
Scientific Programming 20 (2012) 293–310 293
DOI 10.3233/SPR-2012-0341
IOS Press

Sundance: High-level software for
PDE-constrained optimization

Kevin Long a,∗, Paul T. Boggs b and Bart G. van Bloemen Waanders c

a Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX, USA
E-mail: kevin.long@ttu.edu
b Sandia National Laboratories**, Livermore, CA, USA
E-mail: ptboggs@sandia.gov
c Sandia National Laboratories, Albuquerque, NM, USA
E-mail: bartv@sandia.gov

Abstract. Sundance is a package in the Trilinos suite designed to provide high-level components for the development of high-
performance PDE simulators with built-in capabilities for PDE-constrained optimization. We review the implications of PDE-
constrained optimization on simulator design requirements, then survey the architecture of the Sundance problem specification
components. These components allow immediate extension of a forward simulator for use in an optimization context. We show
examples of the use of these components to develop full-space and reduced-space codes for linear and nonlinear PDE-constrained
inverse problems.

Keywords: PDE-constrained optimization, finite elements, software

1. Introduction

Numerical optimization has become an essential
tool for mathematicians, scientists and engineers. Man-
ufacturers seek to maximize efficiency in their produc-
tion operations. Aerodynamicists try to minimize drag
of airplane wings while maximizing lift characteristics.
Geophysicists strive to determine material properties
in subsurface structures. In each case, a “model” can
be identified that drives the underlying state or dynam-
ics of the system. For shape optimization of a wing,
the underlying model consists of the compressible fluid
flow equations, whereas in the case of determining sub-
surface material properties, the model consists of the
wave equation. These problems can be formulated as
a minimization or maximization of a function subject
to a model as constraints on its variables. This can be

*Corresponding author: Kevin Long, Department of Mathematics
and Statistics, Texas Tech University, Broadway and Boston, Lub-
bock, TX 79049-1042, USA. E-mail: kevin.long@ttu.edu.

**Sandia is a multiprogram laboratory operated by Sandia Corpo-
ration, a Lockheed-Martin Company, for the United States Depart-
ment of Energy under Contract DE-AC04-94AL85000.

expressed mathematically as:

min
α

J (u(α), α), (1)

s.t. c(u, α) = 0, (2)

h(u, α) � 0, (3)

where J (u(α), α) is the objective function, c(u(α),
α) = 0 represents the “model” or state equations,
α are the design variables, u are the state variables and
h are the inequality constraints. We write u(α) to indi-
cate that for any value of the design variables, we can
solve for the state variables. Our solution strategies re-
quire the knowledge of both the state (model variables)
and the design variables, and we therefore specifically
include these in the above described, general formula-
tion of the optimization problem. The inequality con-
straints (3) are often simple bounds on the design vari-
ables, but could be used more generally to ensure that
certain (nonlinear) functions of the state and/or design
variables are appropriately bounded. We refer to this
formulation as a constrained optimization problem and
a significant body of literature (a subset of which is
listed here) [3,6–9,13,17,22] deals with appropriate so-
lution methods and algorithms.

1058-9244/12/$27.50 © 2012 – IOS Press and the authors. All rights reserved

294 K. Long et al. / Sundance: High-level software for PDE-constrained optimization

This paper is focused on the common and impor-
tant case in which the constraints c(u, α) = 0 are par-
tial differential equations, a class of problems known
as PDE-constrained optimization (PDECO). The size,
complexity, and infinite-dimensional nature of PDECO
problems all present significant challenges for general-
purpose optimization algorithms and require special
attention in the handling of regularization, iterative
solvers, preconditioning, globalization, management
of inexactness, sensitivity calculations, and parallel im-
plementation, all of which need tailoring to the struc-
ture of the underlying operators. PDECO methods re-
quire not only considerable information from the sim-
ulator (or model) but also require the manipulation of
various linear algebra objects that need to be embedded
in the model.

In this paper we present a software design and
code capability that elegantly and efficiently enables
PDECO algorithms. To set the stage, in Section 2 we
examine several approaches to solving the PDECO
problem (1)–(3). In Section 3 we describe such a soft-
ware system whose syntax allows a natural expression
of PDECO problems and seamless way to connect to
an optimizer. In addition, we present the use of mul-
tiple Trilinos packages ranging from linear solvers to
distributed linear object capabilities as part of our soft-
ware infrastructure. In Section 4 we give a collection
of examples that illustrate the power of our system. In
Section 5 we discuss the current state and future direc-
tions for this work.

2. PDE-constrained optimization overview

In this section, we consider two approaches for solv-
ing constrained optimization problems (1)–(3). The
first approach solves the PDE c(u, α) = 0 at each step
of the optimization process and thus the iterates are al-
ways feasible. (We refer to these methods as “feasi-
bility preserving methods”.) These methods are based
on the fact that, in some cases, one only has an ex-
isting code for solving the PDE and this code is not
easily modified, or only can be only “slightly” modi-
fied. The second approach only requires that the PDE
constraints be satisfied in the limit as the optimization
process converges. We refer to these methods as “all-
at-once” methods since we attempt to solve the opti-
mization problem and the PDE constraint at the same
time. This approach requires significant intrusion into
the PDE solver so that it can be tightly coupled to the

optimizer. Not surprisingly, each of these two strate-
gies has variants, as we discuss below.

First, however, we note that our discussion below is
predicated on the assumption that the PDECO problem
has sufficient smoothness for gradient-based methods
to be applicable; if not, then one has little choice but
to use a derivative-free method; such methods can only
be realistically considered for problems with very few
design variables and even in this case, they often con-
verge very slowly. For the remainder of this paper, we
will assume that the functions are all sufficiently dif-
ferentiable.

2.1. Feasibility-preserving methods

The methods for solving PDECO that solve the state
equation at each iteration have two main variants. The
first is the “black-box” procedure in which no modifi-
cations to the PDE solver can be made. The code can
only evaluate the state variables given an instance of
the design variables as input. They completely sepa-
rate optimization strategies from the model by com-
municating results through loosely coupled interfaces,
e.g., through the file system. Furthermore, sensitivity
information is typically unavailable from the underly-
ing dynamics equation and consequently, the objective
function gradients are acquired by finite differencing
the entire forward simulation. Although less efficient,
these methods are nevertheless able to employ some
powerful optimization methods, provided the number
of design variables is small. In addition, black-box
methods have the distinct advantage of having a very
simple interface between the optimizer and the PDE
simulator, and so are sometimes a practical choice.

As mentioned above, an implicit assumption in (1)–
(3) is that for any (reasonable) value of the design vari-
ables, the underlying model can be solved for the state
variables. Thus, ignoring the inequality constraints to
simplify the algorithmic presentation, we can perform
a nonlinear elimination on the equality constraints,
i.e., solve the equality constraints for u(α) to obtain
an unconstrained optimization problem of the form
minα J (α). A local minimizer may be obtained by ap-
plying a variant of Newton’s method (see, e.g., [17])
given by

αk+1 = αk − σk(Bk)−1 ∇J (αk),

where the superscripts denote the iteration number,
B is an approximation to the Hessian of the objec-
tive function evaluated at the kth iterate, and σk is a

K. Long et al. / Sundance: High-level software for PDE-constrained optimization 295

step length parameter appropriately chosen. The con-
vergence theory for such methods is well developed.

As noted above, the primary disadvantage of this ap-
proach is in its inability to consider large number of
optimization variables and guarantee accuracy. If there
are n design variables, then n forward simulations are
required for each finite difference gradient calculation
and this must be done at each iteration. For n large,
e.g., a design variable at each point of the computa-
tional domain, the finite difference method becomes
computationally intractable. Furthermore, even when
n is small the accuracy of finite difference deriva-
tives may be low because the forward simulations are
themselves subject to discretization errors and inexact
solves,whose effect is amplified by differencing.

We conclude this part by providing two alternatives
to finite differencing that, although much more effi-
cient, are still not as efficient as the all-at-once methods
described below. These are the direct sensitivity and
adjoint methods. Note that both require some intrusion
into the state-equation solver.

We again use just the equality constrained version
to simplify the presentation. Applying the chain rule to
the objective function, we have

∇J =
∂J
∂u

∂u
∂α

+
∂J
∂α

(4)

for the reduced gradient ∇J . Similarly, for c(u(α),
α) = 0 we have

∂c
∂u

∂u
∂α

+
∂c
∂α

= 0. (5)

Since ∂c
∂u is invertible, we combine (4) and (5) to obtain

∇J = − ∂J
∂u

∂c
∂u

−1 ∂c
∂α

+
∂J
∂α

. (6)

The “direct sensitivity matrix” ∂u
∂α = ∂c

∂u
−1 ∂c

∂α re-
quires the solution of the state Jacobian against a right
hand side with multiple columns equal to the number
of optimization variables. Although the direct sensi-
tivity matrix offers more efficient and exact gradient
calculations, if the number of optimization variables is
sufficiently large this method also becomes computa-
tionally intractable. Fortunately, a simple transforma-
tion is possible to avoid the computational expense as-
sociated with the dependence of the optimization vari-

able. By shifting ∂J
∂u

∂c
∂u

−1
and taking the transpose,

the dependence on the multiple right hand sides is

now avoided. This transformation is termed the “ad-
joint based sensitivity” method and the gradient is cal-
culated as:

∇J =
∂c
∂u

−T ∂J
∂u

∂c
∂α

+
∂J
∂α

. (7)

Note that we already have ∂c
∂u since it is needed to solve

the constraint. Indeed, in the case of a linear constraint,
it is just the linear operator. Often, the other deriva-
tives are not hard to obtain. The implementation of ad-
joint based sensitivities provides the primary prerequi-
site towards solving PDECO problems with large de-
sign variables. In the following section, we discuss all-
at-once methods which rely on adjoints and offer addi-
tional computational improvements.

2.2. The all-at-once approach

The methods described here offer further computa-
tional improvements by tightly coupling the conver-
gence of the state and optimization calculations. That
is, there is no need to solve the nonlinear PDEs exactly
until the optimization converges. The classical way to
approach this problem is to introduce Lagrange multi-
plier fields, λ, known as the adjoint states or costate
variables, and form a Lagrangian functional L that in-
corporates the PDE constraints via an inner product
with λ. In particular, let c be the PDE constraint and
assume that the initial conditions are included. Then
we can write the Lagrangian as

L(α, u, λ) = J (u, α) + 〈λ, c〉.

One then requires stationarity of L with respect to the
state variables (u), decision variables (α), and adjoint
variables (λ). Taking variations, the following system
of equations is derived, representing the first-order nec-
essary conditions for optimality:

Lλ(α, u, λ) = c(u, α) = 0

state equation, (8)

Lu(α, u, λ) = Ju(û, α) + cu(u, α) = 0

adjoint equation, (9)

Lα(α, u, λ) = Jα(u, α) + cα(u, α) = 0

decision equation, (10)

where the subscripts denote taking variations of the
particular functional with respect to the subscript.

296 K. Long et al. / Sundance: High-level software for PDE-constrained optimization

When appropriately discretized on the current grid
level, the dimension of each of u, λ is equal to the
number of grid points Ng multiplied by number of time
steps (in time-dependent problems) Nt, α is of dimen-
sion Ng , and thus the system (8)–(10) is of dimen-
sion NgNt + Ng . This can be very large for problems
of interest – for example, in numerical problems pre-
sented in [1], the system contains 3.4 × 109 unknowns.
The time dimension cannot be “hidden” with the usual
time-stepping procedures, since (8)–(10) couples the
initial and final value problems through the decision
equation. This is not shown here, but the optimality
system is thus a boundary value-problem in 4D space–
time.

If one considers (8)–(10) as a nonlinear system of
equations to be solved by Newton’s method, one will
have to solve a linearized system at each iteration.
It has been noted that the linearized system corre-
sponds to a constrained optimization problem that is a
quadratic approximation to the objective function with
linearized constraints. In the optimization literature,
this goes by the name sequential quadratic program-
ming or SQP. See [4] for a discussion of SQP methods
in finite dimensions. The system (8)–(10) is known in
the optimization literature as the Karush–Kuhn–Tucker
(KKT) conditions.

Since the coupled optimality system can be formida-
ble to solve simultaneously, a popular alternative is to
eliminate state and adjoint variables and thereby reduc-
ing the system to a manageable one in just the deci-
sion variable. Methods of this type are known as re-
duced space methods. A nonlinear elimination or non-
linear Gauss–Seidel variant of a reduced space method
proceeds as follows for the KKT system. Given α at
some iteration, solve the state equation for the state
variable u. Knowing the state then permits solution
of the adjoint equation for the adjoint variables λ
and p̂. Finally, with the state and adjoint known, the
decision variable α is updated via an appropriate lin-
earization of the decision equation. This loop is then
repeated until convergence. This procedure is demon-
strated as a solution mechanism in our numerical re-
sult section. Historically, reduced space methods have
been attractive because solving the subsets of equa-
tions in sequence exploits the state/adjoint/decision
structure of the optimality system and capitalizes on
well-established methods and software for solving the
state equation. In addition, adjoint PDE solvers are be-
coming more popular, due to their role in goal-oriented
error estimation and efficient sensitivity computation,
so they can be exploited as well.

In contrast to reduced space methods, full space
methods solve for the state, decision, and adjoint vari-
ables simultaneously. For large-scale problems, this is
typically effected via Newton–Krylov iteration. That
is, the linear system arising from the KKT systems
at each Newton iteration is solved using a Krylov it-
erative method. The difficulty of this approach is the
complex structure, indefiniteness and ill-conditioning
of the KKT system, which in turn requires effective
preconditioning. Similar to the reduced space methods,
our software accommodates full space methods with
similar ease as shown in the numerical results section.

2.3. Discussion

Numerical evidence suggests that for steady-state
PDE-constrained optimization problems, full-space
methods can outperform reduced space methods by a
wide margin. For optimization of systems governed
by time-dependent PDEs, the answer is not as clear.
The nonlinearities within each time step of a time-
dependent PDE solve are usually much milder than for
the corresponding stationary PDEs, so amortizing the
nonlinear PDE solve over the optimization iterations
is less advantageous. Moreover, time dependence re-
sults in large storage requirements for full-space meth-
ods, since the full space optimality system becomes
a boundary value problem in the space–time cylinder.
For such problems, reduced space methods are often
preferable.

In their survey of approaches to PDECO, van Bloe-
men Waanders et al. [21] laid out a hierarchy of meth-
ods ranging from a black-box approaches to the all-
at-once approaches describe above. They found that
for more than ≈5–10 design variables the more intru-
sive algorithms become more efficient than black-box
by many orders of magnitude. Despite this clear per-
formance advantage, intrusive algorithms present sev-
eral difficulties for the prospective user. First, one must
compute certain operators not usually available from
off-the-shelf simulators. Second, the PDE solver and
the optimizer must interact directly, often in ways more
complex than the simple master-slave relationship used
in a black-box method. Given the advantages of the
more intrusive approaches for very large problems, we
now consider the software implications and introduce
Sundance.

3. Sundance

In their survey of PDECO methods, [21] a high level
software vision was outlined for specifying and solv-

K. Long et al. / Sundance: High-level software for PDE-constrained optimization 297

Fig. 1. Schematic of relationship between Sundance and other Trilinos packages. The grey box delimits the “universe” of Trilinos packages.
Sundance is a single Trilinos package, and is shown at the top. The four packages shown in dark grey (Playa, Teuchos, Intrepid, and SEACAS)
are those Trilinos packages with which Sundance interacts directly. Interaction with other packages, for example, the NOX nonlinear solvers and
the Epetra distributed linear algebra infrastructure, is indirect and mediated by the Playa high-level solver interface. Interaction with third parties
is indirect and mediated by Teuchos, SEACAS and Epetra.

ing PDECO problems; a draft version of that software
was described in [21] and in [2]. The outgrowth of that
work was a full-featured finite-element toolkit called
Sundance, designed from the ground up with the inten-
tion that it be used in the context of embedded algo-
rithms for PDECO and uncertainty quantification. Sun-
dance is implemented in C++, with 3D capabilities,
fully parallel, and is built upon tools and solver com-
ponents of the Trilinos library [10]. An overview of
Sundance can be found in the foundational paper [15].

There are a number of similar efforts that produce
high-performance simulators from high-level specifi-
cation or PDEs. See [14] and [15] for literature sur-
veys.

3.1. Interoperation with other Trilinos packages

In its role as a simulation development toolkit, the
Sundance package must interoperate with many dif-
ferent Trilinos packages that provide services for con-
crete parallel linear algebra representations, linear and
nonlinear solvers, and preconditioners. As Trilinos is
a growing and changing system, we expect that the
packages used by Sundance will change; for example,
as Epetra is phased out in favor of Tpetra, Sundance

will have to be at least partially templatized. To keep
the interaction manageable and extensible, Sundance is
interfaced directly with only a small number of Trili-
nos packages: the Teuchos utilities, the Intrepid low
level finite element package, the SEACAS mesh I/O
utilities, and the Playa high-level linear and nonlinear
algebra objects. The current state of the interface is
shown in Fig. 1. Centrally important to Sundance’s in-
teroperation with other Trilinos packages is one pack-
age, Playa [11], which provides Sundance with a single
point of contact for the various vector, operator, and
solver types available through Trilinos.

3.2. Differentiation as a unifying principle

The central idea behind the design of Sundance is
the realization that differentiation makes plain the as-
sociation between coefficient expressions and basis
functions. Differentiation thereby enables the binding
of computational kernels for coefficients with com-
putational kernels for basis functions and integration.
This is the case even in the context of a linear for-
ward PDE, for which one does not ordinarily consider
derivative computation to be necessary; in Sundance,
automatic differentiation is used in the discretization of

298 K. Long et al. / Sundance: High-level software for PDE-constrained optimization

every PDE. This system enables runtime coordination
of very efficient matrix and vector assembly starting
from a high-level specification of the problem’s weak
form, using in-place automatic differentiation to com-
pute the required derivatives. By “in-place” automatic
differentiation we mean that derivatives are evaluated
concurrently with function values during traversal of
an untransformed expression graph; this should not
be confused with symbolic differentiation or with au-
tomatic differentiation by source transformation. This
concept and a high-level view of its implementation
are described more fully in [15]. In that same paper,
performance results are presented which indicate that
the runtime assembly algorithms used by Sundance in
fact often outperform both hand-tuned simulators and
simulators based on code generation.

Most pertinent to this paper is the central, and uni-
fying, role of differentiation in the design of Sundance.
Because Sundance uses differentiation to process ev-
ery weak form, the tools necessary for computation of
gradients and Hessians are built into the core design. In
the present paper we will emphasize the user-level fea-
tures through which problem specification and deriva-
tive specification are used to set up a PDECO algo-
rithm. Because the same functionality for the forward
model setup can be used to differentiate a Langrangian
in PDECO, a focus on the design of the forward prob-
lem in the next section is sufficient to explain the opti-
mization capabilities. The core design will be demon-
strated on optimization in several numerical examples.

3.3. Overview of object architecture

The entire Sundance toolkit contains many classes
and nonmember functions, about two dozen of which
might commonly appear in user-level code. To impose
some organization on that collection we will first group
the user-level objects into three categories:

• Problem specification building block objects.
These are objects out of which problem spec-
ifications are assembled. Examples include ob-
jects to deal with the meshing (Mesh), general
utility objects (Expr), objects to identify subsets
of the computational domain (CellFilter),
and a family of finite element basis functions
(BasisFamily). We can further subdivide these
objects into those relating to symbolic geometry,
discrete geometry, discretization specification and
symbolic expressions.

• Problem specification objects. These are objects
that encapsulate a problem along with instructions
for its discretization. Problem specification ob-
jects produce algorithm interface objects or per-
haps other problem specification objects.

• Algorithm interface objects. These are objects
that interact directly with solvers or optimizers.
These are actually objects from the Playa pack-
age, not the Sundance package, but we include
them in the discussion to illustrate the role of the
problem specification objects as producers of ob-
jects that interact directly with algorithms.

These categories are shown graphically in Fig. 2. In
subsequent diagrams of program flow, we will refer
back to this categorization.

The problem specification building blocks have sub-
classes. Sundance uses the reference-counted handle
idiom ([11] for discussion of this idiom in the context
of Playa) to provide polymorphism and safe memory
management along with value syntax. The actual rela-
tionship between a handle (Expr), a pointer to a base
class (ExprBase), and a derived class (CoordExpr)
is as shown in the left side of Fig. 3. Logically, how-
ever, what matters is the relationship between the han-
dle and the derived class; the presence of the base class
is an implementation detail irrelevant to the user. For
simplicity, we omit the actual base class and regard the
handle as playing the role of a base of the inheritance
diagram, as shown in the right side of Fig. 3. In some
cases, there may be intermediate derived types between
a base class and a final derived type; these are also in-
visible to an end user so we will omit such intermedi-
aries from this discussion.

All of the building block objects have two or more
subclasses; the object whose subclasses play the largest
role in our examples is class Expr, whose subclasses
represent different types of mathematical expressions,
for example, test functions, products, or coordinate
functions. A listing of several of the user-level sub-
types is shown in Fig. 4 in the form of a UML inheri-
tance diagram.

Having established a categorization of objects and
a shorthand for discussion of handled inheritance hi-
erarchies, we can now outline how these objects are
typically used to construct a sequence of objects lead-
ing ultimately to Playa objects that can be used in a
solver or optimizer. Figure 5 shows the construction
of a term in a weak form from its components that
specify the region of integration, the integrand, and the
method of quadrature. Each of these is represented by
one of the building block objects: CellFilter for

K. Long et al. / Sundance: High-level software for PDE-constrained optimization 299

Fig. 2. Classification of user-level Sundance classes into the categories of problem specification building blocks, problem specifications objects,
and algorithm interface objects. The problem specification building blocks are further subdivided into those relating to symbolic geometry,
discrete geometry, discretization specification, and symbolic expressions.

(a) (b)

Fig. 3. UML object diagram showing (a) the actual relationship be-
tween a handle class, a polymorphic base class, and a subclass and
(b) the logical relationship with the implementation detail of the base
class suppressed.

the region of integration, Expr for the integrand, and
QuadratureFamily for the method of quadrature.
The result is an Expr representing the term in a weak
form; because this is an Expr, it may be added to
other weak forms. Once the weak form and boundary
condition expressions are put together, a user can con-
struct a problem specification of appropriate type. Fig-
ure 6 shows the construction of a NonlinearProb-
lem object from a specification of the problem’s mesh,
weak form, essential boundary conditions, list of test

Fig. 4. UML object diagram showing several (logical) subclasses of
the Expr class.

functions, list of unknown functions, expression for
initial guess, and specification of the type of low-level
linear algebra representation to be used. Finally, Fig. 6
shows the production of Playa operator and vector ob-
jects as requested by a solver algorithm.

In some cases, a problem specification object does
not produce Playa algorithm interface objects directly,
but instead produces two or more problem specifica-
tion objects. For example, in Fig. 7 building blocks
are used to construct a Functional object. Member
functions of the Functional then produce the Non-
linearProblem or LinearProblem objects re-

300 K. Long et al. / Sundance: High-level software for PDE-constrained optimization

Fig. 5. Diagram indicating how the Integral non-member function accepts a symbolic geometry object (type CellFilter), a symbolic
integrand (type Expr), and a specification of quadrature method (type QuadratureFamily) to produce an object representation (type Expr)
of a weak form.

Fig. 6. Example of program flow from building block components, to problem specification object for a nonlinear PDE, to Playa linear algebra
objects that can be used in a nonlinear solver.

sulting from computing variations with respect to cer-
tain specified functions (these functions being repre-
sented as Expr objects). This example is of particular
importance in optimization, where the functional rep-
resents a Lagrangian and the nonlinear and linear prob-
lems it produces are the state and adjoint equations, re-
spectively.

3.4. Example: Constructing a nonlinear forward
problem

To place the software objects in the setting of a con-
crete problem, we show an example of setting up a sim-
ple forward problem. Let V h be a space of piecewise
linear functions on some meshing of [0, 1], and con-

sider the problem of finding u ∈ V h such that

∫ 1

0
v′u′ + vxeu − vg(x) dx = 0 ∀v ∈ V h

(11)

with boundary condition u(0) = u(1) = 0. This is a
variant of Bratu’s problem [5] and of Toomre’s prob-
lem [20]. To produce an exactly solvable problem,
we use the method of manufactured solutions [18,19]
(MMS). Choosing the solution u(x) = x(1 − x) gives
the forcing function g(x) = xex(1−x) + 2.

The weak form requires a region of integration, and
the boundary conditions require some specification of
where they are to be applied. The CellFilter class

K. Long et al. / Sundance: High-level software for PDE-constrained optimization 301

Fig. 7. Example of program flow from building block components to construction of a functional, followed by taking variations with respect to
specified functions to obtain a nonlinear problem.

is used to identify geometric regions; during discretiza-
tion, a cell filter acts to select certain cells according
to some criterion, for example, all cells of a specified
dimension. Cell filters can also be specified in terms
of predicate functions; in the code fragment below, the
zero-dimensional cells are further filtered by predicate
functions that select the points at x = 0.0 and x = 1.0.

C e l l F i l t e r omega = new M a x i m a l C e l l F i l t e r () ;

C e l l F i l t e r p ts = new D i m e n s i o n a l C e l l F i l t e r (0) ;

C e l l F i l t e r l e f t = pts . subset (new

Coord ina teVa lueCel lPred ica te (0 , 0 .0)) ;

C e l l F i l t e r r i g h t = pts . subset (new

Coord ina teVa lueCel lPred ica te (0 , 1 .0)) ;

The symbolic objects composing the integrand must
also be constructed. In the next code fragment, we de-
fine test and unknown functions v and u and specify
that they use first-order Lagrange basis functions. Ex-
pressions for the coordinate function x and the differ-
entiation operator are also defined; the argument “0”
specifies the first coordinate direction. With these com-
ponents ready, the integrand can be formed using over-
loaded operators. Finally, a quadrature rule must be
chosen; to give reasonable accuracy on the nonlinear
term we use fourth-order Gauss–Legendre quadrature.

BasisFamily basis = new Lagrange (1) ;

Expr v = new TestFunct ion (bas is) ;

Expr u = new UnknownFunction (basis) ;

Expr x = new CoordExpr (0) ;

Expr dx = new D e r i v a t i v e (0) ;

QuadratureFamily quad = new GaussianQuadrature (4) ;

Expr weakForm = I n t e g r a l (omega , (dx∗v) ∗ (dx∗u) +

v∗x∗exp (u) − g∗v , quad) ;

The boundary conditions are set up in a similar man-
ner. There are a number of ways to specify Dirichlet
boundary conditions with Sundance objects. Nitsche’s
method may be used, in which case, the appropriate
expressions are formed and added to the weak form.
Here we use the simple method of “replacing” the rows
associated with boundary degrees of freedom by equa-
tions that impose the boundary conditions. That these
expressions are to replace the weak form for the spec-
ified rows is indicated by using them in an Essen-
tialBC function rather than an Integral function;
otherwise, the specification of weak forms and replace-
ment BCs is identical. Multiplication by a test function
is used to allow the user to indicate which rows are to

302 K. Long et al. / Sundance: High-level software for PDE-constrained optimization

be replaced. The code to define the Dirichlet boundary
conditions is shown here.

Expr bc = Essent ialBC (l e f t + r i g h t , v∗u , quad) ;

We have now specified the weak form and bound-
ary conditions in what one might call quasi-symbolic
form: symbolic expressions annotated by specification
of basis functions and quadrature rules. To be ready to
produce discrete objects, a mesh must be defined and
a low-level linear algebra representation must be cho-
sen. Meshes are obtained through an abstract Mesh-
Source interface, subclasses of which might do on-
the-fly building of simple meshes or reading from
mesh files. For a simple one-dimensional mesh we
build on the fly with

MeshType meshType = new BasicSimpl ic ia lMeshType () ;

/ ∗ Mesh the i n t e r v a l [0 , 1] w i th 16 elements ∗ /

i n t nx = 16;

MeshSource mesher = new Par t i t ionedL ineMesher (0 . 0 ,

1 .0 , nx , meshType) ;

Mesh mesh = mesher . getMesh () ;

The selection of a subclass of Playa::Vector-
Type controls what type of linear algebra objects will
be built; here, we choose Epetra.

VectorType <double> vecType =

new EpetraVectorType () ; / / Use Epetra ob jec ts

The next code fragment shows the construction of
the problem’s discrete space and the discrete function
that represents the initial guess for the solution.

DiscreteSpace discSpace (mesh , basis , vecType) ;

Expr u0 = new Discre teFunc t ion (discSpace , 0 .0) ;

Everything needed to define the problem is now in
place, so we construct a NonlinearProblem ob-
ject.

NonlinearProblem prob (mesh , weakForm , bc , v ,

u , u0 , vecType) ;

The nonlinear problem class provides member func-
tions to compute the problem’s Jacobian and resid-

Fig. 8. Comparison of exact and numerical solutions to the nonlin-
ear forward problem. (Colors are visible in the online version of the
article; http://dx.doi.org/10.3233/SPR-2012-0341.)

ual, and also to obtain a vector representation of the
current state. One could use those functions to write
an adapter allowing the use of NonlinearProb-
lem with a user’s desired nonlinear solver library. Be-
cause Trilinos already provides a full-featured non-
linear solver package, NOX, NonlinearProblem
also has a solve() member function that accepts a
NOX solver object as an argument and carries out the
solve. The result is written into the discrete function
u0 that was used in the construction of the Nonlin-
earProblem. Definition of the NOX solver object
and the solution of the problem is shown in this code
fragment.

ParameterXMLFileReader reader (" nox−amesos . xml ") ;

ParameterL is t noxParams = reader . getParameters () ;

NOXSolver non l i nSo lve r (noxParams) ;

prob . so lve (non l i nSo lve r) ;

Results are shown in Fig. 8.

3.5. The objective function interface

Once the functional has been defined, the proce-
dure of setting up and using the problems required for
a reduced-space formulation of a nonlinear PDECO
problem is largely independent of the specific form
of the functional and can be neatly encapsulated
in a further set of driver objects. These are the
LinearPDEConstrainedObj and Nonlinear-

K. Long et al. / Sundance: High-level software for PDE-constrained optimization 303

PDEConstrainedObj objects, which represent dif-
ferentiable objective functions in the reduced space.
These objects manage internally the sequence of solv-
ing the state and adjoint equations and then comput-
ing the gradient. These two classes implement a very
lightweight objective function interface, Playa::
ObjectiveBase that can be adapted for use with
nonlinear solvers such as NOX or gradient-based opti-
mization libraries such as MOOCHO.

3.5.1. Independent or sequential constraints
In some problems, certain of the constraint equa-

tions and their associated state variables may either
be completely decoupled, or perhaps coupled in a se-
quential way. An example of a set of uncoupled con-
straints and states arises in multifrequency inversion,
where the responses at different frequencies are mu-
tually independent. Sequential coupling arises, for ex-
ample, in passive advective transport where the equa-
tion for the velocity is independent of the concentra-
tion. In such cases, it is often more efficient to solve
the smaller systems. To enable this performance op-
timization, the constructors for the linear and nonlin-
ear PDEConstrainedObj objects allows specifica-
tion of sequences of state and adjoint variables. This
is taken as a directive that the state equations are to be
solved in the specified order, and the adjoint equations
in the reverse order.

In principle, these relationships could be deduced
automatically from the symbolic problem specifica-
tion. In the current implementation of Sundance it is
the user’s responsibility to provide the correct depen-
dency ordering; automation of this step is planned in a
future version.

4. Model problems

To illustrate the use of Sundance components to pro-
gram and solve PDE-constrained optimization prob-
lems, we develop several simple model problems. To
keep the focus on the software objects used to set up
the problems, we use very simple solution algorithms.

We show results to verify accuracy, but because we
have made no attempt to tune the solvers or optimiz-
ers, and because of the difficulty of programming these
problems without Sundance, we present no timing re-
sults. For timings of Sundance on forward problems
compared to several other codes and for parallel scala-
bility results, we refer the reader to [15].

4.1. Linear source inversion

Our first model problem is source inversion for the
Poisson equation on a washer-shaped domain. The
state, adjoint, and full KKT equations are all linear.
The goal of the problem is to select a source in order to
match a specified target function. We use the method
of manufactured solutions [18,19] to construct a prob-
lem yielding an exact solution with simple form. With
Tikhonov regularization on the design variable α, the
optimization problem is

min
u,α

f (u, α) =
1
2

∫
Ω

(u − u∗)2 dΩ

+
R

2

∫
Ω

(∇α)2 dΩ, (12)

subject to

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∇2u = α + g in Ω,
u = 0 on Γinner,
u = cos(θ) sin(θ)

on Γouter,
∂u

∂n
= 0

on remaining surfaces.

(13)

Here R is a regularization parameter, and u∗ and g are
functions to be defined below. Introducing a multiplier
variable λ, the problem’s Lagrangian is

L = f +
∫

Ω
[∇λ · ∇u + λ(α + g)] dΩ. (14)

The manufactured target function u∗ and exact solu-
tion u are, in cylindrical coordinates,

u∗(r, θ, z)

= [2r − 1 + ((4 − 9r)R)/r2] cos θ sin θ (15)

and

u(r, θ, z) = (2r − 1) cos(θ) sin(θ). (16)

With these the forcing function g is

g = (1/(600r2))(−100r6 + 360r5 − 150 log(r)r4

+ (−273 + log(1024)) r4 − 3600r

+ log(1024) + 2392) cos θ sin θ. (17)

The domain and the target function are shown in Fig. 9.

304 K. Long et al. / Sundance: High-level software for PDE-constrained optimization

Fig. 9. Target function u∗ for the Poisson source inversion problem
on a washer-shaped region. The outer ring of the washer is labeled
Γouter, the inner ring is Γinner. (Colors are visible in the online ver-
sion of the article; http://dx.doi.org/10.3233/SPR-2012-0341.)

4.1.1. Programming the functional
The bulk of the work for the programmer is in setting

up the Functional object for the Lagrangian.

/ ∗ Choose the vec to r type ∗ /

VectorType <double> vecType =

new EpetraVectorType () ;

/ ∗ Create the mesh ∗ /

MeshType meshType = new BasicSimpl ic ia lMeshType () ;

MeshSource meshSrc = new ExodusMeshReader ("

concCylinder3D −0" , meshType) ;

Mesh mesh = meshSrc . getMesh () ;

/ ∗ Create the symbol ic geometry . Mesh l a b e l s are

assumed to have been

∗ assigned by the mesher ∗ /

C e l l F i l t e r i n t e r i o r = new M a x i m a l C e l l F i l t e r () ;

C e l l F i l t e r faces = new D i m e n s i o n a l C e l l F i l t e r (2) ;

C e l l F i l t e r i nne r = faces . labeledSubset (2) ;

C e l l F i l t e r ou te r = faces . labeledSubset (1) ;

/ ∗ Create the unknown f u n c t i o n s ∗ /

BasisFamily basis = new Lagrange (1) ;

Expr u = new UnknownFunction (basis , " u ") ;

Expr lambda = new UnknownFunction (basis , " lambda ") ;

Expr alpha = new UnknownFunction (basis , " alpha ") ;

/ ∗ Set up the symbol ic expressions ∗ /

Expr dx = new D e r i v a t i v e (0) ;

Expr dy = new D e r i v a t i v e (1) ;

Expr dz = new D e r i v a t i v e (2) ;

Expr grad = L i s t (dx , dy , dz) ;

Expr x = new CoordExpr (0) ;

Expr y = new CoordExpr (1) ;

Expr z = new CoordExpr (2) ;

Expr r = s q r t (x∗x + y∗y) ;

Expr cosT = x / r ;

Expr sinT = y / r ;

const double p i = 4.0 ∗ atan (1 . 0) ;

double R = 1.0e−2;

Expr t a r g e t = uExact+R∗ (4.0 − 9.0∗ r) / r / r ∗cosT∗ sinT ;

Expr g = (2392−3600∗ r +360∗pow(r , 5) −100∗pow(r , 6) +

pow(r , 4) ∗(−273 + log (1024)) + log (1024) −
150∗pow(r , 4) ∗ log (r)) / (600 . ∗pow(r , 2)) ;

/ ∗ Create the Lagrangian ∗ /

QuadratureFamily quad = new GaussianQuadrature (4) ;

Expr f = I n t e g r a l (i n t e r i o r , 0.5 ∗pow(u−t a rge t ,

2 .0) , quad , watch) ;

Expr reg = I n t e g r a l (i n t e r i o r , 0.5 ∗R∗ (grad ∗ alpha) ∗
(grad ∗ alpha) , quad) ;

Expr c o n s t r a i n t = I n t e g r a l (i n t e r i o r , (grad ∗u) ∗
(grad ∗lambda) +

alpha ∗lambda +

g∗lambda , quad) ;

Expr BC = Essent ialBC (outer , lambda∗ (u−cosT∗ sinT) ,

quad) +

Essent ialBC (inner , lambda∗u , quad) ;

Func t iona l L (mesh , f +reg+ cons t r a i n t , BC, vecType) ;

With the Lagrangian encapsulated as a Func-
tional object, we can set up our choice of reduced-
space or full-space formulations.

4.1.2. Solution by the full-space method
A LinearProblem representation of the full

KKT equations is obtained by taking variations of the
Lagrangian.

DiscreteSpace discSpace (mesh , L i s t (basis , basis ,

bas is) , vecType) ;

Expr w0 = new Discre teFunc t ion (discSpace , 0 .0) ;

Expr dum;

LinearProblem KKT_Prob =

L . l i n e a r V a r i a t i o n a l P r o b (L i s t (lambda , u , alpha) ,

w0, L i s t (lambda , u ,

alpha) , dum, dum) ;

K. Long et al. / Sundance: High-level software for PDE-constrained optimization 305

At this point, the system’s matrix and right-hand
side can be obtained as Playa LinearOperator and
Vector objects through member functions of Lin-
earProblem. Alternatively, the solve() member
function of LinearProblem can be called, with a
Playa LinearSolver argument to specify the solve
algorithm to be used.

LinearSolver <double> l i n S o l v e r =

L inea rSo l ve rBu i l de r : : c rea teSo lver ("amesos . xml ") ;

Expr solnFS = prob . so lve (l i n S o l v e r) ;

The solve() function returns the solution in the
form of a DiscreteFunction.

4.1.3. Programming an adjoint gradient method
Much of the code for this problem is identical to

that for the SAND case shown above. The princi-
pal difference is that instead of setting up a Lin-
earProblem object that encapsulates the KKT equa-
tions, we set up a Functional object representing
the Lagrangian. The linear problem is then produced
by taking variations as in the initial example above;
in this example that step is done automatically by the
LinearPDEConstrainedObj object.

DiscreteSpace ds2 (mesh , basis , vecType) ;

Expr u0 = new Discre teFunc t ion (ds2 , 0 .0) ;

Expr lambda0 = new Discre teFunc t ion (ds2 , 0 .0) ;

Expr alpha0 = new Discre teFunc t ion (ds2 , 0 .0) ;

RCP<PDEConstrainedObjBase> obj =

rcp (new LinearPDEConstrainedObj (L , u , u0 ,

lambda , lambda0 , alpha , alpha0 ,

l i n S o l v e r , verb)) ;

The linSolver argument is used to specify the
solve algorithm used for the state and adjoint equa-
tions. This objective function object can then be used
in a gradient-based optimizer.

Notice a subtle but significant difference from the
specification of the full-space method: there, a sin-
gle discrete function w0 was defined on the full space
discSpace, but here we create three discrete func-
tions u0, lambda0, alpha0 each on the reduced
space.

4.1.4. Numerical results
We solved this problem using both the full space

and reduced space formulations. The same code for

the Lagrangian was used for both cases. We used the
KLU sparse direct solver from the Amesos package
for all linear solves arising in either formulation. The
mesh used had 15,255 elements and 3829 nodes. In
the reduced space calculations, we used a limited-
memory BFGS [16,17] (LM-BFGS) algorithm with
line search. In all calculations, the initial estimate of
the Hessian was the identity and the initial estimate
of the design variable was zero. Stopping tolerances
were 10−7 in objective function value, 10−6 in gradi-
ent norm, and 10−4 in step. When all three tolerances
have been attained the problem is considered to have
converged.

Some results are shown in Table 1. For a sample of
three different regularization parameters R, we have
computed L2 norms of the error in the solution and the
mismatch from the target, and for the reduced-space
method we have recorded the number of LM-BFGS it-
erations needed to reach the specified tolerance. As ex-
pected, as the regularization parameter is reduced the
target is matched more closely.

It is of course possible to improve on this optimiza-
tion procedure in many ways; however, the focus of
this paper is on the software infrastructure needed to
enable setting up either the full KKT system needed
for a full-space approach or the sequence of systems
needed for a reduced-space approach.

4.2. Nonlinear source inversion

In this example we consider least-squares estimation
of the source term in a nonlinear boundary value prob-
lem.

min
u,α

f (u, α) =
1
2

∫ π

0
(u − u∗)2 dΩ

+
R

2

∫ π

0
α2 dΩ, (18)

subject to

⎧⎨
⎩

∇2u = sin(u) + α + g
in Ω,

u = 0 at x = 0, x = π.

(19)

The Lagrangian is

L = f +
∫ π

0
[∇λ · ∇u + λ sin(u) + λα + λg] dx

= 0. (20)

With the method of manufactured solutions we can

306 K. Long et al. / Sundance: High-level software for PDE-constrained optimization

Table 1

Error norms and iteration counts for the linear source inversion problem with several different regularization
parameters, and for both the reduced space and full space formulations

R Reduced space Full space

‖u − uexact ‖ ‖u − u∗ ‖ LM-BFGS iters ‖u − uexact ‖ ‖u − u∗ ‖
1 0.00848782 0.797512 47 0.0040405 0.797476

0.01 0.00403758 0.00673811 171 0.00403347 0.00674269

0.0001 0.00364934 0.00361768 124 0.00364973 0.00361806

Note: The error norms are L2.

construct an exactly solvable problem with

u(x) = sin(x), (21)

λ(x) = R sin2(x), (22)

α(x) = − sin2(x), (23)

u∗ = −R cos(2x) + R sin2(x)

+ sin(sin(x)) + sin(x), (24)

g(x) = sin2(x) − sin(x) − sin(sin(x)). (25)

4.2.1. Programming the functional
Here is the code to create the Lagrangian Func-

tional object.

/ ∗ Create the mesh ob jec t ∗ /

i n t nx = 512;

const double p i = 4.0 ∗ atan (1 . 0) ;

MeshType meshType = new BasicSimpl ic ia lMeshType () ;

MeshSource mesher = new Par t i t ionedL ineMesher (0 . 0 ,

p i , nx , meshType) ;

Mesh mesh = mesher . getMesh () ;

/ ∗ Define the symbol ic geometry ∗ /

C e l l F i l t e r i n t e r i o r = new M a x i m a l C e l l F i l t e r () ;

C e l l F i l t e r bdry = new Bounda ryCe l lF i l t e r () ;

/ ∗ D i s c r e t i z a t i o n s p e c i f i e r s ∗ /

QuadratureFamily quad = new GaussianQuadrature (4) ;

BasisFamily basis = new Lagrange (1) ;

/ ∗ Define the unknown f u n c t i o n s ∗ /

Expr u = new UnknownFunction (basis , " u ") ;

Expr lambda = new UnknownFunction (basis , " lambda ") ;

Expr alpha = new UnknownFunction (basis , " alpha ") ;

DiscreteSpace discSpace (mesh , L i s t (basis , basis ,

bas is) , vecType) ;

Expr w0 = new Discre teFunc t ion (discSpace , 0 .0) ;

/ ∗ Regu la r i za t i on constant (logR i s a loop

v a r i a b l e) ∗ /

double R = pow(10 .0 , logR) ;

/ ∗ Wri te the t a r g e t and f o r c i n g f u n c t i o n ∗ /

Expr dx = new D e r i v a t i v e (0) ;

Expr x = new CoordExpr (0) ;

Expr uExact = s in (x) ;

Expr sx = s in (x) ;

Expr cx = cos (x) ;

Expr ssx = s in (sx) ;

Expr sx2 = sx∗sx ;

Expr cx2 = cx∗cx ;

Expr g = sx2 − sx − ssx ;

Expr t a r g e t = 2.0 ∗R∗ (sx2−cx2) + R∗sx2∗ ssx + sx ;

/ ∗ we can now def ine the o b j e c t i v e and
c o n s t r a i n t ∗ /

Expr f i t = I n t e g r a l (i n t e r i o r , 0.5 ∗pow(u−t a rge t ,

2 .0) , quad) ;

Expr reg = I n t e g r a l (i n t e r i o r , 0.5 ∗R∗ (alpha ∗ alpha) ,

quad) ;

Expr c o n s t r a i n t = I n t e g r a l (i n t e r i o r ,

(grad ∗u) ∗ (grad ∗lambda) + alpha ∗lambda +

g∗lambda + lambda∗ s in (u) , quad) ;

Expr const ra in tBC = Essent ialBC (bdry , lambda∗u ,

quad) ;

/ ∗ Wri te the Lagrangian ∗ /

Expr L = f i t + reg + c o n s t r a i n t ;

Func t iona l Lagrangian (mesh , L , constra intBC ,

vecType) ;

The next step is to set up either a full-space or
reduced-space solve.

4.2.2. Solution by the full-space method
As in the linear source inversion problem, obtaining

the full KKT system is a matter of taking variations
of the Lagrangian. The difference is that a Nonlin-

K. Long et al. / Sundance: High-level software for PDE-constrained optimization 307

earProblem is produced.

LinearSolver <double> l i n S o l v e r =

L inea rSo l ve rBu i l de r : : c rea teSo lver ("amesos . xml ") ;

ParameterXMLFileReader reader (" nox−amesos . xml ") ;

ParameterL is t noxParams = reader . getParameters () ;

NOXSolver non l i nSo lve r (noxParams) ;

Expr dum;

Nonl inearProblem prob =

Lagrangian . non l i nea rVa r i a t i ona lP rob (L i s t (lambda ,

u , alpha) , w0, L i s t (lambda ,

u , alpha) , w0, dum, dum) ;

prob . so lve (non l i nSo lve r) ;

The solution is written into the discrete function w0.

4.2.3. Programming an adjoint gradient method
The Lagrangian is used to construct a Nonlin-

earPDEConstrainedObj object.

DiscreteSpace ds2 (mesh , basis , vecType) ;

Expr u0 = new Discre teFunc t ion (ds2 , 0 .0) ;

Expr lambda0 = new Discre teFunc t ion (ds2 , 0 .0) ;

Expr alpha0 = new Discre teFunc t ion (ds2 , 0 .0) ;

RCP<PDEConstrainedObjBase> obj =

rcp (new NonlinearPDEConstrainedObj (Lagrangian ,

u , u0 , lambda , lambda0 , alpha , alpha0 ,

non l inSo lver , l i n S o l v e r)) ;

The nonlinear and linear solver arguments specify
the solvers to be used for the state and adjoint equa-
tions, respectively. As in the linear case, three discrete
functions are used, each defined on the reduced space.

4.2.4. Numerical results
The reduced space optimizer used the same algo-

rithm and tolerances as in the linear source inversion
example above. Nonlinear solves of the full KKT sys-
tem and of the state equation were done with NOX’s
implementation of Newton’s method with line search.
Tolerance for the nonlinear solves was 10−10. The
Amesos KLU solver was used for all linear solves.

4.3. Frequency-domain conductivity inversion

Our final model problem is frequency-domain in-
version of a material’s conductivity parameter κ. The
underlying physics might be, for example, heat con-

Fig. 10. Geometry of frequency-domain conductivity inversion. The
data were generated by a forward model having the inclusion region
shown with conductivity κ2. Samples were taken at the probe loca-
tions p1 to pNp

, over a range of frequencies. Boundary conditions
are a unit sinusoidal load on Γ1 and insulation on Γ2.

duction; a slight change in problem setup would give
a model appropriate to eddy current inversion. The
problem’s geometry is sketched in Fig. 10. The time-
domain model is assumed to be

∇ · [κ∇φ] =
∂φ

∂t
, (26)

where φ is some scalar field, with insulating boundary
conditions on all surfaces except for a surface Γ1 where
a sinusoidal load is imposed,

∂φ

∂n
= e−iωt on Γ1. (27)

Assuming κ to be independent of φ and writing φ =
u(x)e−iωt, we have

∇ · [κ∇u] + iωu = 0, (28)

∂u

∂n
= 1 on Γ1, (29)

∂u

∂n
= 0 on Γ\Γ1. (30)

To ensure positive conductivity we introduce an aux-
iliary design variable α and write κ = eα. Now,
signals at different frequencies penetrate to different
skin depths (see, e.g., [12]) so one usually carries
out a frequency sweep, taking data at Nf frequen-
cies ω1, ω2, . . . , ωNf

. We assume an array of Np dis-
crete probe locations, and suppose that measurements
u∗

f (ps) have been taken at frequencies ωf and probe
locations ps. The magnitudes of the signals differ by
several orders of magnitude over the frequency range,
so in the objective function we will use relative mis-
fits rather than absolute misfits. With only Np × Nf
measurements the problem is clearly ill-posed and de-
mands regularization. We use a mollified total variation

308 K. Long et al. / Sundance: High-level software for PDE-constrained optimization

Table 2

Error norms and iteration counts for the nonlinear source inversion problem with several different regular-
ization parameters, and for both the reduced space and full space formulations

R Reduced space Full space

‖u − uexact ‖ ‖u − u∗ ‖ LM-BFGS iters ‖u − uexact ‖ ‖u − u∗ ‖
1 0.0494592 3.08711 6 0.0494581 3.08711

0.01 0.00180347 0.0295964 14 0.00180349 0.0295963

0.0001 0.000101083 0.000325266 14 2.53442e–05 0.0002902

Note: The error norms are L2.

diminishing (TVD) regularization,

R
√

ε2 + h2(∇α)2, (31)

where R is a regularization coefficient, ε is a constant
that smooths the singularity, and h is the local cell di-
ameter. Having specified the fitting objective, regular-
ization and constraints, we can pose the PDECO prob-
lem.

min
u,α

F (u, α) =
1
2

Np∑
s=1

Nf∑
f=1

(
uf (ps) − u∗

f (ps)

u∗
f (ps)

)2

+ R

∫
Ω

√
ε2 + (∇α)2 dΩ, (32)

subject to, for f = 1 to Nf ,⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∇ · [eα∇uf] + iωfuf = 0 in Ω,
∂uf

∂n
= 1 on Γ1,

∂uf

∂n
= 0 on Γ2.

(33)

Note that the Nf constraints are decoupled and can be
solved independently.

4.3.1. Programming the conductivity inversion
problem

For this problem we show only the code for set-
ting up the Lagrangian. As in the previous examples,
once the Lagrangian has been constructed the problem
is ready for solution by either a full space or reduced
space method. Some interesting features of this prob-
lem are the use of complex-valued expressions and the
decoupling of the states at different frequencies.

Expr I = new ComplexExpr (0 . 0 , 1 .0) ; / / \ s q r t { −1}

Array <Expr> u (nFreq) ;

/ / I n i t i a l i z a t i o n code omi t ted

Array <Expr> lambda (nFreq) ;

/ / I n i t i a l i z a t i o n code omi t ted

Expr f i t = 0 . 0 ;

Expr c o n s t r a i n t = 0 . 0 ;

Expr const ra in tBC ;

/ ∗ set up equat ion for each frequency ∗ /

double R = 0 . 1 ;

for (i n t f =0; f <nFreq ; f ++)

{

/ ∗ Sum the squared r e s i d u a l s a t the probes ∗ /

for (i n t p=0; p<probes . s ize () ; p++)

{

f i t = f i t + I n t e g r a l (probes [p] ,

0.5 ∗pow ((u [f] . imag ()−p_i [f] [p]) /

p_ i [f] [p] , 2 .0) +

0.5 ∗pow ((u [f] . r e a l ()−p_r [f] [p]) /

p_r [f] [p] , 2 .0) , quad) ;

}

/ ∗ Wri te the PDE as a c o n s t r a i n t ∗ /

c o n s t r a i n t = c o n s t r a i n t + I n t e g r a l (i n t e r i o r ,

exp (kappa) ∗ (grad ∗lambda [f]) ∗ (grad ∗u [f]) −
I ∗omega [f] ∗lambda [f] ∗u [f] , quad) −
I n t e g r a l (top , lambda [f] . r e a l () , quad) ;

}

/ ∗ r e g u l a r i z e for smoothness i n the

c o n d u c t i v i t y ∗ /

Expr h = new Cel lDiameterExpr () ;

Expr reg = I n t e g r a l (i n t e r i o r ,

R∗ s q r t (1 .0+h∗h∗ (grad ∗kappa) ∗ (grad ∗kappa)) ,

quad) ;

Expr L_eqn = f i t + reg + c o n s t r a i n t ;

Expr L_BC = const ra in tBC ;

Once the Lagrangian has been constructed it is used
to set up a NonlinearPDEConstrainedObj ob-
jective function objects as in the nonlinear source in-
version example, which is then used in an optimization
loop. In a reduced-space approach the state equations
at different frequencies decouple and can be solved in-
dependently; this is managed automatically by the ob-

K. Long et al. / Sundance: High-level software for PDE-constrained optimization 309

Fig. 11. Contours of recovered conductivity. As seen by compari-
son with Fig. 11 the location of the region of enhanced conductiv-
ity is determined accurately, though the conductivity there is under-
estimated. (Colors are visible in the online version of the article;
http://dx.doi.org/10.3233/SPR-2012-0341.)

jective function object. Because of the complexity of
preconditioning this problem we make no attempt to
solve this system with a full space method.

4.3.2. Numerical results
In Fig. 11 is shown the recovered conductivity pro-

file in a domain having a region of enhanced con-
ductivity. Twenty-one probes spaced evenly along the
top measured the response at ten frequencies. The fre-
quencies were chosen to give a range of skin depths
1
11 , 2

11 , . . . , 10
11 . The regularization constant was R = 1

and the mollification constant was ε = 1. The LM-
BFGS algorithm converged after 80 iterations. The lo-
cation of the enhanced conductivity inclusion (shown
in Fig. 12) is determined accurately, though its magni-
tude is underestimated (κ ≈ 2.5 compared to the exact
value of 10.)

4.4. Summary of model problems

We have shown how to set up and solve a vari-
ety of linear and nonlinear PDE-constrained optimiza-
tion problems using both full-space and reduced-space
methods. In each case, the same Lagrangian Func-
tional object was used to produce code for the full-
space and reduced-space formulations. Notice also that
the code for the PDE constraints is just that needed to
write a forward simulator, so it is a simple matter to
take a forward simulator programmed in Sundance and
extend it for use in PDE-constrained optimization.

Fig. 12. Exact location of the enhanced conductivity region in the
frequency-domain inversion example. The bulk conductivity is 1,
that in the enhanced region is 10. (Colors are visible in the online
version of the article; http://dx.doi.org/10.3233/SPR-2012-0341.)

5. Conclusions

PDECO is required to solve large scale inverse prob-
lems in engineering and science. However the imple-
mentation of these methods is time consuming as well
as plagued with complications. A significant obstacle
preventing PDECO from becoming a mainstream anal-
ysis tool is rooted in the practise of developing sim-
ulation codes without planning for future use in op-
timization. To overcome this obstacle, we introduce
a high-level simulation toolkit called Sundance with
which both very efficient forward and inverse prob-
lems can be programmed conveniently. Using compo-
nents provided by Sundance the finite element weak
form can be represented and a fully functional simu-
lator can be built. More importantly, the same infras-
tructure can be used to differentiate a Langragian func-
tion, thereby automatically providing a solution mech-
anism for PDECO. We demonstrate the use of Sun-
dance on several numerical examples using different
PDECO solution strategies. These examples are non-
trivial but it is apparent that this capability can be ap-
plied to more complicated applications without much
additional effort.

Sundance is available as part of the Trilinos suite.
It leverages multiple Trilinos packages for distributed
linear algebra, low-level finite element libraries, lin-
ear and nonlinear solvers, and utilities. Sundance com-
plements the low-level capabilities in Trilinos with a
unique high-level optimization-enabled simulation de-
velopment capability for Trilinos.

Acknowledgements

KRL acknowledges support from NSF awards
0830655 and 0904834, from a subcontract from San-

310 K. Long et al. / Sundance: High-level software for PDE-constrained optimization

dia National Laboratories, and from startup funds
from Texas Tech University. PTB acknowledges sup-
port from the Department of Energy Office of Ad-
vanced Scientific Computing Research under contract
10-014804.

References

[1] V. Akcelik, G. Biros and O. Ghattas, Parallel multiscale
Gauss–Newton–Krylov methods for inverse wave propagation,
in: Proceedings of the IEEE/ACM SC2002 Conference, Balti-
more, MD, 2002.

[2] L. Biegler, O. Ghattas and B. van Bloemen Waanders, Large-
Scale PDE-Constrained Optimization, Springer-Verlag, New
York, 2003.

[3] L.T. Biegler, O. Ghattas, M. Heinkenschloss and B. van Bloe-
men Waanders (eds), Large-Scale PDE-Constrained Optimiza-
tion, Lecture Notes in Computational Science and Engineer-
ing, Vol. 30, Springer-Verlag, Heidelberg, 2003.

[4] P.T. Boggs and J.W. Tolle, Sequential quadratic programming,
Acta Numer. 1995 (1995), 1–52.

[5] J.P. Boyd, An analytical and numerical study of the two-
dimensional Bratu equation, J. Sci. Comput. 1(2) (1986), 183–
206.

[6] J.E. Dennis Jr. and R.B. Schnabel, Numerical Methods for Un-
constrained Optimization and Nonlinear Equations, Prentice-
Hall, Englewood Cliffs, NJ, 1983.

[7] R. Fletcher, Practical Methods of Optimization, Wiley, New
York, 1987.

[8] P.E. Gill, W. Murray and M.H. Wright, Practical Optimization,
Academic Press, New York, 1981.

[9] M. Gunzburger, Flow Control, Springer-Verlag, New York,
1995.

[10] M. Heroux, R. Bartlett, V. Howle, R. Hoekstra, J. Hu, T. Kolda,
R. Lehoucq, K. Long, R. Pawlowski, E. Phipps, A. Salinger,
H. Thornquist, R. Tuminaro, J. Willenbring and A. Williams,
An overview of Trilinos, Technical Report SAND2003-2927,
Sandia National Laboratories, 2003.

[11] V.E. Howle, R.C. Kirby, K. Long, B. Brennan and K. Kennedy,
Playa: High-performance programmable linear algebra, Sci.
Program. 20 (2012), 257–273 (this issue).

[12] J.D. Jackson, Classical Electrodynamics, 3rd edn, Wiley, New
York, 1998.

[13] C.T. Kelley, Iterative Methods for Optimization, SIAM,
Philadelphia, PA, 1999.

[14] A. Logg, K.-A. Mardal and G. Wells, Automated Solution of
Differential Equations by the Finite Element Method, Springer-
Verlag, Berlin, 2011.

[15] K. Long, R. Kirby and B. van Bloemen Waanders, Unified em-
bedded parallel finite element computations via software-based
Fréchet differentiation, SIAM J. Sci. Comput. 32(6) (2010),
3323–3351.

[16] J. Nocedal, Updating quasi-newton matrices with limited stor-
age, Math. Comp. 35 (1980), 772–782.

[17] J. Nocedal and S.J. Wright, Numerical Optimization, Springer-
Verlag, New York, 1999.

[18] P.J. Roache, Verification of codes and calculations, AIAA J.
36(5) (1998), 696–702.

[19] P.J. Roache, Code verification by the method of manufactured
solutions, J. Fluids Eng. 124(1) (2002), 4–10.

[20] A. Toomre, Some flattened isothermal models of galaxies, As-
trophys. J. 259 (1982), 535–543.

[21] B. van Bloemen Waanders, R. Bartlett, K. Long, P. Boggs
and A. Salinger, Large scale non-linear programming for PDE
constrained optimization, Technical Report SAND2002-3198,
Sandia National Laboratories, 2002.

[22] C.R. Vogel, Computational Methods for Inverse Problems,
SIAM, Philadelphia, PA, 2002.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

