 1 , −1.0∗MM1) ;

P2 . setB lock (1 , 1 , I t) ;

P2 . endB lockF i l l () ;

P3 . setB lock (0 , 0 , Iup) ;

P3 . setB lock (1 , 1 , Kinv) ;

P3 . endB lockF i l l () ;

L inearOperator <double> Pinv = P1∗P2∗P3 ;

4. Some basic timing results

In order to demonstrate that our high-level interface
does not degrade the performance of basic linear alge-
bra operations, we have tested some operations com-
mon to Playa and Epetra on a range of different plat-
forms. Playa relies on Epetra (and, in the future, po-
tentially other vector types such as Tpetra or PETSc)
to provide data containers, and we can either forward
the evaluation of our expression templates to the under-
lying Epetra function or else stream functors over the
data provided by Epetra. In either case, our baseline to
compare against is Epetra – apart from O(1) overhead,
Playa performance should match that of the underlying
vector library.

We consider three operations: the dot product of two
vectors, computation of the vector 1-norm, and evalu-
ation of a linear combination of two vectors. The first

V.E. Howle et al. / Playa: High-performance programmable linear algebra 267

two of these are reduction operations, mapping the in-
put vector(s) to a single number. The third example
maps vectors to vectors. In our timing results, the Playa
implementation of the dot product simply forwards the
function call to Epetra and reports the result. On the
other hand, the vector 1-norm is evaluated by means of
streaming functors over data chunks. In other words,
Epetra provides a data container but no arithmetic. Fi-
nally, the linear combination is evaluated by means of
the underlying Epetra operation. In each case, we re-
peated the calculation 100 times and report the average
time.

We also tested our operations on several UNIX-like
architectures. We ran tests in serial on the following
platforms:

(a) Mac Pro desktop (dual quad-core 2.8 GHz Xeon
processors with 32 GB of RAM) running OSX
version 10.5, with the code compiled using gcc

version 4.4.4 installed from the MacPorts sys-
tem.

(b) Dell Inspiron 1120 laptop with two 1.3 GHz
AMD Athlon Neo K325 dual-core processors
and 4GB of RAM running Ubuntu Linux and
gcc 4.5.2.

(c) a Dell Precision M6500 laptop with dual 2 GHz
quad-core i7 processors and 16 GB of RAM run-
ning gcc version 4.4.3 on Ubuntu 10.04.

(d) a HP dual quad-core i7 machine with 16 GB
of RAM, compiled under gcc 4.5.2 on Ubuntu
Linux.

Figures 1–4 show mostly what we expect. Although
the basic FLOP rates vary from machine to machine,
we notice that Playa has an additional cost relative to
Epetra for small vectors, but that for moderate-sized
vectors the performance is identical. On the other hand,
the performance of the vector 1-norm, computed with

Fig. 1. Comparison of Playa and Epetra performance on platform (a). (Colors are visible in the online version of the article; http://dx.doi.org/
10.3233/SPR-2012-0347.)

268 V.E. Howle et al. / Playa: High-performance programmable linear algebra

Fig. 2. Comparison of Playa and Epetra performance on platform (b). (Colors are visible in the online version of the article; http://dx.doi.org/
10.3233/SPR-2012-0347.)

a streaming functor, seems to vary across platforms.
In theory, the compiler should inline appropriate func-
tion calls and produce loops comparable to what Epe-
tra contains. However, it seems that on some platforms,
the compilers are not able to optimize through the sev-
eral layers of templated C++ code to obtain the pre-
dicted performance. Vector operations whose perfor-
mance is a critical part of overall solver performance
should probably be implemented through delegation to
a concrete type rather than through a streaming functor.

We also performed similar tests with two other pack-
ages, Thyra and Tpetra. We observed qualitatively sim-
ilar behavior in that Thyra performance had O(1) over-
head relative to Epetra but asymptotically matched the
performance of Epetra. The performance of Tpetra, on
the other hand, did not always match that of Epetra.
We believe that a similar issue holds for Tpetra as for

the vector 1-norm computation; Tpetra linear algebra
is delegated to Kokkos [1], which is templated over
an abstraction of computer hardware. The computa-
tions are performed via functors mapped to hardware
through parallel for and reduction operations. Compil-
ing through the templates presents a similar problem
to Playa, but somewhat more pronounced as there is an
additional layer of templates due to hardware. Coaxing
the compilers to do the right thing on this sort of code
seems to be an important open question.

5. Implementation issues

5.1. Handles and their uses

Handle objects are an essential part of the Playa de-
sign. Their most obvious use is to enable overloaded
operations on runtime-polymorphic objects; however,

V.E. Howle et al. / Playa: High-performance programmable linear algebra 269

Fig. 3. Comparison of Playa and Epetra performance on platform (c). (Colors are visible in the online version of the article; http://dx.doi.org/
10.3233/SPR-2012-0347.)

they also have numerous other uses. We outline just
two examples: single point-of-contact error checking
and safe management of object relationships.

In every operation involving two or more vectors
or operators, mathematical and structural compatibil-
ity of the operands should be checked. The isCom-
patible() member function of VectorSpace is
intended for this very purpose. There is then an issue of
which object or function has the responsibility to per-
form these checks. The handle layer is a natural place
to put such checks.

A more important use of the handle layer is to set
up safe object relationships. An example of an object
relationship that is simple in concept yet nontrivial to
set up safely is the storage of a VectorSpace in
a Vector. Recall that a vector space – an object of
some VectorSpaceBase derived type – creates a
vector via the createMember() function. The dif-

ficulty is that the DerivedVS instance cannot store an
RCP pointing to itself (to do so would create a mem-
ory leak). The resolution is to attach the space’s RCP
to the vector after creation. The user can be asked to re-
member this step, or the logic can be wrapped in non-
member constructors. A simple alternative is to let the
handle layer do the late binding, as in the following
function.

Vector <Scalar > VectorSpace<Scalar > : : createMember ()

const

{

Vector <Scalar > r t n =

this −>p t r ()−>createMember (∗ th is) ;

return r t n ;

}

This enables safe object relationships in a manner
transparent to the user.

270 V.E. Howle et al. / Playa: High-performance programmable linear algebra

Fig. 4. Comparison of Playa and Epetra performance on platform (d). (Colors are visible in the online version of the article; http://dx.doi.org/
10.3233/SPR-2012-0347.)

5.2. Vector operations

Augmenting an abstract vector interface to include a
new vector operation is a vexing problem. In the orig-
inal HCL, every vector operation required by clients
was represented as a pure virtual function in the base
class. TSF continued this, while providing several sim-
plifications such as a generic traits-based adapter for
concrete types. A more scalable solution was devised
by Bartlett [7], who realized that if reduction and trans-
formation operations were represented as objects, then
a vector could have a single point of entry for all oper-
ations. The codes TSFCore and Thyra have been based
on this idea; in these codes, vector operations are done
exclusively via RTOp invocations.

In Playa an intermediate approach is taken: opera-
tions can be carried out either by delegation to a con-

crete type, or by generic RTOp. We consider it likely
that developers of low-level vector libraries will do a
better job optimizing their vector operations than we
will, so we want to use their implementations wherever
possible. Nonetheless, no library will have thought to
implement every operation that might be needed by a
client, so some means of scalable (in developer time)
extensibility is essential. Therefore, Playa also pro-
vides a mechanism for application of generic opera-
tions via templated member functions.

5.2.1. Functor-based vector operations
As an example of implementing a vector operation

through a templated functor, we show Playa’s elemen-
twise vector product (“dot star” in MATLAB). The .∗
operator does not exist in C++, so we use a member
function dotStar() instead of an overloaded opera-

V.E. Howle et al. / Playa: High-performance programmable linear algebra 271

tor; a Playa user would write this code:

Vector <Scalar > z = x . do tS ta r (y) ; / / z = x . ∗ y

The member function is implemented in two stages:
a const member function

template <class Scalar > i n l i n e

Vector <Scalar > Vector <Scalar > : : do tS ta r (const

Vector <Scalar >& other) const

{

Vector <Scalar > r t n = space () . createMember () ;

r t n . acceptCopyOf (∗ th is) ;

r t n . se l fDo tS ta r (o ther) ;

return r t n ;

}

which calls a non-const member function that in
turn calls a generic functor-streaming function with a
DotStar() functor as an argument.

template <class Scalar > i n l i n e

Vector <Scalar >& Vector <Scalar > : : se l fDo tS ta r (const

Vector <Scalar >& other)

{

return applyBinaryFunctor (PlayaFunctors : : DotStar

<Scalar > () , o ther) ;

}

The DotStar() functor object simply provides an
elementwise evaluation operation,

template <class Scalar >

class DotStar

{

public :

DotStar () { }

Scalar operator () (const Scalar& x , const Scalar&

y) const

{ return x∗y ; }

} ;

The applyBinaryFunctor() member function is
templated on functor type, so the streaming logic is
written once and reused for all binary functors. Similar
application functions have been implemented for unary
and ternary transformation functors as well as unary
and binary reduction functors. Reduction functors are
templated on reduction target type. Reduction functors
are necessarily stateful and so must also provide call-
backs for initialization and finalization.

There are several ways in which to improve the per-
formance of the code shown above. First, the two-stage

call requires two loops over the data: one for the copy
in dotStar() (the copy is implemented as a func-
tor application) and another for the DotStar() func-
tor application in selfDotStar(). Second, a tem-
porary is created. This could be avoided using deferred
evaluation of an intermediate expression representa-
tion as described in the next section.

It was initially our plan to implement all of Playa’s
vector operations via functors. However, as discussed
in Section 4, performance testing indicated that func-
tor-based operations did not give consistently good
performance across all platforms. Therefore, we imple-
mented the critical operations for iterative solves (up-
dates, two-norms and dot products) using delegation
to the concrete type. In the future, we envision a traits
mechanism for compile-time choice between functors
and delegation for each concrete type.

5.3. Overloaded operations

The critical issue in efficient overloaded operations
is to avoid creating temporary vectors, which would
result in O(N) overhead. We solve this problem using
template metaprogramming to form expression repre-
sentations, followed by deferred evaluation of these ex-
pressions in a context where unnecessary overhead can
be avoided. Any expression representing a linear com-
bination of vectors is rendered at compile time into an
object of class LCN, which is templated on the num-
ber of terms and contains statically-allocated arrays of
vectors and coefficients. For example, the overloaded
scalar-vector multiplication operator produces a one-
term linear combination (type LCN<Scalar,1>),

template <class Scalar > i n l i n e

LCN<Scalar , 1> operator ∗ (const Scalar& alpha ,

const Vector <Scalar >& x)

{

return LCN<Scalar , 1>(alpha , x) ;

}

and the overloaded vector-LCN addition operator pro-
duces a two-term linear combination object (type
LCN<Scalar,2>).

template <class Scalar > i n l i n e

LCN<Scalar , 2> operator +(const Vector <Scalar >& x ,

const LCN<Scalar , 1>& l c)

{

const Scalar one = Teuchos : : Sca la rT ra i t s <Scalar

> : : one () ;

return LCN<Scalar , 2>(one , x , l c) ;

}

272 V.E. Howle et al. / Playa: High-performance programmable linear algebra

Thus an expression such as αx + βy is identified at
compile time as a two-term linear combination, and the
effect of the overloaded multiplication and addition op-
erators is only to form an LCN object whose nodes con-
tain the scalars and shallow-copied vectors to be op-
erated on. No numerical calculations are done at this
point. The overhead is O(1).

The expression embodied in an LCN object is only
evaluated numerically upon assignment or other con-
version to a vector. For example, the code for the over-
loaded += operator shows how a two-term linear com-
bination formed through overloaded operations is for-
warded to a low-level update() function, in which
numerical computations are done.

template <class Scalar > i n l i n e

Vector <Scalar >& Vector <Scalar > : : operator +=(const

LCN<Scalar , 2>& l c)

{

const Vector <Scalar >& x = l c . vec (0) ;

const Scalar& alpha = l c . coe f f (0) ;

const Vector <Scalar >& y = l c . vec (1) ;

const Scalar& beta = l c . coe f f (1) ;

const Scalar one = Teuchos : : Sca la rT ra i t s <Scalar

> : : one () ;

TEUCHOS_TEST_FOR_EXCEPTION (! this −>space () .

isCompat ib le (x . space ()) ,

s td : : run t ime_er ro r ,

" Spaces t h i s = " << this −>space () << " and other="

<< x . space () << " are not compat ib le i n opera to r

+=() ") ;

this −>update (alpha , x , beta , y , one) ;

return ∗ th is ;

}

The next example shows the overloaded vector assign-
ment operator. In the event that the target of the assign-
ment is an existing vector of compatible space, we can
simply overwrite its entries with the result of the eval-
uation, with no memory allocation needed. If the target
of the assignment is null or needs reshaping, allocation
is done.

template <class Scalar > i n l i n e

Vector <Scalar >& Vector <Scalar > : : operator =(const

LCN<Scalar , 3>& l c)

{

const Vector <Scalar >& x = l c . vec (0) ;

const Scalar& alpha = l c . coe f f (0) ;

const Vector <Scalar >& y = l c . vec (1) ;

const Scalar& beta = l c . coe f f (1) ;

const Vector <Scalar >& z = l c . vec (2) ;

const Scalar& gamma = l c . coe f f (2) ;

const Scalar zero = Teuchos : : Sca la rT ra i t s <Scalar

> : : zero () ;

TEUCHOS_TEST_FOR_EXCEPTION (! y . space () .

isCompat ib le (x . space ()) ,

s td : : run t ime_er ro r ,

" Spaces x=" << x . space () << " and y="

<< y . space () << " are not compat ib le i n

opera to r =(a∗x + b∗y + c∗z) ") ;

TEUCHOS_TEST_FOR_EXCEPTION (! z . space () .

isCompat ib le (x . space ()) ,

s td : : run t ime_er ro r ,

" Spaces x=" << x . space () << " and z="

<< z . space () << " are not compat ib le i n

opera to r =(a∗x + b∗y + c∗z) ") ;

i f (this −>p t r () . get () != 0 && this −>space () == x

. space ())

{

/ / I f the LHS e x i s t s and i s from the same

/ / space as the RHS vectors , use the update

/ / opera t ion to compute (∗ t h i s) =

/ / zero ∗ (∗ t h i s) + alpha ∗x + beta ∗y + c∗z

this −>update (alpha , x , beta , y , gamma, z , zero) ;

}

else

{

/ / I f the vec to rs are from d i f f e r e n t spaces ,

/ / or i f the LHS i s n u l l , form the RHS vec to r

/ / and ove rwr i t e the LHS ’ s p t r w i th i t .

Vector e = l c . eva l () ;

this −>p t r () = e . p t r () ;

}

return ∗ th is ;

}

These functions are specialized (in the sense of par-
tial template specialization) to two-term and three-term
linear combinations. Specialization to linear combina-
tions of other sizes is a programming chore that can
be done once and for all for any given linear combina-
tion size. The general case is dealt with by writing a
function templated on linear combination size.

6. Conclusion

6.1. Results

We have demonstrated the possibility of a very effi-
cient overloaded operator syntax using expression tem-

V.E. Howle et al. / Playa: High-performance programmable linear algebra 273

plates on polymorphic reference-counted handles to
vector objects. Our experiments indicate that our over-
loaded operations are indistinguishable in performance
from direct calls to Epetra for objects with dimen-
sion greater than 100, as shown in the comparisons.
Playa’s compact representation of block-structured op-
erators, implicit inverses and transposes, and operator
overloading has enabled the easy development of block
preconditioners for problems such as incompressible
flow and thermal fluids. Importantly, Playa builds on
the successes of many existing Trilinos packages with-
out replicating functionality, increasing their usability
without impeding the robustness or performance. This
suggests a real possibility for Playa maturing into a
development environment for production-ready high-
level algorithms.

6.2. Future directions

Yet, arriving at such a position will require some ad-
ditional development. For one, our functor-based ap-
proach for computing on data chunks does not perform
reliably across platforms. This will be an important is-
sue to resolve. Second, there are some minor ineffi-
ciencies internal to some of our implicit classes that
careful profiling and optimization will improve (e.g.,
compound operators for temporary vectors at each ap-
plication). A third opportunity will be to include more
vector, matrix, and solver tools within the Playa inter-
face (e.g., Tpetra, PETSc). Doing so should also enable
greater portability to emerging multicore-based archi-
tectures, including GPU and hybrid platforms. Finally,
ongoing research aims to expand Playa’s capabilities
by developing tools such as nonlinear solvers and op-
timization algorithms entirely within the Playa frame-
work.

References

[1] C. Baker, M. Heroux, H. Edwards and A. Williams, A light-
weight API for portable multicore programming, in: Proc. 18th
Euromicro Conference on Parallel, Distributed and Network-
Based Processing, IEEE, Washington, DC, 2010, pp. 601–606.

[2] W. Bangerth, R. Hartmann and G. Kanschat, deal.II –
a general-purpose object-oriented finite element library, ACM
Trans. Math. Softw. 33 (2007), 24/1–24/27.

[3] R. Bartlett, Teuchos::RCP beginner’s guide: an introduction to
the Trilinos smart reference-counted pointer class for (almost)
automatic dynamic memory management in C++, Technical
Report SAND2004-3268, Sandia National Laboratories, 2004.

[4] R. Bartlett, Thyra coding and documentation guidelines (tcdg)
version 1.0, Technical Report SAND2010-2051, Albuquerque,
NM and Livermore, CA, 2010.

[5] R. Bartlett, M. Heroux and K. Long, TSFCore: a package of
light-weight object-oriented abstractions for the development
of abstract numerical algorithms and interfacing to linear alge-
bra libraries and applications, Technical Report SAND2003-
1378, Sandia National Laboratories, 2003.

[6] R.A. Bartlett, Thyra: Interfaces for abstract numerical algo-
rithms, available at: http://trilinos.sandia.gov/packages/thyra/,
2008.

[7] R.A. Bartlett, B.G.V.B. Waanders and M.A. Heroux, Vector
reduction/transformation operators, ACM Trans. Math. Softw.
30 (2004), 62–85.

[8] H.C. Elman, V.E. Howle, J. Shadid, R. Shuttleworth and R. Tu-
minaro, Block preconditioners based on approximate commu-
tators, SIAM J. Sci. Comput. 27 (2006), 1651–1668.

[9] E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software,
Addison-Wesley, Reading, MA, 1995.

[10] M.S. Gockenbach, M.J. Petro and W.W. Symes, C++ classes
for linking optimization with complex simulations, ACM
Trans. Math. Soft. 25 (1999), 191–212.

[11] V.E. Howle and R.C. Kirby, Block preconditioners for finite el-
ement discretization of incompressible flow with thermal con-
vection, Numer. Linear Algebra Appl. 19 (2012), 427–440.

[12] D. Kay, D. Loghin and A. Wathen, A preconditioner for the
steady-state Navier–Stokes equations, SIAM J. Sci. Comput. 24
(2002), 237–256.

[13] R. Kirby, A new look at expression templates for matrix com-
putation, Comput. Sci. Eng. 5 (2003), 66–70.

[14] T.G. Kolda and R.P. Pawlowski, NOX nonlinear solver project,
available at: http://software.sandia.gov/nox.

[15] A. Logg and G. Wells, Dolfin: automated finite element com-
puting, ACM Trans. Math. Softw. 37 (2010), 1–28.

[16] K. Long, R. Bartlett, P. Boggs, M. Heroux, P. Howard,
V. Howle and J. Reese, TSFExtended user’s guide, Technical
report, Sandia National Laboratories, 2004.

[17] K. Long, R. Kirby and B. van Bloemen Waanders, Unified em-
bedded parallel finite element computations via software-based
Fréchet differentiation, SIAM J. Sci. Comput. 32 (2010), 3323–
3351.

[18] S.D. Meyers, Effective C++: 55 Specific Ways to Improve
Your Programs and Designs, Addison-Wesley, Reading, MA,
2005.

[19] J.N. Shadid, E.C. Cyr, R.P. Pawlowski, R.S. Tuminaro,
L. Chacón and P.T. Lin, Initial performance of fully-coupled
AMG and approximate block factorization preconditioners for
solution of implicit FE resistive MHD, in: Proc. 5th European
Conference on Computational Fluid Dynamics, Lisbon, Portu-
gal, 2010.

[20] L.N. Trefethen and I. David Bau, Numerical Linear Algebra,
SIAM, Philadelphia, PA, 1997.

[21] T. Veldhuizen, Expression templates, C++ Report 7 (1995),
26–31.

[22] T. Veldhuizen, Arrays in blitz++, in: Proc. 2nd Int. Symp.
on Computing in Object-Oriented Parallel Environments,
Springer, London, UK, 1998, pp. 223–230.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

